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Abstract. We give combinatorial formulas for the Laurent expansion of any cluster
variable in any cluster algebra coming from a triangulated surface (with or without punc-
tures), with respect to an arbitrary seed. Moreover, we work in the generality of principal
coefficients. An immediate corollary of our formulas is a proof of the positivity conjecture
of Fomin and Zelevinsky for cluster algebras from surfaces, in geometric type.
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1. Introduction

Since their introduction by Fomin and Zelevinsky [FZ1], cluster algebras have been
related to diverse areas of mathematics such as total positivity, quiver representations, Te-
ichmüller theory, tropical geometry, Lie theory, and Poisson geometry. A main outstanding
conjecture about cluster algebras is the positivity conjecture, which says that if one fixes
a cluster algebra A and an arbitrary seed (x,y, B), one can express each cluster variable
x ∈ A as a Laurent polynomial with positive coefficients in the variables of x.

There is a class of cluster algebras arising from surfaces with marked points, introduced
by Fomin, Shapiro, and Thurston in [FST] (generalizing work of Fock and Goncharov
[FG1, FG2] and Gekhtman, Shapiro, and Vainshtein [GSV]), and further developed in
[FT]. This class is quite large: (assuming rank at least three) it has been shown [FeShTu]
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that all but finitely many skew-symmetric cluster algebras of finite mutation type come
from this construction. Note that the class of cluster algebras of finite mutation type in
particular contains those of finite type.

In this paper we give a combinatorial expression for the Laurent polynomial which
expresses any cluster variable in terms of any seed, for any cluster algebra arising from a
surface. As a corollary we prove the positivity conjecture for all such cluster algebras.

A cluster algebra A of rank n is a subalgebra of an ambient field F isomorphic to a field of
rational functions in n variables. Each cluster algebra has a distinguished set of generators
called cluster variables; this set is a union of overlapping algebraically independent n-
subsets of F called clusters, which together have the structure of a simplicial complex
called the cluster complex. See Definition 2.5 for precise details. The clusters are related
to each other by birational transformations of the following kind: for every cluster x and
every cluster variable x ∈ x, there is another cluster x′ = x − {x} ∪ {x′}, with the new
cluster variable x′ determined by an exchange relation of the form

xx′ = y+M+ + y−M−.

Here y+ and y− lie in a coefficient semifield P, while M+ and M− are monomials in the
elements of x−{x}. There are two dynamics at play in the exchange relations: that of the
monomials, which is encoded in the exchange matrix, and that of the coefficients.

A classification of finite type cluster algebras – those with finitely many clusters – was
given by Fomin and Zelevinksy in [FZ2]. They showed that this classification is parallel
to the famous Cartan-Killing classification of complex simple Lie algebras, i.e. finite type
cluster algebras either fall into one of the infinite families An, Bn, Cn, Dn, or are of one of
the exceptional types E6, E7, E8, F4, or G2. Furthermore, the type of a finite type cluster
algebra depends only on the dynamics of the corresponding exchange matrices, and not
on the coefficients. However, there are many cluster algebras of geometric origin which –
despite having the same type – have totally different systems of coefficients. This motivated
Fomin and Zelevinsky’s work in [FZ4], which studied the dependence of a cluster algebra
structure on the choice of coefficients. One surprising result of [FZ4] was that there is
a special choice of coefficients, the principal coefficients, which have the property that
computation of explicit expansion formulas for the cluster variables in arbitrary cluster
algebras can be reduced to computation of explicit expansion formulas in cluster algebras
with principal coefficients. A corollary of this work is that to prove the positivity conjecture
in geometric type, it suffices to prove the positivity conjecture using principal coefficients.

This takes us to the topic of the present work. Our main results are combinatorial
formulas for cluster expansions of cluster variables with respect to any seed, in any cluster
algebra coming from a surface. Our formulas are manifestly positive, so as a consequence
we obtain the following result.

Theorem 1.1. Let A be any cluster algebra arising from a surface, where the coefficient
system is of geometric type, and let Σ be any initial seed. Then the Laurent expansion of
every cluster variable with respect to the seed Σ has non-negative coefficients.

Our results generalize those in [S2], where cluster algebras from the (much more restric-
tive) case of surfaces without punctures were considered. This work in turn generalized
[ST], which treated cluster algebras from unpunctured surfaces with a very limited coef-
ficient system that was associated to the boundary of the surface. The very special case
where the surface is a polygon and coefficients arise from the boundary was covered in [S],
and also in unpublished work [CP, FZ3]. See also [Pr2]. Recently [MS] gave an alternative
formulation of the results of [S2], using perfect matchings as opposed to T -paths.
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Many others have worked on finding Laurent expansions of cluster variables, and on the
positivity conjecture. However, most of the results so far obtained have strong restrictions
on the cluster algebra, the choice of initial seed or on the system of coefficients.

For rank 2 cluster algebras, the works [SZ, Z, MP] gave cluster expansion formulas in
affine types. Positivity in these cases was generalized to the coefficient-free rank 2 case in
[Dup], using [CR]. For finite type cluster algebras, the positivity conjecture with respect to
a bipartite seed follows from [FZ4, Corollary 11.7]. Other work [M] gave cluster expansions
for coefficient-free cluster algebras of finite classical types with respect to a bipartite seed.

A recent tool in understanding Laurent expansions of cluster variables is the connection
to quiver representations and the introduction of the cluster category [BMRRT] (see also
[CCS1] in type A). More specifically, there is a geometric interpretation (found in [CC] and
generalized in [CK]) of coefficients in Laurent expansions as Euler-Poincaré characteristics
of appropriate Grassmannians of quiver representations. Using this approach, the works
[CC, CK, CK2] gave an expansion formula in the case where the cluster algebra is acyclic
and the initial cluster lies in an acyclic seed (see also [CZ] in rank 2); this was subsequenty
generalized to arbitrary clusters in an acyclic cluster algebra [Pa]. Note that these formulas
do not give information about the coefficients. Later, [FK] generalized these results to
cluster algebras with principal coefficients that admit a categorification by a 2-Calabi-Yau
category [FK]; by [A] and [ABCP, LF], such a categorification exists in the case of cluster
algebras associated to surfaces with non-empty boundary. Recently [DWZ] gave expressions
for the F -polynomials in any skew-symmetric cluster algebra. However, since all of the
above formulas are in terms of Euler-Poincaré characteristics (which can be negative), they
do not immediately imply the positivity conjecture.

The work [CR] used the above approach to make progress towards the positivity conjec-
ture for coefficient-free acyclic cluster algebras, with respect to an acyclic seed.1 Building
on [HL] and [CK2], Nakajima recently used quiver varieties to prove the positivity conjec-
ture for cluster algebras that have at least one bipartite seed, with respect to any cluster
[N]. This is a very strong result, but it does not overlap very much with our Theorem 1.1.
Note that a bipartite seed is in particular acyclic, but not every acyclic type has a bipartite
seed; e.g. the affine type Ã2 does not. Further, the only surfaces that give rise to acyclic
cluster algebras are the polygon with 0, 1, or 2 punctures, and the annulus (corresponding

to the finite types A and D, and the affine types D̃ and Ã, respectively). All other surfaces
yield non-acyclic cluster algebras, see [FST, Corollary 12.4].

The paper is organized as follows. We give background on cluster algebras and cluster
algebras from surfaces in Sections 2 and 3. In Section 4 we present our formulas for Laurent
expansions of cluster variables, and in Section 5 we give examples, as well as identities in
the coefficient-free case. As the proofs of our main results are rather involved, we give a
detailed outline of the main argument in Section 6, before giving the proofs themselves in
Sections 7 to 10 and 12. In Section 13, we give applications of our results to F-polynomials,
g-vectors, and Euler-Poincaré characteristics of quiver Grassmannians.

Recall that cluster variables in cluster algebras from surfaces correspond to ordinary
arcs as well as arcs with notches at one or two ends. We remark that working in the
generality of principal coefficients is much more difficult than working in the coefficient-
free case. Indeed, once we have proved positivity for cluster variables corresponding to
ordinary arcs, the proof of positivity for cluster variables corresponding to tagged arcs in
the coefficient-free case follows easily, see Proposition 5.3 and Section 11. Putting back
principal coefficients requires much more elaborate arguments, see Section 12. A crucial
tool here is the connection to laminations [FT].

1See, however, [N, Footnote 5, page 6].
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2. Cluster algebras

We begin by reviewing the definition of cluster algebra, first introduced by Fomin and
Zelevinsky in [FZ1]. Our definition follows the exposition in [FZ4].

2.1. What is a cluster algebra? To define a cluster algebra A we must first fix its
ground ring. Let (P,⊕, ·) be a semifield, i.e., an abelian multiplicative group endowed
with a binary operation of (auxiliary) addition ⊕ which is commutative, associative, and
distributive with respect to the multiplication in P. The group ring ZP will be used as a
ground ring for A. One important choice for P is the tropical semifield; in this case we say
that the corresponding cluster algebra is of geometric type.

Definition 2.1 (Tropical semifield). Let Trop(u1, . . . , um) be an abelian group (written
multiplicatively) freely generated by the uj . We define ⊕ in Trop(u1, . . . , um) by

(2.1)
∏

j

u
aj

j ⊕
∏

j

u
bj

j =
∏

j

u
min(aj ,bj)
j ,

and call (Trop(u1, . . . , um),⊕, ·) a tropical semifield. Note that the group ring of Trop(u1, . . . , um)
is the ring of Laurent polynomials in the variables uj .

As an ambient field for A, we take a field F isomorphic to the field of rational functions
in n independent variables (here n is the rank of A), with coefficients in QP. Note that
the definition of F does not involve the auxiliary addition in P.

Definition 2.2 (Labeled seeds). A labeled seed in F is a triple (x,y, B), where

• x = (x1, . . . , xn) is an n-tuple from F forming a free generating set over QP,
• y = (y1, . . . , yn) is an n-tuple from P, and
• B = (bij) is an n×n integer matrix which is skew-symmetrizable.

That is, x1, . . . , xn are algebraically independent over QP, and F = QP(x1, . . . , xn). We
refer to x as the (labeled) cluster of a labeled seed (x,y, B), to the tuple y as the coefficient
tuple, and to the matrix B as the exchange matrix.

We obtain (unlabeled) seeds from labeled seeds by identifying labeled seeds that differ
from each other by simultaneous permutations of the components in x and y, and of the
rows and columns of B.

We use the notation [x]+ = max(x, 0), [1, n] = {1, . . . , n}, and

sgn(x) =





−1 if x < 0;

0 if x = 0;

1 if x > 0.

Definition 2.3 (Seed mutations). Let (x,y, B) be a labeled seed in F , and let k ∈ [1, n].
The seed mutation µk in direction k transforms (x,y, B) into the labeled seed µk(x,y, B) =
(x′,y′, B′) defined as follows:
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• The entries of B′ = (b′ij) are given by

(2.2) b′ij =

{
−bij if i = k or j = k;

bij + sgn(bik) [bikbkj]+ otherwise.

• The coefficient tuple y′ = (y′1, . . . , y
′
n) is given by

(2.3) y′j =

{
y−1

k if j = k;

yjy
[bkj ]+
k (yk ⊕ 1)−bkj if j 6= k.

• The cluster x′ = (x′1, . . . , x
′
n) is given by x′j = xj for j 6= k, whereas x′k ∈ F is

determined by the exchange relation

(2.4) x′k =
yk

∏
x

[bik]+
i +

∏
x

[−bik]+
i

(yk ⊕ 1)xk

.

We say that two exchange matrices B and B′ are mutation-equivalent if one can get from
B to B′ by a sequence of mutations.

Definition 2.4 (Patterns). Consider the n-regular tree Tn whose edges are labeled by the
numbers 1, . . . , n, so that the n edges emanating from each vertex receive different labels.
A cluster pattern is an assignment of a labeled seed Σt = (xt,yt, Bt) to every vertex t ∈ Tn,

such that the seeds assigned to the endpoints of any edge t
k

−−− t′ are obtained from each

other by the seed mutation in direction k. The components of Σt are written as:

(2.5) xt = (x1;t , . . . , xn;t) , yt = (y1;t , . . . , yn;t) , Bt = (btij) .

Clearly, a cluster pattern is uniquely determined by an arbitrary seed.

Definition 2.5 (Cluster algebra). Given a cluster pattern, we denote

(2.6) X =
⋃

t∈Tn

xt = {xi,t : t ∈ Tn , 1 ≤ i ≤ n} ,

the union of clusters of all the seeds in the pattern. The elements xi,t ∈ X are called cluster
variables. The cluster algebra A associated with a given pattern is the ZP-subalgebra of the
ambient field F generated by all cluster variables: A = ZP[X ]. We denote A = A(x,y, B),
where (x,y, B) is any seed in the underlying cluster pattern.

The remarkable Laurent phenomenon asserts the following.

Theorem 2.6. [FZ1, Theorem 3.1] The cluster algebra A associated with a seed (x,y, B)
is contained in the Laurent polynomial ring ZP[x±1], i.e. every element of A is a Laurent
polynomial over ZP in the cluster variables from x = (x1, . . . , xn).

Definition 2.7. Let A be a cluster algebra, Σ be a seed, and x be a cluster variable of
A. We denote by [x]AΣ the Laurent polynomial given by Theorem 2.6 which expresses x in
terms of the cluster variables from Σ, and call it the cluster expansion of x in terms of Σ.

The longstanding positivity conjecture [FZ1] says that even more is true.

Conjecture 2.8. (Positivity Conjecture) For any cluster algebra A, any seed Σ, and any
cluster variable x, the Laurent polynomial [x]AΣ has coefficients which are non-negative
integer linear combinations of elements in P.
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Remark 2.9. In cluster algebras whose ground semifield is Trop(u1, . . . , um) (the tropical

semifield), it is convenient to replace the matrix B by an (n + m) × n matrix B̃ = (bij)
whose upper part is the n × n matrix B and whose lower part is an m × n matrix that
encodes the coefficient tuple via

(2.7) yk =

m∏

i=1

u
b(n+i)k

i .

Then the mutation of the coefficient tuple in equation (2.3) is determined by the mutation

of the matrix B̃ in equation (2.2) and the formula (2.7); and the exchange relation (2.4)
becomes

(2.8) x′k = x−1
k

(
n∏

i=1

x
[bik]+
i

m∏

i=1

u
[b(n+i)k]+
i +

n∏

i=1

x
[−bik]+
i

m∏

i=1

u
[−b(n+i)k]+
i

)
.

2.2. Finite type and finite mutation type classification. We say that a cluster alge-
bra is of finite type if it has finitely many seeds. It turns out that the classification of finite
type cluster algebras is parallel to the Cartan-Killing classification of complex simple Lie
algebras [FZ2]. More specifically, define the diagram Γ(B) associated to an n×n exchange
matrix B to be a weighted directed graph on nodes v1, . . . , vn, with vi directed towards
vj if and only if bij > 0. In that case, we label this edge by |bijbji|. Then A = A(x,y, B)
is of finite type if and only Γ(B) is mutation-equivalent to an orientation of a finite type
Dynkin diagram [FZ2]. In this case, we say that B and Γ(B) are of finite type.

We say that a matrix B (and the corresponding cluster algebra) has finite mutation type
if its mutation equivalence class is finite, i.e. only finitely many matrices can be obtained
from B by repeated matrix mutations. A classification of all cluster algebras of finite
mutation type with skew-symmetric exchange matrices was given by Felikson, Shapiro, and
Tumarkin [FeShTu]. In particular, all but 11 of them come from either cluster algebras of
rank 2 or cluster algebras associated with triangulations of surfaces (see Section 3).

2.3. Cluster algebras with principal coefficients. Fomin and Zelevinsky introduced
in [FZ4] a special type of coefficients, called principal coefficients.

Definition 2.10 (Principal coefficients). We say that a cluster pattern t 7→ (xt,yt, Bt)
on Tn (or the corresponding cluster algebra A) has principal coefficients at a vertex t0 if
P = Trop(y1, . . . , yn) and yt0 = (y1, . . . , yn). In this case, we denote A = A•(Bt0).

Remark 2.11. Definition 2.10 can be rephrased as follows: a cluster algebra A has principal
coefficients at a vertex t0 if A is of geometric type, and is associated with the matrix B̃t0

of order 2n × n whose upper part is Bt0 , and whose complementary (i.e., bottom) part is
the n× n identity matrix (cf. [FZ1, Corollary 5.9]).

Definition 2.12 (The functions Xℓ;t and Fℓ,t). Let A be the cluster algebra with principal
coefficients at t0, defined by the initial seed Σt0 = (xt0 ,yt0 , Bt0) with

(2.9) xt0 = (x1, . . . , xn), yt0 = (y1, . . . , yn), Bt0 = B0 = (b0ij) .

By the Laurent phenomenon, we can express every cluster variable xℓ;t as a (unique)
Laurent polynomial in x1, . . . , xn, y1, . . . , yn; we denote this by

(2.10) Xℓ;t = XB0;t0
ℓ;t .

Let Fℓ;t = FB0;t0
ℓ;t denote the Laurent polynomial obtained from Xℓ;t by

(2.11) Fℓ;t(y1, . . . , yn) = Xℓ;t(1, . . . , 1; y1, . . . , yn).

Fℓ;t(y1, . . . , yn) turns out to be a polynomial [FZ4] and is called an F-polynomial.
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Knowing the cluster expansions for a cluster algebra with principal coefficients allows
one to compute the cluster expansions for the “same” cluster algebra with an arbitrary
coefficient system. To explain this, we need an additional notation. If F is a subtraction-
free rational expression over Q in several variables, R a semifield, and u1, . . . , ur some
elements of R, then we denote by F |R(u1, . . . , ur) the evaluation of F at u1, . . . , ur .

Theorem 2.13. [FZ4, Theorem 3.7] Let A be a cluster algebra over an arbitrary semifield
P and contained in the ambient field F , with a seed at an initial vertex t0 given by

((x1, . . . , xn), (y∗1 , . . . , y
∗
n), B0).

Then the cluster variables in A can be expressed as follows:

(2.12) xℓ;t =
XB0;t0

ℓ;t |F (x1, . . . , xn; y∗1, . . . , y
∗
n)

FB0;t0
ℓ;t |P(y∗1, . . . , y

∗
n)

.

When P is a tropical semifield, the denominator of equation (2.12) is a monomial. There-
fore if the Laurent polynomial Xℓ;t has positive coefficients, so does xℓ;t.

Corollary 2.14. Let A be the cluster algebra with principal coefficients at a vertex t0,
defined by the initial seed Σt0 = (xt0 ,yt0 , Bt0). Let Â be any cluster algebra of geometric
type defined by the same exchange matrix Bt0 . If the positivity conjecture holds for A, then

it also holds for Â.

3. Cluster algebras arising from surfaces

Building on work of Fock and Goncharov [FG1, FG2], and of Gekhtman, Shapiro and
Vainshtein [GSV], Fomin, Shapiro and Thurston [FST] associated a cluster algebra to any
bordered surface with marked points. In this section we will recall that construction, as well
as further results of Fomin and Thurston [FT].

Definition 3.1 (Bordered surface with marked points). Let S be a connected oriented
2-dimensional Riemann surface with (possibly empty) boundary. Fix a nonempty set M
of marked points in the closure of S with at least one marked point on each boundary
component. The pair (S,M) is called a bordered surface with marked points. Marked
points in the interior of S are called punctures.

For technical reasons, we require that (S,M) is not a sphere with one, two or three
punctures; a monogon with zero or one puncture; or a bigon or triangle without punctures.

3.1. Ideal triangulations and tagged triangulations.

Definition 3.2 (Ordinary arcs). An arc γ in (S,M) is a curve in S, considered up to
isotopy, such that: the endpoints of γ are in M ; γ does not cross itself, except that its
endpoints may coincide; except for the endpoints, γ is disjoint from M and from the
boundary of S; and γ does not cut out an unpunctured monogon or an unpunctured bigon.

An arc whose endpoints coincide is called a loop. Curves that connect two marked points
and lie entirely on the boundary of S without passing through a third marked point are
boundary segments. By (c), boundary segments are not ordinary arcs.

Definition 3.3 (Crossing numbers and compatibility of ordinary arcs). For any two arcs
γ, γ′ in S, let e(γ, γ′) be the minimal number of crossings of arcs α and α′, where α and
α′ range over all arcs isotopic to γ and γ′, respectively. We say that arcs γ and γ′ are
compatible if e(γ, γ′) = 0.
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Definition 3.4 (Ideal triangulations). An ideal triangulation is a maximal collection of
pairwise compatible arcs (together with all boundary segments). The arcs of a triangulation
cut the surface into ideal triangles.

There are two types of ideal triangles: triangles that have three distinct sides and trian-
gles that have only two. The latter are called self-folded triangles. Note that a self-folded
triangle consists of a loop ℓ, together with an arc r to an enclosed puncture which we dub
a radius, see the left side of Figure 1.

Definition 3.5 (Ordinary flips). Ideal triangulations are connected to each other by se-
quences of flips. Each flip replaces a single arc γ in a triangulation T by a (unique) arc
γ′ 6= γ that, together with the remaining arcs in T , forms a new ideal triangulation.

Note that an arc γ that lies inside a self-folded triangle in T cannot be flipped.
In [FST], the authors associated a cluster algebra to any bordered surface with marked

points. Roughly speaking, the cluster variables correspond to arcs, the clusters to trian-
gulations, and the mutations to flips. However, because arcs inside self-folded triangles
cannot be flipped, the authors were led to introduce the slightly more general notion of
tagged arcs. They showed that ordinary arcs can all be represented by tagged arcs and
gave a notion of flip that applies to all tagged arcs.

Definition 3.6 (Tagged arcs). A tagged arc is obtained by taking an arc that does not
cut out a once-punctured monogon and marking (“tagging”) each of its ends in one of two
ways, plain or notched, so that the following conditions are satisfied:

• an endpoint lying on the boundary of S must be tagged plain
• both ends of a loop must be tagged in the same way.

Definition 3.7 (Representing ordinary arcs by tagged arcs). One can represent an ordinary
arc β by a tagged arc ι(β) as follows. If β does not cut out a once-punctured monogon,
then ι(β) is simply β with both ends tagged plain. Otherwise, β is a loop based at some
marked point a and cutting out a punctured monogon with the sole puncture b inside it.
Let α be the unique arc connecting a and b and compatible with β. Then ι(β) is obtained
by tagging α plain at a and notched at b.

Definition 3.8 (Compatibility of tagged arcs). Tagged arcs α and β are called compatible
if and only if the following properties hold:

• the arcs α0 and β0 obtained from α and β by forgetting the taggings are compatible;
• if α0 = β0 then at least one end of α must be tagged in the same way as the

corresponding end of β;
• if α0 6= β0 but they share an endpoint a, then the ends of α and β connecting to a

must be tagged in the same way.

Definition 3.9 (Tagged triangulations). A maximal (by inclusion) collection of pairwise
compatible tagged arcs is called a tagged triangulation.

Figure 1 gives an example of an ideal triangulation T and the corresponding tagged
triangulation ι(T ). The notching is indicated by a bow tie.

3.2. From surfaces to cluster algebras. One can associate an exchange matrix and
hence a cluster algebra to any bordered surface (S,M) [FST].

Definition 3.10 (Signed adjacency matrix of an ideal triangulation). Choose any ideal
triangulation T , and let τ1, τ2, . . . , τn be the n arcs of T . For any triangle ∆ in T which is
not self-folded, we define a matrix B∆ = (b∆ij)1≤i≤n,1≤j≤n as follows.
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Figure 1. Example of an ideal triangulation on the left and the corre-
sponding tagged triangulation on the right

• b∆ij = 1 and b∆ji = −1 in the following cases:

(a) τi and τj are sides of ∆ with τj following τi in the clockwise order;
(b) τj is a radius in a self-folded triangle enclosed by a loop τℓ, and τi and τℓ are

sides of ∆ with τℓ following τi in the clockwise order;
(c) τi is a radius in a self-folded triangle enclosed by a loop τℓ, and τℓ and τj are

sides of ∆ with τj following τℓ in the clockwise order;
• b∆ij = 0 otherwise.

Then define the matrix BT = (bij)1≤i≤n,1≤j≤n by bij =
∑

∆ b
∆
ij , where the sum is taken

over all triangles in T that are not self-folded.

Note that BT is skew-symmetric and each entry bij is either 0,±1, or ±2, since every
arc τ is in at most two triangles.

Remark 3.11. As noted in [FST, Definition 9.2], compatibility of tagged arcs is invari-
ant with respect to a simultaneous change of all tags at a given puncture. So given a
tagged triangulation T , let us perform such changes at every puncture where all ends of
T are notched. The resulting tagged triangulation T̂ represents an ideal triangulation T 0

(possibly containing self-folded triangles): T̂ = ι(T 0). This is because the only way for a
puncture p to have two incident arcs with two different taggings at p is for those two arcs
to be homotopic, see Definition 3.8. But then for this to lie in some tagged triangulation,
it follows that p must be a puncture in the interior of a bigon. See Figure 1.

Definition 3.12 (Signed adjacency matrix of a tagged triangulation). The signed adja-
cency matrix BT of a tagged triangulation T is defined to be the signed adjacency matrix
BT 0 , where T 0 is obtained from T as in Remark 3.11. The index sets of the matrices (which
correspond to tagged and ideal arcs, respectively) are identified in the obvious way.

Theorem 3.13. [FST, Theorem 7.11] and [FT, Theorem 5.1] Fix a bordered surface (S,M)
and let A be the cluster algebra associated to the signed adjacency matrix of a tagged
triangulation as in Definition 3.12. Then the (unlabeled) seeds ΣT of A are in bijection
with tagged triangulations T of (S,M), and the cluster variables are in bijection with the
tagged arcs of (S,M) (so we can denote each by xγ, where γ is a tagged arc). Moreover,
each seed in A is uniquely determined by its cluster. Furthermore, if a tagged triangulation
T ′ is obtained from another tagged triangulation T by flipping a tagged arc γ ∈ T and
obtaining γ′, then ΣT ′ is obtained from ΣT by the seed mutation replacing xγ by xγ′ .

Remark 3.14. By a slight abuse of notation, if γ is an ordinary arc which does not cut out
a once-punctured monogon (so that the tagged arc ι(γ) is obtained from γ by tagging both
ends plain), we will often write xγ instead of xι(γ).
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Given a surface (S,M) with a puncture p and a tagged arc γ, we let both γ(p) and γp

denote the arc obtained from γ by changing its notching at p. (So if γ is not incident to

p, γ(p) = γ.) If p and q are two punctures, we let γ(pq) denote the arc obtained from γ
by changing its notching at both p and q. Given a tagged triangulation T of S, we let T p

denote the tagged triangulation obtained from T by replacing each γ ∈ T by γ(p).
Besides labeling cluster variables of A(BT ) by xτ , where τ is a tagged arc of (S,M), we

will also make the following conventions:

• If ℓ is an unnotched loop with endpoints at q cutting out a once-punctured monogon
containing puncture p and radius r, then we set xℓ = xrxr(p) .2

• If β is a boundary segment, we set xβ = 1.

To prove the positivity conjecture, we must show that the Laurent expansion of each
cluster variable with respect to any cluster is positive. In the context of surfaces, the next
result will allow us to restrict our attention to clusters corresponding to ideal triangulations.

Proposition 3.15. Fix (S,M), p, γ, T = (τ1, . . . , τn), and T p = (τp
1 , . . . , τ

p
n) as above. Let

A = A•(BT ), and Ap = A•(BT p) be the cluster algebras with principal coefficients at the
seeds ΣT = (x,y, BT ) and ΣT p = (xp,yp, BT p), where x = {xτi

}, y = {yτi
}, xp = {xτ

p
i
},

and yp = {yτ
p
i
}. Then

[xγp ]A
p

ΣTp = [xγ ]AΣT
|xτi
←x

τ
p
i

, yτi
←y

τ
p
i

.

That is, the cluster expansion of xγp with respect to xp in Ap is obtained from the cluster
expansion of xγ with respect to x in A by substituting xτi

= xτ
p
i

and yτi
= yτ

p
i
.

Proof. By Definition 3.12, the rectangular exchange matrix B̃T is equal to B̃T (p) . The

columns of B̃T are indexed by {xτi
} and the columns of B̃p

T are indexed by {xτ
p
i
}; the rows

of B̃T are indexed by {xτi
} ∪ {yτi

} and the rows of B̃p
T are indexed by {xτ

p
i
} ∪ {yτ

p
i
}.

To compute the x-expansion of xγ , we write down a sequence of flips (i1, . . . , ir) (here
1 ≤ ij ≤ n) which transforms T into a tagged triangulation T ′ containing γ. Applying the
corresponding exchange relations then gives the x-expansion of xγ in A. By the description
of tagged flips ([FT, Remark 4.13]), performing the same sequence of flips on T p transforms
T p into the tagged triangulation T ′p, which in particular contains γp. Therefore applying
the corresponding exchange relations gives the xp-expansion of xγp in Ap.

Since in both cases we start from the same exchange matrix and apply the same sequence
of mutations, the xp-expansion of xγp in Ap will be equal to the x-expansion of xγ in A
after relabeling variables, i.e. after substituting xτi

= xτ
p
i

and yτi
= yτ

p
i
.

�

Corollary 3.16. Fix a bordered surface (S,M) and let A be the corresponding cluster
algebra. Let T be an arbitrary tagged triangulation. To prove the positivity conjecture for
A with respect to xT , it suffices to prove positivity with respect to clusters of the form
xι(T 0), where T 0 is an ideal triangulation.

Proof. As in Remark 3.11, we can perform simultaneous tag-changes at punctures to pass
from an arbitrary tagged triangulation T to a tagged triangulation T̂ representing an ideal
triangulation. By a repeated application of Proposition 3.15 – which preserves positivity
because it just involves a substitution of variables – we can then express cluster expansions
with respect to xT in terms of cluster expansions with respect to x

T̂
. �

2There is a corresponding statement on the level of lambda lengths of these three arcs, see [FT, Lemma
7.2]; these conventions are compatible with both the Ptolemy relations and the exchange relations among
cluster variables [FT, Theorem 7.5].
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δ

α

γ

γ

+1 −1

Figure 2. Illustrations for Proposition 3.17 and Definition 3.19

The exchange relation corresponding to a flip in an ideal triangulation is called a gen-
eralized Ptolemy relation. It can be described as follows.

Proposition 3.17. [FT] Let α, β, γ, δ be arcs (including loops) or boundary segments of
(S,M) which cut out a quadrilateral; we assume that the sides of the quadrilateral, listed
in cyclic order, are α, β, γ, δ. Let η and θ be the two diagonals of this quadrilateral; see the
left-hand-side of Figure 2. Then

xηxθ = Y xαxγ + Y ′xβxδ

for some coefficients Y and Y ′.

Proof. This follows from the interpretation of cluster variables as lambda lengths and the
Ptolemy relations for lambda lengths [FT, Theorem 7.5 and Proposition 6.5]. �

Note that some sides of the quadrilateral in Proposition 3.17 may be glued to each other,
changing the appearance of the relation. There are also generalized Ptolemy relations for
tagged triangulations, see [FT, Definition 7.4].

3.3. Keeping track of coefficients using laminations. So far we have not addressed
the topic of coefficients for cluster algebras arising from bordered surfaces. It turns out
that W. Thurston’s theory of measured laminations gives a concrete way to think about
coefficients, as described in [FT] (see also [FG3]).

Definition 3.18 (Laminations). A lamination on a bordered surface (S,M) is a finite
collection of non-self-intersecting and pairwise non-intersecting curves in S \M , modulo
isotopy relative to M , subject to the following restrictions. Each curve must be one of the
following:

• a closed curve;
• a curve connecting two unmarked points on the boundary of S;
• a curve starting at an unmarked point on the boundary and, at its other end,

spiraling into a puncture (either clockwise or counterclockwise);
• a curve whose ends both spiral into punctures (not necessarily distinct).

Also, we forbid curves that bound an unpunctured or once-punctured disk, and curves with
two endpoints on the boundary of S which are isotopic to a piece of boundary containing
zero or one marked point.

In [FT, Definitions 12.1 and 12.3], the authors define shear coordinates and extended
exchange matrices, with respect to a tagged triangulation. For our purposes, it will be
enough to make these definitions with respect to an ideal triangulation.

Definition 3.19 (Shear coordinates). Let L be a lamination, and let T be an ideal trian-
gulation. For each arc γ ∈ T , the corresponding shear coordinate of L with respect to T ,
denoted by bγ(T,L), is defined as a sum of contributions from all intersections of curves
in L with γ. Specifically, such an intersection contributes +1 (resp., −1) to bγ(T,L) if the
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Lγ

a

γ

b b′a′
ba

γ

Lγ

Figure 3. Examples of elementary laminations

corresponding segment of a curve in L cuts through the quadrilateral surrounding γ as
shown in Figure 2 in the middle (resp., right).

Definition 3.20 (Multi-laminations and associated extended exchange matrices). A multi-
lamination is a finite family of laminations. Fix a multi-lamination L = (Ln+1, . . . , Ln+m).

For an ideal triangulation T of (S,M), define the matrix B̃ = B̃(T,L) = (bij) as follows.

The top n × n part of B̃ is the signed adjacency matrix B(T ), with rows and columns
indexed by arcs γ ∈ T (or equivalently, by the tagged arcs ι(γ) ∈ ι(T )). The bottom m
rows are formed by the shear coordinates of the laminations Li with respect to T :

bn+i,γ = bγ(T,Ln+i) if 1 ≤ i ≤ m.

By [FT, Theorem 11.6], the matrices B̃(T ) transform compatibly with mutation.

Definition 3.21 (Elementary lamination associated with a tagged arc). Let γ be a tagged
arc in (S,M). Denote by Lγ a lamination consisting of a single curve defined as follows.
The curve Lγ runs along γ within a small neighborhood of it. If γ has an endpoint a on
a (circular) component C of the boundary of S, then Lγ begins at a point a′ ∈ C located
near a in the counterclockwise direction, and proceeds along γ as shown in Figure 3 on the
left. If γ has an endpoint at a puncture, then Lγ spirals into a: counterclockwise if γ is
tagged plain at a, and clockwise if it is notched.

The following result comes from [FT, Proposition 16.3].

Proposition 3.22. Let T be an ideal triangulation with a signed adjacency matrix B(T ).
Recall that we can view T as a tagged triangulation ι(T ). Let LT = (Lγ)γ∈ι(T ) be the multi-
lamination consisting of elementary laminations associated with the tagged arcs in ι(T ).

Then the cluster algebra with principal coefficients A•(B(T )) is isomorphic to A(B̃(T,LT )).

4. Main results: cluster expansion formulas

In this section we present cluster expansion formulas for cluster variables in a cluster
algebra associated to a bordered surface, with respect to a seed corresponding to an ideal
triangulation; by Proposition 3.15 and Corollary 3.16, this enables us to compute cluster
expansion formulas with respect to an arbitrary seed by an appropriate substitution of
variables. Since our formulas are given in the system of principal coefficients and are man-
ifestly positive, this proves positivity for any cluster algebra of geometric type associated
to a bordered surface.

We present three slightly different formulas, based on whether the cluster variable cor-
responds to a tagged arc with 0, 1, or 2 notched ends. More specifically, fix an ordinary
arc γ and a tagged triangulation T = ι(T ◦) of (S,M), where T ◦ is an ideal triangulation.
We recursively construct an edge-weighted graph GT ◦,γ by glueing together tiles based on
the local configuration of the intersections between γ and T ◦. Our formula (Theorem 4.10)
for xγ with respect to ΣT is given in terms of perfect matchings of GT ◦,γ . This formula
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r2

or

b

a

r2r1

b

r1

a r2

r2abr2
r1

Figure 4. Possible tiles corresponding to crossing a radius of a bigon

also holds for the cluster algebra element xℓ = xrxr(p) , where ℓ is a loop cutting out a

once-punctured monogon enclosing the puncture p and radius r. In the case of γ(p), an arc
between points p and q with a single notch at p, we build the graph GT ◦,ℓp

associated to

the loop ℓp such that ι(ℓp) = γ(p). Our combinatorial formula (Theorem 4.17) for xγ(p) is

then in terms of the so-called γ-symmetric matchings of GT ◦,ℓp
. In the case of γ(pq), an arc

between points p and q which is notched at both p and q, we build the two graphs GT ◦,ℓp

and GT ◦,ℓq
associated to ℓp and ℓq. Our combinatorial formula (Theorem 4.20) for xγ(pq)

is then in terms of the γ-compatible pairs of matchings of GT ◦,ℓp
. and GT ◦,ℓq

.

4.1. Tiles. Let T ◦ be an ideal triangulation of a bordered surface (S,M) and let γ be an
ordinary arc in (S,M) which is not in T ◦. Choose an orientation on γ, let s ∈ M be its
starting point, and let t ∈ M be its endpoint. We denote by s = p0, p1, p2, . . . , pd+1 = t
the points of intersection of γ and T ◦ in order. Let τij be the arc of T ◦ containing pj, and
let ∆j−1 and ∆j be the two ideal triangles in T ◦ on either side of τij .

To each pj we associate a tile Gj , an edge-labeled triangulated quadrilateral (see the
right-hand-side of Figure 4), which is defined to be the union of two edge-labeled triangles

∆j
1 and ∆j

2 glued at an edge labeled τij . The triangles ∆j
1 and ∆j

2 are determined by ∆j−1

and ∆j as follows.
If neither ∆j−1 nor ∆j is self-folded, then they each have three distinct sides (though

possibly fewer than three vertices), and we define ∆j
1 and ∆j

2 to be the ordinary triangles

with edges labeled as in ∆j−1 and ∆j. We glue ∆j
1 and ∆j

2 at the edge labeled τij , so that

the orientations of ∆j
1 and ∆j

2 both either agree or disagree with those of ∆j−1 and ∆j;
this gives two possible planar embeddings of a graph Gj which we call an ordinary tile.

If one of ∆j−1 or ∆j is self-folded, then in fact T ◦ must have a local configuration of a
bigon (with sides a and b) containing a radius r incident to a puncture p inscribed inside
a loop ℓ, see Figure 5. Moreover, γ must either

(1) start at the puncture p and intersect the loop ℓ,
(2) intersect the loop ℓ and terminate at the puncture p, or
(3) intersect the loop ℓ, radius r and then ℓ again.

In cases (1) and (2), we associate to pj (the intersection point with ℓ) an ordinary tile
Gj consisting of a triangle with sides {a, b, ℓ} which is glued along diagonal ℓ to a triangle
with sides {ℓ, r, r}. As before there are two possible planar embeddings of Gj .

In case (3), we have a triple pk−1, pk, pk+1 of consecutive intersection points (the inter-
section with ℓ, r, and ℓ again), one of which is pj. To this triple we associate a union of
tiles Gj−1 ∪ Gj ∪ Gj+1, which we call a triple tile, based on whether γ enters and exits
through different sides of the bigon or through the same side. These graphs are defined by
Figure 5 (each possibility is denoted in boldface within a concatenation of five tiles). Note
that in each case there are two possible planar embeddings of the triple tile. We call the
tiles Gj−1 and Gj+1 within the triple tile ordinary tiles.
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Figure 5. Possible triple tiles for crossing a self-folded triangle

τj

τj

τ[γj ]

τj+1

τj+1

Figure 6. Glueing tiles G̃j and G̃j+1 along the edge labeled τ[γj ]

Definition 4.1 (Relative orientation). Given a planar embedding G̃j of an ordinary tile

Gj , we define the relative orientation rel(G̃j , T
◦) of G̃j with respect to T ◦ to be ±1, based

on whether its triangles agree or disagree in orientation with those of T ◦.

Note that in Figure 5, the southwest-most tile in each of the three graphs in the middle
(respectively, rightmost) column has relative orientation +1 (respectively, −1). Also note

that by construction, the planar embedding of a triple tile G̃j−1 ∪ G̃j ∪ G̃j+1 satisfies

rel(G̃j−1, T
◦) = rel(G̃j+1, T

◦).

Definition 4.2. Using the notation above, the arcs τij and τij+1 form two edges of a
triangle ∆j in T ◦. Define τ[γj ] to be the third arc in this triangle if ∆j is not self-folded,
and to be the radius in ∆j otherwise.

4.2. The graph GT ◦,γ. We now build a graph by glueing together tiles G1, . . . , Gd. We

start by choosing a planar embedding G̃1 of G1 (thus rel(G̃1, T
◦) = ±1), then recursively

attach tiles G2, . . . , Gd in order from 2 to d, subject to the following conditions.

(1) Triple tiles must stay glued together as in Figure 5.
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(2) For two adjacent ordinary tiles, each of which may be an exterior tile of a triple

tile, we glue Gj+1 to G̃j along the edges labeled τ[γj ], choosing a planar embedding

G̃j+1 for Gj+1 so that rel(G̃j+1, T
◦) 6= rel(G̃j , T

◦). See Figure 6.

After glueing together the d tiles, we obtain a graph (embedded in the plane), which we
denote GT ◦,γ . Let GT ◦,γ be the graph obtained from GT ◦,γ by removing the diagonal in

each tile. Figure 5 gives examples of a dotted arc γ and the corresponding graph GT ◦,γ .

Each γ intersects T ◦ five times, so each GT ◦,γ has five tiles.

Remark 4.3. Abusing notation, we will also use the word tile to refer to the graph obtained
from a tile by deleting its diagonal.

Remark 4.4. Even if γ is a curve with self-intersections, our definition of GT ◦,γ makes
sense. This is relevant to our formula for the doubly-notched loop, see Remark 4.22.

4.3. Cluster expansion formula for ordinary arcs. Recall that if τ is a boundary
segment then xτ = 1, and if τ is a loop cutting out a once-punctured monogon with radius
r and puncture p, then xτ = xrxr(p) . Also see Remark 3.14. Before giving the next result,
we need to introduce some notation.

Definition 4.5 (Crossing Monomial). If γ is an ordinary arc and τi1, τi2 , . . . , τid is the
sequence of arcs in T ◦ which γ crosses, we define the crossing monomial of γ with respect
to T ◦ to be

cross(T ◦, γ) =

d∏

j=1

xτij
.

Definition 4.6 (Perfect matchings and weights). A perfect matching of a graph G is a
subset P of the edges of G such that each vertex of G is incident to exactly one edge of P .
If the edges of a perfect matching P of GT ◦,γ are labeled τj1, . . . , τjr , then we define the
weight x(P ) of P to be xτj1

. . . xτjr
.

Definition 4.7 (Minimal and Maximal Matchings). By induction on the number of tiles
it is easy to see that GT ◦,γ has precisely two perfect matchings which we call the minimal
matching P− = P−(GT ◦,γ) and the maximal matching P+ = P+(GT ◦,γ), which contain

only boundary edges. To distinguish them, if rel(G̃1, T
◦) = 1 (respectively, −1), we define

e1 and e2 to be the two edges of GT ◦,γ which lie in the counterclockwise (respectively,

clockwise) direction from the diagonal of G̃1. Then P− is defined as the unique matching
which contains only boundary edges and does not contain edges e1 or e2. P+ is the other
matching with only boundary edges.

For an arbitrary perfect matching P of GT ◦,γ , we let P− ⊖ P denote the symmetric
difference, defined as P− ⊖ P = (P− ∪ P ) \ (P− ∩ P ).

Lemma 4.8. [MS, Theorem 5.1] The set P−⊖P is the set of boundary edges of a (possibly
disconnected) subgraph GP of GT ◦,γ, which is a union of cycles. These cycles enclose a set
of tiles ∪j∈JGij , where J is a finite index set.

We use this decomposition to define height monomials for perfect matchings. Note that
the exponents in the height monomials defined below coincide with the definiton of height
functions given in [Pr1] for perfect matchings of bipartite graphs, based on earlier work of
[CL], [EKLP], and [Th] for domino tilings.

Definition 4.9 (Height Monomial and Specialized Height Monomial). Let T ◦ = {τ1, τ2, . . . , τn}
be an ideal triangulation of (S,M) and γ be an ordinary arc of (S,M). By Lemma 4.8, for
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any perfect matching P of GT ◦,γ , P ⊖ P− encloses the union of tiles ∪j∈JGij . We define
the height monomial h(P ) of P by

h(P ) =

n∏

k=1

hmk
τk
,

where mk is the number of tiles in ∪j∈JGij whose diagonal is labeled τk.
We define the specialized height monomial y(P ) of P to be the specialization Φ(h(P )),

where Φ is defined below.

Φ(hτi
) =





yτi
if τi is not a side of a self-folded triangle;

yr

yr(p)

if τi is a radius r to puncture p in a self-folded triangle;

yr(p) if τi is a loop in a self-folded triangle with radius r to puncture p.

Theorem 4.10. Let (S,M) be a bordered surface with an ideal triangulation T ◦, and
let T = {τ1, τ2, . . . , τn} = ι(T ◦) be the corresponding tagged triangulation. Let A be the
corresponding cluster algebra with principal coefficients with respect to ΣT = (xT ,yT , BT ),
and let γ be an ordinary arc in S (this may include a loop cutting out a once-punctured
monogon). Let GT ◦,γ be the graph constructed in Section 4.2. Then the Laurent expansion
of xγ with respect to ΣT is given by

[xγ ]AΣT
=

1

cross(T ◦, γ)

∑

P

x(P )y(P ),

where the sum is over all perfect matchings P of GT ◦,γ.

Sections 7 - 9 set up the auxiliary results which are used for the proof of Theorem 4.10,
which is given in Section 10. See Section 6 for an outline of the proof.

Remark 4.11. This expansion as a Laurent polynomial does not necessarily yield a reduced
fraction, which is why our denominators are defined in terms of crossing numbers as opposed
to the intersection numbers (α|β) defined in Section 8 of [FST].

4.4. Cluster expansion formulas for tagged arcs with notches. We now consider
cluster variables of tagged arcs which have a notched end. The following remark shows that
if we want to compute the Laurent expansion of a cluster variable associated to a tagged
arc notched at p, with respect to a tagged triangulation T , there is no loss of generality in
assuming that all arcs in T are tagged plain at p.

Remark 4.12. Fix a tagged triangulation T of (S,M) such that T = ι(T ◦), where T ◦ is an
ideal triangulation. Let p and q (possibly p = q) be two marked points, and let γ denote
an ordinary arc between p and q. If p is a puncture and we are interested in computing
the Laurent expansion of xγ(p) with respect to T , we may assume that no tagged arc in

T is notched at p. Otherwise, by changing the tagging of T and γ(p) at p, and applying
Proposition 3.15, we could reduce the computation of the Laurent expansion of xγ(p) to our
formula for cluster variables corresponding to ordinary arcs. Note that if there is no tagged
arc in T which is notched at p, then there is no loop in T ◦ cutting out a once-punctured
monogon around p. Similarly, if p and q are punctures and we are interested in computing
the Laurent expansion of xγ(pq) with respect to T , we may assume that no tagged arc in T is

notched at either p or q (equivalently, there are no loops in T ◦ cutting out once-punctured
monogons around p or q). We will make these assumptions throughout this section.
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Additionally, when we give our formulas for Laurent expansions for arcs γ(p) and γ(pq)

with one or two notches, we will treat separately the case that γ /∈ T ◦ and γ ∈ T ◦. When
γ ∈ T ◦, so that xγ is an initial cluster variable, the Laurent expansion for γ(p) may be
obtained from the formula xℓp

= xγxγ(p) and our Laurent expansion for xℓp
, noting that xγ

is an initial variable. And when γ ∈ T ◦, the positivity of xγ(pq) will be treated separately in
Proposition 4.21. Therefore the definitions and results which follow – with the exception
of Proposition 4.21 – will assume that γ /∈ T ◦.

Before giving our formulas, we must introduce some notation.

Definition 4.13 (Crossing monomials for tagged arcs with notches). Let γ be an ordinary

arc, incident to a puncture p, and assume that γ /∈ T ◦. Let γ(p) be the tagged arc obtained
from γ by notching at p. We define the associated crossing monomial as

cross(T ◦, γ(p)) =
cross(T ◦, ℓp)

cross(T ◦, γ)
= cross(T ◦, γ)

∏

τ

xτ ,

where the product is over all ends of arcs τ of T ◦ that are incident to p. If p and q are
punctures and γ(pq) is a tagged arc with a notch at p and q, we define the associated
crossing monomial as

cross(T ◦, γ(pq)) =
cross(T ◦, ℓp) cross(T ◦, ℓq)

cross(T ◦, γ)3
= cross(T ◦, γ)

∏

τ

xτ ,

where the product is over all ends of arcs τ that are incident to p or q.

Our formula computing the Laurent expansion of a cluster variable xγ(p) with exactly one

notched end (at the puncture p) involves γ-symmetric matchings of the graph associated
to the ideal arc ℓp corresponding to γ(p) (so ι(ℓp) = γ(p)). Note that ℓp is a loop cutting
out a once-punctured monogon around p.

Our goal now is to define γ-symmetric matchings. For an arc τ ∈ T ◦ and a puncture
p, let ep(τ) denote the number of ends of τ incident to p (so if τ is a loop with its ends
at p, ep(τ) = 2). We let ep = ep(T

◦) =
∑

τ∈T ◦ ep(τ). Keeping the notation of Section
4.1, orient γ from q to p, let τi1, τi2 , . . . , τid denote the arcs crossed by γ in order, and let
∆0, . . . ,∆d+1 be the sequence of ideal triangles in T ◦ which γ passes through. We let ζ1
and ζep denote the sides of triangle ∆d+1 not crossed by γ (by Remark 4.12, ζ1 6= ζep),
so that τid follows ζep and ζep follows ζ1 in clockwise order around ∆d+1. Let ζ2 through
ζep−1 denote the labels of the other arcs incident to puncture p in order as we follow ℓp
clockwise around p. Note that if T ◦ contains a loop τ based at p, then τ appears twice
in the multiset {ζ1, . . . , ζep}. Figure 7 shows some possible local configurations around a
puncture.

Definition 4.14 (Subgraphs GT ◦,γ,p,1, GT ◦,γ,p,2, HT ◦,γ,p,1, and HT ◦,γ,p,2 of GT ◦,ℓp
). Since

ℓp is a loop cutting out a once-punctured monogon with radius γ and puncture p, the
graph GT ◦,ℓp

contains two disjoint connected subgraphs, one on each end, both of which
are isomorphic to GT ◦,γ . Therefore each subgraph consists of a union of tiles Gτi1

through
Gτid

; we let GT ◦,γ,p,1 and GT ◦,γ,p,2 denote these two subgraphs.
Let v1 and v2 be the two vertices of tiles Gτid

in GT ◦,ℓp
incident to the edges labeled

ζ1 and ζep . For i ∈ {1, 2}, we let HT ◦,γ,p,i be the connected subgraph of GT ◦,γ,p,i which is
obtained by deleting vi and the two edges incident to vi. See Figure 8.

Definition 4.15 (γ-symmetric matching). Having fixed an ideal triangulation T ◦ and an
ordinary arc γ between p and q, we call a perfect matching P of GT ◦,ℓp

γ-symmetric if the
restrictions of P to the two ends satisfy P |HT◦,γ,p,1

∼= P |HT◦,γ,p,2
.
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γ(p)

ζep

p

Figure 7. Possible local configurations around a puncture

τi1

ζ1
v1

ζ1 ζ2

ζep−1

τi1

ζepv2

ζep

ζ1ζep

τid

τid
GT◦,γp,i = +

HT◦,γp,i =

Figure 8. GT ◦,ℓp
, with subgraphs GT ◦,γ,p,i and HT ◦,γ,p,i shaded as indicated

Definition 4.16 (Weight and Height Monomials of a γ-symmetric matching). Fix a γ-
symmetric matching P of GT ◦,ℓp

. By Lemma 12.4, P restricts to a perfect matching of
(without loss of generality) GT ◦,γ,p,1. Therefore the following definitions of weight and
(specialized) height monomials x(P ) and y(P ) are well-defined:

x(P ) =
x(P )

x(P |GT◦,γ,1
)
, y(P ) =

y(P )

y(P |GT◦,γ,1
)
.

We are now ready to state our result for tagged arcs with one notched end.

Theorem 4.17. Let (S,M) be a bordered surface with puncture p and tagged triangulation
T = {τ1, τ2, . . . , τn} = ι(T ◦) where T ◦ is an ideal triangulation. Let A be the corresponding
cluster algebra with principal coefficients with respect to ΣT . Let γ be an ordinary arc with
one end incident to p, and let ℓp be the ordinary arc corresponding to γ(p) (so ι(ℓp) = γ(p)).
Without loss of generality we can assume that T contains no arc notched at p and that
γ /∈ T (see Remark 4.12). Let GT ◦,ℓp

be the graph constructed in Section 4.2. Then the
Laurent expansion of xγ(p) with respect to ΣT is given by

[xγ(p) ]AΣT
=

1

cross(T ◦, γ(p))

∑

P

x(P ) y(P ),

where the sum is over all γ-symmetric matchings P of GT ◦,ℓp
.
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Figure 9. Analogues of ℓp and ℓq for a loop notched at its basepoint

We prove Theorem 4.17 in Section 12.1. For the case of a tagged arc with notches at
both ends, we need two more definitions in the same spirit as the above notation.

Definition 4.18 (γ-compatible pair of matchings). Assume that the tagged triangulation

T does not contain either γ, γ(p), or γ(q). Let Pp and Pq be γ-symmetric matchings of
GT ◦,ℓp

and GT ◦,ℓq
, respectively. By Lemma 12.4, without loss of generality, Pp|GT◦,γ,p,1

and Pq|GT◦,γq,1
are perfect matchings. We say that (Pp, Pq) is a γ-compatible pair if the

restrictions satisfy
Pp|GT◦,γ,p,1

∼= Pq|GT◦,γq,1
.

Definition 4.19 (Weight and Height Monomials for γ-compatible matchings). Fix a γ-
compatible pair of matchings (Pp, Pq) of GT ◦,ℓp

and GT ◦,ℓq
. We define the weight and

height monomial, respectively x(Pp, Pq) and y(Pp, Pq), as

x(Pp, Pq) =
x(Pp)x(Pq)

x(Pp|GT◦,γ,1
)3
, y(Pp, Pq) =

y(Pp) y(Pq)

y(Pp|GT◦,γ,1
)3
.

For technical reasons, we require the (S,M) is not a closed surface with exactly 2 marked
points for Theorem 4.20 and Proposition 5.3.

Theorem 4.20. Let (S,M) be a bordered surface with punctures p and q and tagged tri-
angulation T = {τ1, τ2, . . . , τn} = ι(T ◦) where T ◦ is an ideal triangulation. Let γ be an
ordinary arc between p and q. Assume γ /∈ T , and without loss of generality assume T
does not contain an arc notched at p or q. Let A be the corresponding cluster algebra with
principal coefficients with respect to ΣT . Let ℓp and ℓq be the two ideal arcs corresponding

to γ(p) and γ(q). Let GT ◦,ℓp
and GT ◦,ℓq

be the graphs constructed in Section 4.2. Then the
Laurent expansion of xγ(pq) with respect to ΣT is given by

[xγ(pq) ]AΣT
=

1

cross(T ◦, γ(pq))

∑

(Pp,Pq)

x(Pp, Pq) y(Pp, Pq),

where the sum is over all γ-compatible pairs of matchings (Pp, Pq) of (GT ◦,ℓp
, GT ◦,ℓq

).

Proposition 4.21. Let (S,M), p, q, T , A, γ be as in Theorem 4.20, except that we assume
that γ ∈ T . Then [xγ(pq) ]AΣT

, which can be expressed as

x
(p)
γ x

(q)
γ yτ + (1 −

∏
τ∈T y

ep(τ)
τ )(1 −

∏
τ∈T y

eq(τ)
τ )

xτ
,

is a positive Laurent polynomial.

We prove this theorem and proposition in Section 12.3.

Remark 4.22. If in Theorem 4.20 the two endpoints p and q of γ coincide, i.e. γ is a loop,
then we let ℓp and ℓq denote the loops (with self-intersections) displayed in Figure 9 for
the purpose of the formula for [xγ(pp) ]AΣT

.
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Figure 10. Ideal Triangulation T ◦ of (S,M)
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Figure 11. The graphs GT ◦,γ1 and GT ◦,ℓp

Remark 4.23. An analogous expression for x
(pq)
γ , as in Prop 4.21, holds even if γ 6∈ T or

even if T includes arcs notched at p or q. See Theorems 12.9 and 12.10 for details.

5. Examples of results, and identities in the coefficient-free case

5.1. Example of a Laurent expansion for an ordinary arc. Consider the ideal tri-
angulation in Figure 10. We have labeled the loop of the ideal triangulation T ◦ as ℓ and
the radius as r. The corresponding tagged triangulation has two arcs, both homotopic to
r: we denote by τ1 the one which is notched at the puncture, and by τ2 the one which is
tagged plain at the puncture. The graph GT ◦,γ1 corresponding to the arc γ1 is shown on
the left of Figure 11. It is drawn so that the relative orientation of the first tile rel(Gℓ, T

◦)
is equal to −1. GT ◦,γ1 has 19 perfect matchings.

Applying Theorem 4.10, we make the specialization xℓ = x1x2, xr = x2, yℓ = y1,
yr = y2/y1, and x11 = x12 = x13 = x14 = 1. We find that xγ1 is equal to:
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Figure 12. Ideal triangulation T ◦ and doubly-notched arc γ3

1

x1x2x3x4x5x6

(
x1x2x

2
4x5x9 + y3 x4x5x9 + y6 x1x2x

2
4x7 + y1y3 x3x4x5x9 + y3y6 x4x10x7

+ y5y6 x1x2x4x6x7 + y2y3 x3x4x5x9 + y1y3y6 x3x4x10x7 + y3y5y6 x6x7 + y1y2y3 x
2
3x4x5x9

+ y2y3y6 x3x4x10x7 + y1y3y5y6 x3x6x7 + y3y4y5y6 x3x5x6x7 + y1y2y3y6 x
2
3x4x10x7

+ y2y3y5y6 x3x6x7 + y1y3y4y5y6 x
2
3x5x6x7 + y1y2y3y5y6 x

2
3x6x7 + y2y3y4y5y6 x

2
3x5x6x7

+ y1y2y3y4y5y6 x
3
3x5x6x7

)
.

5.2. Example of a Laurent expansion for a singly-notched arc. To compute the
Laurent expansion of xγ2 (the notched arc in Figure 10), we draw the graph GT ◦,ℓp

asso-
ciated to the loop ℓp, where ℓp is the ideal arc associated to γ2. Figure 11 depicts this
graph, embedded so that the relative orientation of the tiles with diagonals labeled 5 is +1.
We need to enumerate γ-symmetric matchings of GT ◦,ℓp

, i.e. those matchings which have
isomorphic restrictions to the two bold subgraphs. Splitting up the set of γ-symmetric
matchings into three classes, corresponding to the configuration of the perfect matching
on the restriction to Gγ , we obtain

[xγ2 ]
A
ΣT

=
1

x5x6x7x8x9

(
x4x5(x9x6x8 + y7 x9x9 + y7y8 x9x7x10)

+ y6y7 x4x10(x9x7 + y8 x7x10x7 + y8y9 x7x8x6)

+ y5y6y7 x6(x9x7 + y8 x7x10x7 + y8y9 x7x8x6)
)
.

Since the initial variables appearing in this sum correspond to ordinary arcs, no special-
ization of variables was necessary in this case (except for the boundaries x13 = x14 = 1).

5.3. Example of a Laurent expansion for a doubly-notched arc. We close with an
example of a cluster expansion formula for a tagged arc with notches at both endpoints.
We build two graphs associated to the doubly-notched arc γ3 in Figure 12: each graph
corresponds to a loop ℓp or ℓq tracing out a once punctured monogon around an endpoint
of γ3. Note that in the planar embeddings of Figure 13, the relative orientations of the first
tiles are both +1. So each minimal matching uses the lowest edge in GT ◦,ℓp

and GT ◦,ℓq
,

respectively. To write down the Laurent expansion for xγ3 , we need to enumerate the γ-
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Figure 13. Graphs GT ◦,ℓp
and GT ◦,ℓq

corresponding to ideal arcs ℓp, ℓq

compatible pairs of perfect matchings of these graphs. There are 12 pairs of γ-compatible
perfect matchings in all, yielding the 12 monomials in the expansion of xγ3 :

[xγ3 ]
A
ΣT

=
1

x3x4x5x6x7x8

(
x3x4x

2
6x8 + y5 x

2
4x6x8 + y7 x3x4x6x8x9

+ y3y5 x2x4x5x6x8 + y5y7 x
2
4x8x9 + y3y5y7 x2x4x5x8x9

+ y5y6y7 x4x5x7x9 + y3y5y6y7 x2x
2
5x7x9 + y5y6y7y8 x4x5x6x7

+ y3y4y5y6y7 x3x5x6x7x9 + y3y5y6y7y8 x2x
2
5x6x7 + y3y4y5y6y7y8 x3x5x

2
6x7

)
.

5.4. Identities for cluster variables in the coefficent-free case.

Remark 5.1. Note that if we set all the yi’s equal to 1 in Section 5.2, then xγ2 factors as

(x10x7 + x6x8 + x9

x7x8x9

)(x6x7 + x4x7x10 + x4x5x9

x5x6

)
.

The first term depends only on the local configuration around the puncture p (at which end
γ2 is notched). The second term is exactly the coefficient-free cluster variable associated
to the ordinary arc homotopic to γ2.

Also, if we set all the yi’s equal to 1 in Section 5.3, then xγ3 factors as

(x3x6 + x4 + x2x5

x3x4x5

)(x6 + x9

x7x8

)(x4x8 + x5x7

x6

)
.

The first and second terms correspond to local configurations around the punctures q and
p, respectively, and the third term is exactly the coefficient-free cluster variable associated
to the ordinary arc homotopic to γ3.

These examples hint at a general phenomenon in the coefficient-free case:

Definition 5.2. Fix a bordered surface (S,M) and a tagged triangulation T = ι(T ◦) of
S. For any puncture p we construct a Laurent polynomial with positive coefficients that
only depends on the local neighborhood of p. Let τ1, τ2, . . . , τh denote the ideal arcs of T ◦

incident to p in clockwise order, assuming that h ≥ 2. (If a loop is incident to p, it appears
twice in this list, once for each end.) Let [τi, τi+1] denote the unique arc in an ideal triangle
containing τi and τi+1, such that [τi, τi+1] is in the clockwise direction from τi; here the
indices in [τi, τi+1] are considered modulo h. We set

zp =

∑h−1
i=0 σ

i(x[τ1,τ2]xτ3xτ4 · · · xτh
)

xτ1xτ2 · · · xτh

,

where σ is the cyclic permutation (1, 2, 3, . . . , h) acting on subscripts.
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When p has exactly one ideal arc r incident to it, the tagged triangulation contains
exactly two tagged arcs r and r(p) (technically ι(r) and ι(r)(p)) incident to p. In this case,

zp =
xr(p)

xr
.

Proposition 5.3. Fix (S,M) and T as above, let A be the corresponding coefficient-free
cluster algebra, and let γ be an ordinary arc between distinct marked points p and q, or a
loop which does not cut out a once-punctured monogon. Then if p 6= q and p is a puncture,

xγ(p) = zp · xγ ,

and if both p and q are punctures,

xγ(pq) = zpzq · xγ.

Finally if γ is a loop so that p = q and γ(pp) is a doubly-notched loop, then

xγ(pp) = z2
p · xγ .

We will prove Proposition 5.3 in Section 11.

6. Outline of the proof of the cluster expansion formulas

As the proofs in this paper are rather involved, we present here a detailed outline.

Step 1. Fix a bordered surface with marked points (S,M). The seeds of A = A(S,M)
are in bijection with tagged triangulations, so to prove the positivity conjecture
for A, we must prove positivity with respect to every seed ΣT where T is a tagged
triangulation. By Proposition 3.16, it is enough to prove positivity with respect to
every seed ΣT where T = ι(T ◦) for some ideal triangulation.

Step 2. Fix an ideal triangulation T ◦ = (τ1, . . . , τn) of (S,M), with boundary segments
denoted τn+1, . . . , τn+c. Fix also an ordinary arc γ, which crosses T d times; we
would like to understand the Laurent expansion of xγ with respect to ΣT . We build

a triangulated polygon S̃γ which comes with a “lift” γ̃ of γ. The triangulation T̃γ

of S̃γ has d internal arcs labeled σ1, . . . , σd, and d + 3 boundary segments labeled
σd+1, . . . , σ2d+3. We have a map π : {σ1, . . . , σ2d+3} → {τ1, . . . , τn+c}. This step
will be addressed in Section 7.

Step 3. We build a type Ad cluster algebra Ãγ associated to S̃γ , with a (3d+3)×d extended
exchange matrix. This is obtained from the (2d+ 3)× d extended exchange matrix

associated to (S̃γ , T̃γ) (with rows indexed by interior arcs and boundary segments),
and appending a d×d identity matrix below. It is clear from the construction that
the initial cluster is acyclic.

Step 4. We construct a map φγ from Ãγ to the fraction field Frac(A), such that for each

σ ∈ T̃γ , φγ(xσ) = xπ(σ). We check that φγ is a well-defined homomorphism, using

the fact that Ãγ is acyclic, and [BFZ, Corollary 1.21]. Steps 3 and 4 will be ad-
dressed in Section 8.

Step 5. We identify a quadrilateral Q in S with simply-connected interior containing γ as a
diagonal, whose other diagonal and sides (denoted γ′, α1, α2, α3, α4) cross T fewer
times than γ does. To do so we use (a slight generalization of) a lemma of [ST],
which will be stated and proved in Section 9.
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Step 6. We check that φγ(xγ̃) = xγ , by induction on the number of crossings of γ and T .

To do so, we use Step 5 to produce Q, which we lift to a quadrilateral Q̃ in a larger

triangulated polygon Ŝ containing S̃γ . By induction, the cluster expansions of each
of xγ′ , xα1 , xα2 , xα3 , and xα4 are given by matching formulas using the combina-

torics of Ŝ. By comparing the exchange relations corresponding to the flip in Q̃
and the flip in Q, and using the fact that cluster expansion formulas are known in
type A, we deduce that φγ(xγ̃) = xγ .

Step 7. In type A, the matching formula giving the Laurent expansion of xγ̃ in Ãγ with
respect to Σ

eTγ
is known. Since φγ(xγ̃) = xγ , and φγ is a homomorphism, we can

compute the Laurent expansion of xγ in terms of ΣT . Here we use the fact that

for every arc σi ∈ T̃γ , φγ(xσi
) = xπ(σi). This proves our main theorem for cluster

variables corresponding to ordinary arcs and loops ℓ cutting out once-punctured
monogons. Steps 6 and 7 will be addressed in Section 10.

Step 8. We prove our combinatorial formula for a singly notched arc by using the iden-
tity xℓ = xrxr(p) (where ℓ cuts out a once-punctured monogon with radius r and
puncture p), and our now-proved combinatorial formula for xℓ and xr. For doubly-
notched arcs we use an analogous strategy, using a more complicated identity (The-
orem 12.9). The proof for doubly-notched loops is the same as for doubly-notched
arcs, but we need to make sense of the cluster algebra element corresponding to a
singly-notched loop (see Definition 12.22). Step 8 is addressed in Section 12.

7. Construction of a triangulated polygon and a lifted arc

Let T = {τ1, τ2, . . . , τn+c} be an ideal triangulation of (S,M), where τ1, . . . , τn are arcs
and τn+1, . . . , τn+c are boundary segments. Let γ be an ordinary arc in (S,M) that crosses

T exactly d times. We now explain how to associate a triangulated polygon S̃γ to γ, as
well as a lift γ̃ of γ, which we will use later to compute the cluster expansion of xγ .

We fix an orientation for γ and we denote its starting point by s and its endpoint by
t, with s, t ∈ M . Let s = p0, p1, . . . , pd, pd+1 = t be the intersection points of γ and T in
order of occurrence on γ, hence p0, pd+1 ∈M and each pi with 1 ≤ i ≤ d lies in the interior
of S. Let i1, i2, . . . , id be such that pk lies on the arc τik ∈ T , for k = 1, 2, . . . , d. Note that
ik may be equal to ij even if k 6= j.

For k = 0, 1, . . . , d, let γk denote the segment of the path γ from the point pk to the
point pk+1. Each γk lies in exactly one ideal triangle ∆k in T . If 1 ≤ k ≤ d− 1, then the
triangle ∆k is formed by the arcs τik , τik+1

and a third arc that we denote by τ[γk]. If the
triangle is self-folded then τ[γk] is equal to either τik or τik+1

. Note however, that τik can’t
be equal to τik+1

, since γ crosses them one after the other.
The idea now is to construct our triangulated polygon by glueing together triangles

which are modeled after ∆0,∆1, . . . ,∆d. Moreover, the triangles will be glued so that they
all have the same relative orientation (either +1 or −1). But some of ∆0,∆1, . . . ,∆d may
be self-folded, and we do not want to have self-folded triangles in the polygon. So we will
unfold the self-folded triangles in a precise way, before glueing them back together.

Let sj denote the common endpoint of τij and τij+1 such that the triangle with vertices
sj , pj, pj+1 and with sides contained in τij , τij+1 , and γj has simply connected interior, see
Figure 14. Let M(γ) = {sj | 1 ≤ j ≤ d− 1}.
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Figure 14. Definition of the point sj

We now partition the sj ’s into subsets of consecutive elements which coincide. That is,
we define integers 0 = a0 < a1 < . . . < aℓ−1 < aℓ = d− 1, by requiring that

s1 = s2 = · · · = sa1 6= sa1+1

sa1+1 = sa1+2 = · · · = sa2 6= sa2+1
...

...
...

...
saℓ−1+1 = saℓ−1+2 = · · · = saℓ

= sd−1.

In the example in Figure 15, we have

a0 a1 a2 a3 a4 a5 a6 a7 a8

0 3 4 7 9 10 12 13 14.

We define t1 = sa1 , t2 = sa2 , . . . , tℓ = sd−1. Note that M(γ) = {t1, t2, . . . , tℓ}, and that ti
may be equal to tj even if i 6= j.

We now construct a triangulated polygon S̃γ which is a union of fans F1, . . . , Fℓ, where
each Fh consists of ah − ah−1 + 2 triangles that all share the vertex th. We will describe
this precisely below; see Figure 15.

Step 1: Plot a rectangle with vertices (0, 0), (0, 1), (d − 1, 1), (d − 1, 0).
Step 2: Label (0, 0), (1, 0), and (0, 1) by s, t1, and t0, respectively. For a2h +1 ≤ k ≤ a2h+1,

plot the points (k, 1) and label (a2h+1, 1) by t2h+2. For a2h+1 +1 ≤ k ≤ a2h+2, plot
the points (k, 0), and label (a2h+2, 0) by t2h+3.

Step 3: Connect t2h by a line segment with each plotted point (k, 0) that lies between (and
including) t2h−1 and t2h+1, for 1 ≤ h < ℓ/2. Connect t2h+1 by a line segment with
each plotted point (k, 1) that lies between t2h and t2h+2, for 0 ≤ h < (ℓ− 1)/2.

Step 4: If ℓ is odd, label (d− 1, 0) by t and otherwise label (d− 1, 1) by t.
Step 5: Label the interior arcs of the polygon by σ1, . . . , σd, in the order that a curve

from s to t (which intersects each only once) would cross them. Set π(σ1) =
τi1 , . . . , π(σd) = τid . This determines whether all triangles of the polygon have
relative orientation +1 or all have relative orientation −1. Label the boundary seg-
ments of the polygon by σd+1, . . . , σ2d+3, starting at s and going counterclockwise

around the boundary of S̃γ .
Step 6: Each boundary segment σj not incident to s or t is the side of a unique triangle in

the polygon, whose other sides project via π to τik , τik+1
, for some k. If the ideal

triangle ∆k has three distinct sides, set π(σj) = τ[γk]. Otherwise ∆k is self-folded:
define π(σj) to be the label of the radius in ∆k.
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Figure 15. Construction of S̃γ in a thrice-punctured square. The arcs of

T are labeled 1 to 14, and the arcs of T̃γ are labeled according to their

images under π. The triangles of S̃γ all have relative orientation +1. The
arc γ is dotted. There are d = 15 crossings between γ and T , and M(γ) =
{t1, . . . , t8}, where t1 = t8, t2 = t7 and t3 = t6.

Step 7: If σj and σj+1 are the two boundary segments incident to s in the polygon, then
we define π(σj) and π(σj+1) so that {π(σj), π(σj+1)} is the set of labels of the two
sides of ∆0 which do not cross γ, and so that the relative orientation of the triangle
with sides σj and σj+1 agrees with the relative orientation of the other triangles in
the polygon. If ∆0 is self-folded with radius r, then set π(σj) = π(σj+1) = r.

Step 8: If σj and σj+1 are the two boundary segments incident to t in the polygon, then
we define π(σj) and π(σj+1) so that {π(σj), π(σj+1)} is the set of labels of the two
sides of ∆d which do not cross γ, and so that the relative orientation of the triangle
with sides σj and σj+1 agrees with the relative orientation of the other triangles in
the polygon. If ∆d is self-folded with radius r, then set π(σj) = π(σj+1) = r.

Step 9: Each of the triangles in this construction corresponds to an ideal triangle in T .
If the ideal triangle is not self-folded, then the constructed triangle may have the
same orientation as the ideal triangle or the opposite one, but if the orientations do
not match for one such pair of triangles then it does not match for any such pair
of triangles. In the latter case, we reflect the whole polygon at the horizontal axis.

Step 10: We will use γ̃ to denote the arc in S̃γ from s to t; we call this the lift of γ.

The result is a polygon S̃γ with set of vertices M̃ and triangulation T̃γ . Its internal arcs
are labeled σ1, . . . , σd, and the boundary segments are labeled σd+1, . . . , σ2d+3. Moreover,
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each triangle ∆̃i in T̃γ corresponds to an ideal triangle in T , and, if the ideal triangle is
not self-folded, then the orientations of the two triangles match.

8. Construction of Ãγ and the map φγ

Let (S,M) be a bordered surface with marked points, fix an ideal triangulation T with
internal arcs {τ1, . . . , τn} and boundary segments {τn+1, . . . , τn+c}, and let A be the as-
sociated cluster algebra with principal coefficients. The initial cluster variables of A are

{xτi
| 1 ≤ i ≤ n}. Using the construction of S̃γ and T̃γ in Section 7, we will construct a

related type A cluster algebra Ãγ , and define a homomorphism φγ from Ãγ to Frac(A).

8.1. Construction of a type A cluster algebra. To this end, let S̃γ be the polygon

with triangulation T̃γ constructed in Section 7. Recall that its internal arcs are labeled
σ1, . . . , σd, and its boundary segments are labeled σd+1, . . . , σ2d+3.

We define a (3d+3)×d exchange matrix B̃ as follows. The first 2d+3 rows are the signed

adjacency matrix of the triangulation T̃γ together with its boundary segments. The bottom

d rows are a copy of the d× d identity matrix. We let Ãγ = A(B̃), and denote the initial
cluster by x

eTγ
. We denote the coefficient variables by {xσd+1

, . . . , xσ2d+3
} ∪ {yσ1 , . . . , yσd

}.

We let P = Trop(xσd+1
, . . . , xσ2d+3

, yσ1 , . . . , yσd
) be the tropical semifield.

The following lemma is obvious.

Lemma 8.1. The 2d + 3 coefficient variables of Ãγ are encoded by both the boundary

segments of S̃γ and elementary laminations associated to the internal arcs of S̃γ.

For each k = 1, 2, . . . , d, denote by x′σk
the cluster variable obtained by mutation from

x
eTγ

in direction k.

Proposition 8.2. Ãγ is a cluster algebra of type Ad, and its initial seed is acyclic. It fol-

lows that Ãγ is generated over ZP by the initial d cluster variables and their first mutations,
that is, the set {xσ1

, . . . , xσd
, x′σ1

, . . . , x′σd
}. The ideal of relations among these variables is

generated by the d exchange relations expressing xσi
x′σi

in terms of other cluster variables.

Proof. Ãγ is of type Ad with acyclic initial seed, because S̃γ is a polygon with d+3 vertices,

and each triangle in T̃γ has at least one side on the boundary of S̃γ . The last two statements
now follow from [BFZ, Theorem 1.20 and Corollary 1.21]. �

8.2. The map φγ. We now define a homomorphism φγ of Z-algebras from the cluster

algebra Ãγ to the field of fractions Frac(A) of the cluster algebra A. We define φγ on a set

of generators of Ãγ and then show that it is a well-defined homomorphism, by checking
that the image of the d exchange relations from Proposition 8.2 are relations in Frac(A).

8.2.1. Definition of φγ on the variables corresponding to arcs of T̃γ . If σj is an internal arc

or boundary segment of T̃γ (so 1 ≤ j ≤ 2d+ 3), define

(8.1) φγ(xσj
) = xπ(σj).

We make the convention that if π(σj) is a boundary segment of S, then xπ(σj) = 1. Also

recall that if π(σj) is a loop in a self-folded triangle then the notation xπ(σj) stands for the
product xrxr(p) , where r is the radius and p is the puncture in the self-folded triangle.
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π(σj)σj−1 σj+1 π(σj+1)

γ

π(σj−1)

π

σj

Figure 16. One possible local configuration for γ crossing through a quadrilateral

8.2.2. Definition of φγ on the first mutations of the initial cluster variables. Define

(8.2)

φγ(x′σj
) =





x′
π(σj)

if π(σj) is not a loop or a radius;

xe if π(σj) is a loop, where e is obtained by flipping π(σj);

(
1 +

yr

yr(p)

)
xrxr(p) if π(σj) is a radius r to a puncture p.

8.2.3. Definition of φγ on the coefficients yσj
. Define

(8.3) φγ(y σj
) =





yπ(σj) if π(σj) is not a loop or a radius;

yr

yr(p)

if π(σj) is a radius r to a puncture p;

yr(p) if π(σj) is a loop enclosing the radius r and puncture p.

8.2.4. Definition of φγ on the whole cluster algebra. By Proposition 8.2, defining φγ on the
cluster variables and their first mutations, as well as on the generators of the coefficient

group, is enough to define a homomorphism of Z-algebras φγ from Ãγ , provided that φγ

is well-defined. Note that φγ is a map from Ãγ to Frac(A), rather than a map to A itself.

Proposition 8.3. The map φγ is a well-defined homomorphism of Z-algebras

φγ : Ãγ → Frac(A).

Proof. By Proposition 8.2, it suffices to show that φγ maps the d exchange relations in-
volving xσj

x′σj
to relations in A. We prove this by checking three cases: π(σj) is not a loop

or radius; π(σj) is a loop enclosing a radius r; and π(σj) is a radius r.

In all cases, the exchange relation in Ãγ is determined by the quadrilateral in T̃γ with
diagonal σj , which projects via π to the quadrilateral in T with diagonal π(σj). Note that

in all cases, the exchange relation in Ãγ has the form

(8.4) xσj
x′σj

= yσj

∏

b

xb +
∏

c

xc,

where b ranges over all arcs in T following σj in clockwise order, and c ranges over all arcs
in T following σj in counterclockwise order.

In the first case (when π(σj) is not a loop or radius), the local configuration of the
triangulation is either that of Figure 16 or Figure 17. The image of the exchange relation



POSITIVITY FOR CLUSTER ALGEBRAS FROM SURFACES 29

π(σj+1)

σj−1 π(σj−1)

π

γ

σj π(σj)

σj+1

Figure 17. A second possible local configuration for γ crossing through a quadrilateral

π(σj−1)

σj−1

π

σj

σj+1 γ
π(σj+1)

π(σj)

Figure 18. A possible local configuration for γ crossing a bigon containing
a self-folded triangle

π(σj+1)

σj−1

π

σj

σj+1

α1

α2

γ

π(α2)

e
r

π(σj)

Figure 19. A possible local configuration for γ crossing the loop of a self-
folded triangle

under φγ is

xπ(σj)x
′
π(σj)

= yπ(σj)

∏

b

xπ(b) +
∏

c

xπ(c).

This is exactly the corresponding exchange relation (“Ptolemy relation”) in A.
Note that in theory we also need to consider configurations such as that in Figure 18,

where one or both of the arcs π(σj−1) and π(σj+1) are loops cutting out once-punctured
monogons with puncture p and radius r. If say π(σj−1) is such a loop, then the image of

the exchange relation in A contains xπ(σj−1) = xrx
(p)
r . However, the resulting relation will

still be an exchange relation in A (a “generalized Ptolemy relation”), by [FT, Proposition
6.5, Lemma 7.2, and Definition 7.4].

Now suppose that π(σj) is a loop enclosing the radius r and puncture p. See Figure 19.
Without loss of generality, π(σj−1) = π(α1) = r. In this case (8.4) is equal to
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= π(σj+1)

σj−1

π

σj

σj+1

π(σj)

γ

π(σj−1)

Figure 20. A possible local configuration for γ crossing the radius of a
self-folded triangle

xσj
x′σj

= yσj
xσj−1xα2 + xσj+1xα1

and its image under φγ is

xπ(σj)xe = yr(p)xrxπ(α2) + xπ(σj+1)xr,

where e is the arc obtained by flipping π(σj). Since xπ(σj ) = xrxr(p) , dividing by xr yields

exactly the exchange relation for xr(p)xe in A, see equation (7.1) of [FT].
Finally suppose that π(σj) is a radius r to a puncture p; let ℓ denote the corresponding

loop around the puncture, see Figure 20. Note that the two boundary segments on the
left-hand-side of the figure project to π(σj). In this case the image of (8.4) under φγ is

xπ(σj)(1 +
yr

yr(p)

)xrxr(p) =
yr

yr(p)

xℓxπ(σj) + xℓxπ(σj).

Since xℓ = xrxr(p) , this is an identity. This completes the proof. �

9. Quadrilateral lemma

Lemma 9.1. Let T = {τ1, . . . , τn+c} be an ideal triangulation of (S,M), and let γ be an
arc in (S,M) which is not in T . Let e(γ, T ) be the number of crossings between γ and T .
Then there exist five, not necessarily distinct, arcs or boundary segments α1, α2, α3, α4

and γ′ in (S,M) such that

(a) each of α1, α2, α3, α4 and γ′ crosses T fewer than e(γ, T ) times,
(b) α1, α2, α3, α4 are the sides of an ideal quadrilateral with simply connected interior

in which γ and γ′ are the diagonals.

Proof. Let k = e(γ, T ). If k = 1, let γ′ ∈ T be the unique arc crossing γ. Then γ′ is a side
of exactly two triangles in T . We distinguish three cases according to how many of these
triangles are self-folded, see Figure 21.

(1) If neither triangle is self-folded, let α1, α2 and γ′, and also α3, α4 and γ′ denote the
three sides of the two triangles, such that α1 and α3 (and hence also α2 and α4) are
opposite sides in the quadrilateral formed by the union of the two triangles. Then
these arcs satisfy (a) and (b), see the left of Figure 21.

(2) If one of the two triangles is self-folded, then let α4 and γ′ denote the two sides
of the self-folded triangle, and let α1, α2 and γ′ denote the three sides of the other
triangle. Since γ crosses γ′ but not α4, it follows that γ′ is the loop of the self-
folded triangle and α4 is its radius. Setting α3 = α4, we obtain five arcs that satisfy
conditions (a) and (b), see the middle of Figure 21.
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α2
α4

α1

α2

α2
γ′

γ′
α4

γ′

α4

α1

α3

Figure 21. Configurations of the ideal triangles incident to γ′

τ

b
γ

3 5 6 7 9 101 2 4 8 1211

j1 j2 j4 j3

τ

a

d

τ

c

γ j7 j6 γ j5

Figure 22. Labeling of the crossing points of γ and τ . Here k = 12 and
jℓ = j2 = h = 6.

(3) The case where both triangles are self-folded is actually impossible, because two
self-folded triangles that share a side can only occur on the sphere with three
punctures, but this surface is not allowed, see the right of Figure 21.

Suppose k ≥ 2. Choose an orientation of γ and denote its starting and ending points
by a and b (note that a and b may coincide). Label the k crossing points of γ and T by
1, 2, . . . , k according to their order on γ, such that point 1 is closest to a. Let h be the
middle crossing point, more precisely, let h = ⌈k/2⌉. Denote by τ the unique arc of the
triangulation T that crosses γ at the point with label h, and let r = e(τ, γ) be the number
of crossings between τ and γ. Choose an orientation of τ and denote its starting point by
c and its endpoint by d (note again that c and d may coincide). As before with γ, label
the r crossing points of τ and γ by j1, j2, . . . , jr according to their order on τ (see Figure
22). Thus r ≤ k, {j1, j2, . . . , jr} ⊂ {1, 2, . . . , k}. Note that s < t does not imply js < jt.
Choose ℓ so that jℓ = h is the middle crossing point.

We will use τ and γ to construct the five arcs of the lemma. Let γ− (resp. τ−) denote
the curve γ (resp. τ) with the opposite orientation. We will distinguish four cases:

(1) (ℓ = 1 or jℓ−1 < jℓ) and (ℓ = r or jℓ+1 > jℓ). We define the arcs below, and we
illustrate them as the dashed arcs in Figure 23, continuing the example of Figure
22. Suppose first that 1 < ℓ < r. Let

γ′ = (a, jℓ−1, jℓ+1, b | γ, τ, γ)

be the arc that starts at a and is homotopic to γ up to the crossing point jℓ−1,
then, from jℓ−1 to jℓ+1, γ

′ is homotopic to τ , and from jℓ+1 to b, γ′ is homotopic
to γ. Note that γ′ and γ cross exactly once, namely at jℓ.
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b
3 5 6 7 9 101 2 4 8 1211

γ

γ′

τ

c

τ

d

a

τ

τ

b
3 5 6 7 9 101 2 4 8 1211

a
α1

τ

d

c
α3

τ

b
3 5 6 7 9 101 2 4 8 1211

a

τ

c

d

α2

α4

Figure 23. Construction of γ′, α1, α2, α3 and α4 in case (1)

In a similar way, we define

α1 = (a, jℓ−1, jℓ, a | γ, τ, γ−) α3 = (b, jℓ+1, jℓ, b | γ
−, τ−, γ)

α2 = (a, jℓ, jℓ+1, b | γ, τ, γ) α4 = (b, jℓ, jℓ−1, a | γ−, τ−, γ−).

In the special case where ℓ = 1, (respectively ℓ = r), we define

γ′ = (c, jℓ+1, b | τ, γ) (respectively γ′ = (a, jℓ−1, d | γ, τ)
α1 = (c, jℓ, a | τ, γ−) (respectively α3 = (d, jℓ, b | τ

−, γ)
α4 = (b, jℓ, c | γ

−, τ−) (respectively α2 = (a, jℓ, d | γ, τ),

where c and d are the starting and ending points of τ . In particular, if ℓ = r = 1
then γ′ = τ .

Then α1, α2, α3, α4 form a quadrilateral with simply connected interior such that
α1 and α3 are opposite sides, α2 and α4 are opposite sides, and γ and γ′ are the
diagonals. The topological type of this quadrilateral is as in the left-hand-side of
Figure 24. This shows (b).

It remains to show (a). By hypothesis, we have jℓ−1 < jℓ = h and jℓ+1 > jℓ = h.
Moreover, since the crossing points jℓ−1, and jℓ both lie on the same arc τ of the
ideal triangulation, the arc γ must cross some other arc between the two crossings
at jℓ−1 and jℓ; in other words, jℓ−1 < jℓ−1 = h−1. Similarly jℓ+1 > jℓ +1 = h+1.
Also recall that k ≤ 2h ≤ k + 1. Then
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α2

α3

α4

α2

α1

γ
α3

α4

γα1

Figure 24. Different topological types of quadrilaterals

e(γ′, T ) = (jℓ−1 − 1) + (k − jℓ+1 + 1) < h− 2 + h+ 1 ≤ k
e(α1, T ) = (jℓ−1 − 1) + jℓ < h− 2 + h ≤ k
e(α3, T ) = (k − jℓ+1) + (k − jℓ + 1) < k − h− 1 + k − h+ 1 ≤ k
e(α2, T ) = (jℓ − 1) + (k − jℓ+1) < h− 1 + k − h− 1 ≤ k
e(α4, T ) = (k − jℓ) + (jℓ−1 − 1) < k − h+ h− 2 ≤ k.

In the case where ℓ = 1, we have

e(γ′, T ) = k − jℓ+1 < k
e(α1, T ) = jℓ − 1 < k
e(α4, T ) = k − jℓ < k,

and in the case where ℓ = r, we have

e(γ′, T ) = jℓ−1 − 1 < k
e(α3, T ) = k − jℓ < k
e(α2, T ) = jℓ − 1 < k.

This shows (a).
(2) (ℓ = 1 or jℓ−1 < jℓ) and (ℓ = r or jℓ+1 < jℓ). This case is illustrated in Figure 25.

Suppose first that 1 < ℓ < r.
Let γ′ = (a, jℓ−1, jℓ+1, a | γ, τ, γ−) be the arc that starts at at a and is homotopic

to γ up to the crossing point jℓ−1, then, from jℓ−1 to jℓ+1, γ
′ is homotopic to τ ,

and from jℓ+1 to a, γ′ is homotopic to γ−. Note that γ′ and γ cross exactly once,
namely at the point jℓ. In a similar way, let

α1 = (a, jℓ, jℓ−1, a | γ, τ−, γ−) α3 = (b, jℓ, jℓ+1, a | γ−, τ, γ−)
α2 = (a, jℓ−1, jℓ, b | γ, τ, γ) α4 = (a, jℓ+1, jℓ, a | γ, τ−, γ−)

In the special case where ℓ = 1, (respectively ℓ = r), we define

γ′ = (c, jℓ+1, a | τ, γ−) (respectively γ′ = (a, jℓ−1, d | γ, τ)
α1 = (a, jℓ, c | γ, τ

−) (respectively α3 = (b, jℓ, d | γ−, τ)
α2 = (c, jℓ, b | τ, γ) (respectively α4 = (d, jℓ, a | τ−, γ−),

where c is the starting point of τ and d is its endpoint. Note again that γ′ = τ if
ℓ = r = 1.

Then α1, α2, α3, α4 form a quadrilateral with simply connected interior such that
α1 and α3 are opposite sides, α2 and α4 are opposite sides, and γ and γ′ are the
diagonals. The topological type of this quadrilateral is as in the right-hand-side
of Figure 24. This shows (b). It remains to show (a). By hypothesis, we have
jℓ−1 < jℓ = h and jℓ+1 < jℓ = h. As in case (1), the crossing points jℓ−1,
and jℓ both lie on the same arc τ of the ideal triangulation, and thus the arc γ
must cross some other arc between the two crossings at jℓ−1 and jℓ; in other words,
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Figure 25. Construction of γ′, α1, α2, α3 and α4 in case (2)

jℓ−1 < jℓ−1 = h−1. Similarly jℓ+1 < jℓ−1 = h−1. Also recall that k ≤ 2h ≤ k+1.
Then

e(γ′, T ) = (jℓ−1 − 1) + (jℓ+1 − 1) < h− 2 + h− 2 ≤ k
e(α1, T ) = (jℓ − 1) + jℓ−1 < h− 1 + h− 1 ≤ k
e(α3, T ) = (k − jℓ) + (jℓ+1 − 1) < k − h+ h− 2 ≤ k
e(α2, T ) = (jℓ−1 − 1) + (k − jℓ) < h− 2 + k − h ≤ k
e(α4, T ) = (jℓ+1 − 1) + jℓ < h− 2 + h ≤ k.

In the case where ℓ = 1, we have

e(γ′, T ) = jℓ+1 − 1 < k
e(α1, T ) = jℓ − 1 < k
e(α2, T ) = k − jℓ < k,

and in the case where ℓ = r, we have

e(γ′, T ) = jℓ−1 − 1 < k
e(α3, T ) = k − jℓ < k
e(α4, T ) = jℓ − 1 < k.

This shows (a).
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Figure 26. The picture at the left shows a surface, along with diagonals
γ (bold) and γ′ (dashed) of a quadrilateral α1, . . . , α4. The pictures at the

right show the triangulated polygons S̃γ and S̃γ′ .

(3) jℓ−1 > jℓ and jℓ+1 < jℓ. This case follows from the case (1) by symmetry.
(4) jℓ−1 > jℓ and jℓ+1 > jℓ. This case follows from the case (2) by symmetry.

�

10. The proof of the expansion formula for ordinary arcs

The main technical lemma we need in order to complete the proof of our expansion
formula for ordinary arcs is that φγ(xγ̃) = xγ . Once we have this, the proof of our
expansion formula for ordinary arcs will follow easily.

10.1. The proof that φγ(xγ̃) = xγ. In this section we show that the constructions of S̃γ

and T̃γ in Section 7 are compatible with the map φγ defined in Section 8 in a sense which
we make precise in Theorem 10.1.

Fix a bordered surface (S,M), an ideal triangulation T = (τ1, . . . , τn), and let A be the
corresponding cluster algebra with principal coefficients with respect to T . Also fix an arc

γ in S. This gives rise to a polygon S̃γ with a triangulation T̃γ = (σγ
1 , . . . , σ

γ
d ), a lift γ̃ of

γ in S̃γ , a cluster algebra Ãγ , a map π : T̃γ → T , and a homomorphism

φγ : Ãγ → Frac(A),

such that φγ(xσ
γ
j
) = xπ(σγ

j ).

Theorem 10.1. Using the notation of the previous paragraph, we have that

φγ(xγ̃) = xγ .

Proof. We prove Theorem 10.1 by induction on the number of crossings of γ and T . When
this number is zero, there is nothing to prove. Otherwise, by Lemma 9.1, there exists a
quadrilateral Q in S with simply-connected interior, which has diagonals γ and γ′, and
sides α1, α2, α3, α4. Moreover, each of γ′ and the four sides crosses T fewer times than γ
does. See Figure 26 for an example.

By the constructions of Sections 7 and 8, we have six triangulated polygons S̃γ , S̃γ′ ,

S̃α1 , . . . , S̃α4 , six lifts γ̃, γ̃′, α̃1, . . . , α̃4, in the respective polygons, six associated cluster
algebras, and six different homomorphisms φγ , φγ′ , φα1 , . . . , φα4 .
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Figure 27. The polygon Ŝ obtained by glueing S̃γ and S̃γ′ together

Because γ and γ′ intersect (exactly once) in S, the local neighborhoods around the

corresponding points in S̃γ and S̃γ′ coincide (there are at least two triangles in common and

perhaps more). Therefore we can glue (S̃γ , T̃γ) and (S̃γ′ , T̃γ′) together along the common

triangles, getting a larger polygon Ŝ with triangulation T̂ = {σj}j , and a map T̂ → T ,
which, abusing notation, we denote by π. See Figures 26 and Figure 27. Clearly we can

view the triangulated polygons S̃γ , S̃γ′ , and S̃αi
and the arcs γ̃′ and α̃i as sitting inside

Ŝ. We can also view the six corresponding cluster algebras as sitting inside the cluster

algebra A•(Ŝ) of the larger polygon Ŝ. Then we can glue the homomorphisms φγ and φγ′

to obtain a homomorphism φ : A•(Ŝ) → Frac(A) that extends all the homomorphisms φγ ,
φγ′ , φα1 , . . . , φα4 .

Because γ, γ′ and the αi form a quadrilateral in S, we have a generalized Ptolemy relation
in A of the form

(10.1) xγxγ′ = Y+xα1xα3 + Y−xα2xα4 ,

where Y+ and Y− can be computed using the elementary laminations associated to the
arcs of the triangulation T . Note that (10.1) holds even if γ cuts out a once-punctured
monogon.

On the other hand, since γ̃, γ̃′, α̃i form a quadrilateral in Ŝ, we have a generalized

Ptolemy relation in A•(Ŝ) of the form

(10.2) xγ̃xγ̃′ = Ỹ+xα̃1xα̃3 + Ỹ−xα̃2xα̃4 ,

where again Ỹ+ and Ỹ− can be computed using the elementary laminations associated to

the arcs of the triangulation T̂ .
Applying φ to (10.2) and using the inductive hypothesis, we get

(10.3) φ(xγ̃)xγ′ = φ(Ỹ+)xα1xα3 + φ(Ỹ−)xα2xα4 .

From (10.1) and (10.3), we see that the proof of Theorem 10.1 is a consequence of Lemma
10.2 below. �

Lemma 10.2. φ(Ỹ+) = Y+ and φ(Ỹ−) = Y−.

Proof. The monomials Y± and Ỹ± are defined by equations (10.1) and (10.2) and are

computed by analyzing how the laminations associated to the arcs of T and T̂ cut across

the quadrilaterals Q ⊂ S and Q̃ ⊂ Ŝ.
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Figure 28. Comparing the shear coordinates from a self-folded triangle to
that from spiraling laminations

By the definition of shear coordinate, the only laminations which can make a contri-

bution to the Y ’s (respectively, Ỹ ’s) are those intersecting γ and two opposite sides of Q

(respectively, γ̃ and two opposite sides of Q̃). In particular, these laminations must be
a subset of the laminations Lτi1

, . . . , Lτid
(respectively, Lσ1 , . . . , Lσd

, where σ1, . . . , σd are

arcs of the triangulation of S̃γ ⊂ Ŝ).
We claim that for every such arc τik in T which is not a loop or radius, the lamination

Lτik
has the same local configuration in Q as Lσk

does in Q̃. (Recall that π(σk) = τik .)

To see why this is true, recall that S̃γ is constructed by following γ in S, keeping track of
which arcs it is crossing, and glueing together a sequence of triangles accordingly. In S,
we can imagine applying an isotopy to γ′, so that it follows γ as long as possible without
introducing unnecessary crossings with arcs of the triangulation, before leaving γ to travel
along a different side of the quadrilateral. Recall that each elementary laminate Lτik

is
obtained by taking the corresponding arc τik and simply rotating its endpoints a tiny
amount counterclockwise. So a laminate Lτik

will make a nonzero contribution to the

shear coordinates if and only if it crosses a side of Q (say α2), then γ and γ′, then the
opposite side α4 of Q, without crossing α1 or α3 in between. (The corresponding arc τik
will either have exactly the same crossings with Q, or it may have an endpoint coinciding

with an endpoint of α2.) In this case the lift σk of τik will be an arc of Ŝ which is an

internal arc common to both S̃γ and S̃γ′ ; it is clear by inspection that it will cut across

the two opposite sides α̃2 and α̃4 of Q̃, see Figure 27.
Therefore the corresponding contributions to the shear coordinates will be the same

from both the arc τik and its lift σk. Since φ(yσj
) = yπ(σj) if π(σj) is not a loop or radius,

we can henceforth ignore the contributions to the Y -monomials which come from such arcs
τik and their lifts σk.

It remains to analyze the contribution to the shear coordinates from a self-folded triangle

in T , and the contributions to the shear coordinates from its lift in T̃ . We will carefully
analyze a representative example, and then explain what happens in the remaining cases.

The leftmost figure in Figure 28 shows the quadrilateral Q in S; γ is the arc bisecting it.
We’ve also displayed a self-folded triangle in T with a loop τi1 and radius τi2 to a puncture
p. Just to the right of this is the same quadrilateral, and the elementary laminations Lτi1

and Lτi2
. To the right of that is the quadrilateral Q̃, bisected by the arc γ̃. Here, σ1, σ2,

and σ3 are the lifts of τi1 and τi2 in Q̃; π(σ1) = π(σ3) = τi1 and π(σ2) = τi2 . The rightmost

figure in Figure 28 shows Q̃ together with the elementary laminations Lσ1 , Lσ2 , and Lσ3 .

Computing shear coordinates, we get bγ(T,Lτi1
) = bγ(T,Lτi2

) = −1, and also bγ̃(T̃ , Lσ1) =

bγ̃(T̃ , Lσ2) = bγ̃(T̃ , Lσ3) = −1. Therefore the Y− monomial in R gets a contribution of
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Figure 29. Other possible configurations involving laminations associated
to a self-folded triangle

yτi1
yτi2

= y
τ
(p)
i2

yτi2
, and the Ỹ− monomial in R̃ gets a contribution of yσ1yσ2yσ3. Applying

φ to this gives φ(yσ1yσ2yσ3) = y2

τ
(p)
i2

yτi2
y

τ
(p)
i2

= yτi2
y

τ
(p)
i2

, as desired.

Figure 29 shows two more ways that a self-folded triangle from T might interact with
the quadrilateral Q. Each row of the figure displays the self-folded triangle and the corre-

sponding elementary laminations, and the lift of the self-folded triangle in T̃ and the corre-
sponding elementary laminations. In the example of the top row, we have bγ(T,Lτi1

) = 0,

bγ(T,Lτi2
) = −1, bγ̃(T̃ , Lσ1) = 0, bγ̃(T̃ , Lσ2) = −1, and bγ̃(T̃ , Lσ3) = −1. In the example of

the second row, we have bγ(T,Lτi1
) = −1, bγ(T,Lτi2

) = 0, bγ̃(T̃ , Lσ1) = −1, bγ̃(T̃ , Lσ2) = 0,

and bγ̃(T̃ , Lσ3) = 0.
All other configurations of a self-folded triangle from T either make no contribution to

the shear coordinates indexed by γ (in which case the same is true for the lift of that self-
folded triangle), or come from either rotating or reflecting one of the configurations from
Figure 29. We leave it as an exercise for the reader to check that just as in the example

of Figure 28, the monomials corresponding to the shear coordinate bγ̃(T̃ , Lσ1 ∪ Lσ2 ∪ Lσ3)
map via φ to the monomials corresponding to the shear coordinate bγ(T,Lτi1

∪ Lτi2
).

It may seem that our arguments and figures rely on the assumption that the quadrilateral
Q has four distinct edges and four distinct vertices. However, one can always slightly
deform a quadrilateral with some identified vertices or edges to get a quadrilateral with four
distinct edges and vertices; see Figure 30. It is not hard to see that the shear coordinates
of a lamination with respect to a given arc are unchanged if we work instead with this
deformation, so our arguments extend to this situation.

This completes the proof of the claim, and hence the theorem. �

We are now ready to prove Theorem 4.10.

Proof. We have fixed (S,M), an ordinary arc γ, and an ideal triangulation T with internal
arcs τ1, . . . , τn and boundary segments τn+1, . . . , τn+c. This determines a cluster algebra
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Figure 30. Opening up a radius does not change contributions from shear coordinates

A with principal coefficients with respect to ΣT . From (S,M), T , and γ we have built

a polygon S̃γ with a “lift” γ̃ of γ, together with a triangulation T̃γ with internal arcs
σ1, . . . , σd and boundary segments σd+1, . . . , σ2d+3. We have a map π : {σ1, . . . , σ2d+3} →

{τ1, . . . , τn+c}. Furthermore, we have associated a type Ad cluster algebra Ãγ to S̃γ ,

and a homomorphism φγ from Ãγ to Frac(A). This map has the property that for each
σi ∈ {σ1, . . . , σ2d+3}, φγ(xσi

) = xπ(σi). Additionally, by Theorem 10.1, φγ(xγ̃) = xγ .

Since Ãγ is a type A cluster algebra, we can compute the Laurent expansion of xγ̃ with
respect to Σ

eTγ
. More specifically, [MS] proved Theorem 4.10 for unpunctured surfaces,

which in particular includes polygons. At this point the reader may worry that Theorem

4.10 cannot be applied to Ãγ , as Ãγ is not simply a cluster algebra with principal coef-
ficients associated to a triangulation – it has extra coefficient variables corresponding to

the boundary segments of T̃γ . However, consider the triangulated polygon (S̃′γ , T̃
′
γ) that

we obtain from (S̃γ , T̃γ) by adding c triangles around the boundary, each one with an edge

at a boundary segment, and consider the corresponding cluster algebra Ã′γ with principal
coefficients. This is still a type A cluster algebra so we can use the result of [MS] to apply
Theorem 4.10 to expand the cluster variable corresponding to γ̃ with respect to Σ

eT ′

γ
in

Ã′γ . Clearly the formula giving the Laurent expansion of xγ̃ with respect to Σ
eTγ

in Ãγ is

identical to the formula giving the Laurent expansion of the cluster variable corresponding

to γ̃ with respect to Σ
eT ′

γ
in Ã′γ .

Therefore we can apply Theorem 4.10 to get the cluster expansion of xγ̃ with respect to

Σ
eTγ

in Ãγ : in other words, we build a graph G
eTγ ,γ̃

, and the cluster expansion is given as

a generating function for perfect matchings of this graph. The variables in the expansion
are xσ1 , . . . , xσ2d+3

and yσ1 , . . . , yσd
. Therefore, since φγ is a homomorphism such that

φγ(xσi
) = xπ(σi) for 1 ≤ i ≤ 2d+ 3, and φγ(xσ) = xπ(σ), computing the Laurent expansion

for xγ with respect to T in A amounts to applying a specialization of variables to the
generating function for matchings in G

eTγ
.

It follows from the construction in Section 7 that the unlabeled graph G
eTγ ,γ̃

is equal

to the unlabeled graph GT,γ : this is because the triangulated polygon (S̃γ , T̃γ) is built
so that the local configuration of triangles that γ̃ passes through is the same as the local
configuration of triangles that γ passes through in T . Additionally, an edge of G

eTγ ,γ̃
labeled

σi corresponds to an edge of GT,γ labeled π(σi).
Comparing the definition of φγ on the coefficients yσj

(Equation 8.3) to the definition
of the specialized height monomial (Definition 4.9), we see now that applying φγ to the
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Figure 31. Illustrations for proof of Proposition 5.3

generating function for matchings in G
eTγ ,γ̃

yields exactly the formula of Theorem 4.10

applied to S, T , and γ. This completes the proof of the theorem. �

11. Positivity for notched arcs in the coefficient-free case

In this section we will use Proposition 5.3 together with our positivity result for ordinary
arcs to prove the positivity result for notched arcs (in the coefficient-free case).

Proof of Proposition 5.3. Fix a bordered surface (S,M) and an ideal triangulation T ◦ of S.
Let A be the associated coefficient-free cluster algebra. Consider a puncture p, a different
marked point q, and an ordinary arc γ between p and q. Consider a third marked point
s and an ordinary arc ρ between p and s. Let α and β be the two ordinary arcs between
q and s which are sides of a bigon so that the triangles with sides α, γ, ρ and β, γ, ρ have
simply-connected interior. See the left-hand-side of Figure 31.

Then in A, xγxρ(p) = xα +xβ = xγ(p)xρ, which implies that
x

γ(p)

xγ
=

x
ρ(p)

xρ
. In other words,

the ratio
x

γ(p)

xγ
is an invariant which we will call zp, which depends only on p, and not the

choice of ordinary arc γ incident to p. If we take the same bigon with sides α and β and
notch all three arcs emanating from q, we get xγ(pq)xρ = xα(q) + xβ(q) = zqxα + zqxβ =

zq(xγ(p)xρ). Therefore xγ(pq) = zqxγ(p) = zpzqxγ .
So far we have treated the case where γ has two distinct endpoints. Now suppose that

γ is an ordinary loop based at p which does not cut out a once-punctured monogon. Then
we can find two marked points q and s, two ordinary arcs α1 and α2 between p and s, and
two ordinary arcs α3 and α4 between p and q, such that the four arcs form a quadrilateral
with diagonal γ. See the right-hand-side of Figure 31. Then xγxρ = xα1xα3 + xα2xα4 and
xγ(pp)xρ = x

α
(p)
1

x
α

(p)
3

+ x
α

(p)
2

x
α

(p)
4

, where x
α

(p)
i

= zpxαi
. It follows that xγ(pp) = z2

pxγ .

What remains is to give an explicit expression for the quantity zp. For γ an ordinary

arc with distinct endpoints, we know that zp =
x

γ(p)

xγ
does not depend on the choice of γ,

so we make the simplest possible choice. Choose τ1 to be any arc of T ◦ which is incident
to p, so that xτ1 is in the initial cluster associated to T ◦. Let q denote the other endpoint
of τ1, and let ℓp be the loop based at q cutting out a once-punctured monogon around p.

Then xℓp
= xτ1xτ

(p)
1

, so zp =
x

τ
(p)
1

xτ1
=

xℓp

x2
τ1

. The variable xτ1 is an initial cluster variable and

we can compute the Laurent expansion of xℓp
using Theorem 4.10.

It is easy to see that the graph GT ◦,ℓp
consists of h − 1 tiles with diagonals τ2, . . . , τh,

where τ1, τ2, . . . , τh are the arcs of T ◦ emanating from p (say in clockwise order around p).
The tiles are glued in an alternating fashion so as to form a “zig-zag” shape, see Figure
32. Also, τ1 is the label of the two outer edges of GT ◦,ℓp

. Now a straightforward induction
on h shows that applying Theorem 4.10 to ℓp gives

xℓp
=
xτ1

∑h−1
i=0 σ

i(x[τ1,τ2]xτ3xτ4 · · · xτh
)

xτ2 · · · xτh

,
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Figure 32. Graph GT ◦,ℓp
corresponding to arc ℓp enclosing radius τ1

where σ is the cyclic permutation (1, 2, 3, . . . , h) acting on subscripts. Dividing this ex-
pression by x2

τ1
gives the desired expression for zp. This completes the proof. �

Corollary 11.1. Fix a bordered surface (S,M), a tagged triangulation T of the form ι(T ◦)
where T ◦ is an ideal triangulation, and let A be the corresponding coefficient-free cluster
algebra. Then the Laurent expansion of a cluster variable corresponding to a notched arc
with respect to ΣT is positive.

Proof. This follows immediately from our positivity result for cluster variables correspond-
ing to ordinary arcs, together with Proposition 5.3. �

12. The proofs of the expansion formulas for notched arcs

In this section, we prove the results of Section 4.4, giving cluster expansion formulas for
cluster variables corresponding to tagged arcs. We use algebraic identities for cluster vari-
ables to reduce the proofs of Theorem 4.17 and Theorem 4.20 to combinatorial statements
about perfect matchings, γ-symmetric matchings, and γ-compatible pairs of matchings.

In particular, for the case of a tagged arc γ(p) with a single notch at puncture p (Theorem
4.17), we use the equation xℓp

= xγxγ(p) and the fact that Theorem 4.10 gives us matching

formulas for two out of three of these terms. For the case of a tagged arc γ(pq) with a
notch at both ends, punctures p and q (Theorem 4.20), we use an identity (described in
Section 12.2) involving xγ(pq) and three other cluster variables, where all other terms except
xγ(pq) have matching formulas from Theorems 4.10 and 4.17. In both of these cases, the
fact that the desired matching formulas for xγ(p) and xγ(pq) satisfy combinatorial identities
analogous to the algebraic identities coming from the cluster algebra completes the proofs
of Theorems 4.17 and 4.20. Before giving these proofs, we introduce some notation and
auxiliary lemmas. We begin by describing the shape of the graph GT ◦,ℓp

in more detail.

Definition 12.1. Let Hζ be the connected subgraph of GT ◦,ℓp
consisting of the union of

the tiles Gζ1 through Gζep
(see the notation of Section 4.4 and Figure 8).

Remark 12.2. It follows from the construction of GT ◦,ℓp
in Section 4.2 and the fact that ζ1

through ζep all share a single endpoint, that Hζ contains no consecutive triple of tiles all
of which lie in the same row or column.

Remark 12.3. Since the arcs τid , ζ1, ζep are the sides of a triangle in T ◦, and τid−1
and τid

share a vertex, it follows that in the graph GT ◦,ℓp
either the three tiles Gτid−1

, Gτid
, and

Gζ1 or the three tiles Gτid−1
, Gτid

and Gζep
lie in a single row or column. Thus, we may

assume without loss of generality that tiles Gτid−1
, Gτid

, and Gζ1 lie in a single row and

tiles Gτid−1
, Gτid

, and Gζep
do not. See Figure 33.
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Figure 33. The graph GT ◦,ℓp
. There exists no perfect matching of GT ◦,ℓp

containing the highlighted edges. Here ep is even.

Lemma 12.4. If P is a perfect matching of GT ◦,ℓp
then P restricts to a perfect matching

on at least one of its two ends. More precisely, P |GT◦,γ,p,1
is a perfect matching of GT ◦,γ,p,1,

or the analogous condition must hold for P |GT◦,γ,p,2
.

Proof. See Figure 33. We let w1 (respectively w2) denote the other vertex of the edge
labeled ζep (respectively ζ1) incident to v1 (respectively v2). Suppose that P is a perfect
matching of GT ◦,ℓp

whose restriction to each of the subgraphs GT ◦,γ,p,i is not a perfect
matching. The restriction of P to GT ◦,γ,p,1 is not a perfect matching if and only if P
contains the edge labeled ζ2 incident to vertex v1. Then P must also contain the edge
labeled τid on the same tile because otherwise the vertex w1 could only be covered by the
edge labeled τid−1

and this would leave a connected component with an odd number of
vertices to match together.

Similarly, the restriction of P to GT ◦,γ,p,2 is not a perfect matching if and only if P
contains the edge labeled ζep−1 incident to vertex v2. Then P must also contain the edge
labeled τid incident to w2 on this same tile. However, no perfect matching P can contain
all four of these edges since by Remark 12.2, Hζ contains no consecutive triple of tiles lying
in a single row or column. Thus we have a contradiction. �

12.1. Proof of the expansion formula for arcs with a single notch. For the proof
of Theorem 4.17, we also need the following fact.

Lemma 12.5. The minimal matching P− of GT ◦,ℓp
is a γ-symmetric matching.

Proof. Since P− and P+ are the unique perfect matchings of GT ◦,ℓp
using only boundary

edges, it follows that exactly one out of {P−, P+}, say Pǫ, contains the edge labeled τid−1

on the tile Gτid
containing v1. The perfect matching Pǫ cannot contain the edge labeled τid

on the adjacent tiles. As shown in Figure 34, the perfect matching Pǫ contains other edges
on the boundary in an alternating fashion. Since the two ends of GT ◦,ℓp

are isomorphic,
continuing along the boundary in an alternating pattern, we obtain that Pǫ is γ-symmetric.
Its complement must also be γ-symmetric, so both P− and P+ are γ-symmetric. �

We need to introduce a few more definitions before proving Theorem 4.17.
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Figure 34. One of the matchings P− and P+ of GT ◦,ℓp
must contain the

highlighted edges and is therefore γ-symmetric. Here ep is odd.

Definition 12.6. LetH
(i)
ζ denote the induced subgraph obtained after deleting the vertices

vi, wi of Hζ and all edges incident to those vertices. Let G
(1)
ζ (resp. G

(2)
ζ ) denote the

subgraph of GT ◦,ℓp
which is the union H

(1)
ζ ∪GT ◦,γ,p,2 (resp. GT ◦,γ,p,1 ∪H

(2)
ζ ). That is, we

use a superscript (i) to denote the removal of the ith side of a graph.

Definition 12.7 (Symmetric completion). Fix a perfect matching P of GT ◦,ℓp
, and by

Lemma 12.4, assume without loss of generality that P restricts to a perfect matching on

GT ◦,γ,p,1. Therefore P also restricts to a perfect matching on the complement, graph G
(1)
ζ .

We define the symmetric completion P = P |
G

(1)
ζ

of P |
G

(1)
ζ

to be the unique extension

of P |
G

(1)
ζ

to GT ◦,ℓp
such that P |HT◦,γ,p,1

∼= P |HT◦,γ,p,2
. (Note that after adding edges to

HT ◦,γ,p,1, only vertex v1 is not covered. We add an edge incident to v1 based on whether
the edge incident to w1 labeled τid−1

is included so far.) It follows from this construction

that the restriction P |GT◦,γ,p,1
is a perfect matching.

Definition 12.8 (Sets P(γ) and SP(γ(p))). For an ordinary arc γ (including loops cutting
out once-punctured monogons) we let P(γ) denote the set of perfect matchings of GT ◦,γ ,

and let SP(γ(p)) denote the set of γ-symmetric matchings of GT ◦,ℓp
.

We now prove Theorem 4.17 by constructing a bijection ψ between pairs (P1, P2) in

P(γ)×SP(γ(p)) and perfect matchings P3 in P(ℓp). This bijection will be weight-preserving
and height-preserving, in the sense that if ψ(P1, P2) = P3, then x(P1)x(P2) = x(P3) and
h(P1)h(P2) = h(P3). This gives

(12.1)
∑

P3∈P(ℓp)

x(P3)h(P3) =


 ∑

P1∈P(γ)

x(P1)h(P1)




 ∑

P2∈SP(γ(p))

x(P2)h(P2)


 .
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After applying Φ, the left-hand-side and first term on the right are the numerators for
xℓp

and xγ given by Theorem 4.10, which allows us to express xγ(p) =
xℓp

xγ
in terms of

∑
P2∈SP(γ(p)) x(P2)h(P2).

Proof of Theorem 4.17. As indicated above, we define a map

ψ : P(γ) × SP(γ(p)) → P(ℓp) by

ψ(P1, P2) =




P1
⋃

P2|G(1)
ζ

if P2|GT◦,γ,p,1
is a perfect matching

P2|G(2)
ζ

⋃
P1 otherwise

where the edges of P1 are placed on the subgraph GT ◦,γ,p,1 or GT ◦,γ,p,2, respectively. In
words, ψ removes all of the edges from one of the two ends of the γ-symmetric matching P2,
and replaces those edges with edges from the perfect matching P1, thereby constructing a
perfect matching P3 of P(ℓp) that it is not necessarily γ-symmetric. By Lemma 12.4, either
P2|GT◦,γ,p,1

or P2|GT◦,γ,p,2
is a perfect matching and so ψ is well-defined. Thus ψ(P1, P2) is

a perfect matching of P(ℓp).
We show that ψ is a bijection by exhibiting its inverse. For P3 ∈ P(ℓp), define

ϕ(P3) =





(P3|GT◦,γ,p,1
, P3|G(1)

ζ

) if P3|GT◦,γ,p,1
is a perfect matching,

(P3|GT◦,γ,p,2
, P3|G(2)

ζ

) otherwise.

A little thought shows that these two maps are inverses.
We now show that the bijection ψ is weight-preserving. Without loss of generality,

P2|GT◦,γ,p,1
is a perfect matching. If ψ(P1, P2) = P3, then P3 = P1 ∪ P2|G(1)

ζ

. We obtain

x(P3) = x(P1)x(P2|G(1)
ζ

) = x(P1)
x(P2)

x(P2|GT◦,γ,p,1
)
.

Since x(P2) is defined to be x(P2)
x(P2|GT◦,γ,p,1

) , we conclude that ψ is weight-preserving.

To see that ψ is height-preserving, we use Lemma 12.5, which states that P−(GT ◦,ℓp
)

is a γ-symmetric matching. Consequently, using the same partitioning that showed that
ψ was weight-preserving, we can consider the following equation describing the symmetric
difference of P3 and P−(GT ◦,ℓp

):

P3 ⊖ P−(GT ◦,ℓp
) = (P1 ⊖ P−(GT ◦,γ)) ∪ (P2 ⊖ P−(GT ◦,ℓp

)|
G

(1)
ζ

).

Since the cycles appearing in the symmetric difference determine the height monomials,
this decomposition implies that

h(P3) = h(P1)h(P2|G(1)
ζ

) = h(P1)
h(P2)

h(P2|GT◦,γ,p,1
)

= h(P1)h(P2),

hence ψ is height-preserving.
Because φ is weight- and height-preserving, we have (12.1). Applying Φ gives

∑

P∈P(ℓp)

x(P )y(P ) =


 ∑

P1∈P(γ)

x(P1)y(P1)




 ∑

P2∈SP(γ(p))

x(P2)y(P2)


 .(12.2)

We now use the identity xℓp
= xγxγ(p) and obtain

xγ(p) =
cross(T ◦, γ)

∑
P∈P(ℓp) x(P )y(P )

cross(T ◦, ℓp)
∑

P∈P(γ) x(P )y(P )
.(12.3)
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Figure 35. The lamination Lρ corresponding to diagonal ρ of a quadrilateral

Comparing (12.3) and (12.2) yields the desired formula. �

12.2. An algebraic identity for arcs with two notches. We now give the algebraic
portion of the proof of Theorem 4.20. For the purpose of computing the Laurent expansion
of xρ(pq) with respect to T , we can assume that no tagged arc in T is notched at either p
or q, see Remark 4.12. In the statement below, the notation χ indicates 1 or 0, based on
whether it’s argument is true or false.

Theorem 12.9. Fix a tagged triangulation T of (S,M) which comes from an ideal trian-
gulation, and let A be the cluster algebra associated to (S,M) with principal coefficients
with respect to T . Let p and q be punctures in S, and let ρ be an ordinary arc between p
and q. Assume that no tagged arc in T is notched at either p or q. Then

xρxρ(pq) − xρ(p)xρ(q)yχ(ρ∈T )
ρ = (1 −

∏

τ∈T

y
ep(τ)
τ )(1 −

∏

τ∈T

y
eq(τ)
τ )

∏

τ∈T

ye(τ,ρ)
τ .

Proof. For simplicity, we assume that ρ /∈ T . (Later we will lift the assumption.) Choose
a quadrilateral in S with simply connected interior such that one of its diagonals is ρ.
(This involves the choice of two more marked points, say v and w.) Label the arcs of the
quadrilateral by α, β, γ, δ and the other diagonal by ρ′, see Figure 35. Note that there are
four ways of changing the taggings around p and q, and for each we get a Ptolemy relation.

xρxρ′ = Y +Y +
q Y

+
p xβxδ + Y −xαxγ(12.4)

xρ(p)xρ′ = Y +Y +
q xβxδ(p) + Y −Y −p xα(p)xγ(12.5)

xρ(q)xρ′ = Y +Y +
p xβ(q)xδ + Y −Y −q xαxγ(q)(12.6)

xρ(pq)xρ′ = Y +xβ(q)xδ(p) + Y −Y −q Y
−
p xα(p)xγ(q)(12.7)

Here, Y + (respectively Y −) is the monomial (in coefficient variables) coming from all lam-
inations which do not spiral into p or q and which give a shear coordinate of 1 (respectively
−1) with ρ, as in Figure 39. We use Definition 12.1 of [FT] to compute shear coordinates

with respect to tagged arcs ρ(p), ρ(q), and ρ(pq).
Y ±p and Y ±q are monomials coming from laminations which spiral into either the puncture

p or q, respectively. Since we assumed that T does not contain arcs with a notch at p or q,
all laminates which spiral into p or q spiral counterclockwise. Y +

p is the monomial coming
from laminations that spiral into p giving a shear coordinate of 1 to ρ (equivalently, a shear
coordinate of 1 to ρ(q)). Y +

q is the monomial coming from laminations that spiral into q

giving a shear coordinate of 1 to ρ (equivalently, a shear coordinate of 1 to ρ(p)). Y −p is
the monomial coming from laminations that spiral into p giving a shear coordinate of −1
to ρ(p) (equivalently, to ρ(pq)). Finally, Y −q is the monomial coming from laminations that

spiral into q giving a shear coordinate of −1 to ρ(q) (equivalently, to ρ(pq)). See Figure 36.
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Figure 37. The local configurations used in the proof of Theorem 12.9
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Figure 38. Shear coordinates associated to the bigon around puncture p

When we multiply equations (12.4) and (12.7) and subtract the product of (12.5) and
(12.6), some terms cancel. Factoring the remaining terms, we find that

(xρ′)
2(xρxρ(pq) − xρ(p)xρ(q)) = Y +Y −(Y +

p Y
−
p xα(p)xδ − xαxδ(p))(Y +

q Y −q xγ(q)xβ − xβ(q)xγ).

We now want to interpret each of the terms xα(p)xδ, xαxδ(p) , xγ(q)xβ , and xβ(q)xγ as the
left-hand-side of a Ptolemy relation. To this end, let ǫ be the arc between v and w which
is homotopic to the concatenation of α and δ, so that ǫ and ρ′ are opposite sides of a bigon
with vertices v and w and internal vertex p. See Figure 37.

The Ptolemy relations concerning this bigon are

xαxδ(p) = Y2Y4xǫ + Y1xρ′ and xδxα(p) = Y1Y3xρ′ + Y2xǫ.

Here Y1, Y2, Y3, and Y4 are monomials coming from laminations that intersect α and δ
as in Figure 38. (See also [FT, Figure 32].) Note that by our assumptions on T , we do not
have to worry about laminations that spiral clockwise into p.

A laminate crossing ρ′ and spiraling to p must cross ρ, so Y +
p Y

−
p = Y4. Therefore

Y +
p Y

−
p xα(p)xδ − xαxδ(p) = Y4(Y1Y3xρ′ + Y2xǫ) − (Y2Y4xǫ + Y1xρ′)

= Y1xρ′(Y3Y4 − 1) = Y1xρ′(
∏

τ∈T

y
ep(τ)
τ − 1),

since laminates spiraling to p correspond to tagged arcs incident to p.
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Figure 39. Shear coordinates associated to the quadrilateral containing
punctures p and q as vertices

Similarly, letting η be the arc between v and w homotopic to the concatenation of β
and γ, so that ρ′ and η are opposite sides of a bigon with the interior point q, we get the
following Ptolemy relations:

xβxγ(q) = Y ′2Y
′
4xρ′ + Y ′1xη and xγxβ(q) = Y ′1Y

′
3xη + Y ′2xρ′ .

Here, Y ′1 , Y
′
2 , Y

′
3 , Y

′
4 are defined just as Y1, Y2, Y3, Y4 were, with q replacing p.

Similar to above, Y +
q Y

−
q = Y ′3 , and

Y +
q Y

−
q xγ(q)xβ − xβ(q)xγ = Y ′2xρ′(

∏

τ∈T

y
eq(τ)
τ − 1).

We now have that

(xρ′)
2(xρxρ(pq) − xρ(p)xρ(q)) = Y +Y −Y1xρ′(

∏

τ∈T

y
ep(τ)
τ − 1)Y ′2xρ′(

∏

τ∈T

y
eq(τ)
τ − 1), so

xρxρ(pq) − xρ(p)xρ(q) = Y +Y −Y1Y
′
2(
∏

τ∈T

y
ep(τ)
τ − 1)(

∏

τ∈T

y
eq(τ)
τ − 1).

Since the monomials Y ±, Y1 and Y ′2 are defined by laminates crossing the quadrilateral
as in Figure 39 (which in turn come from tagged arcs of T that have the same local
configuration), it follows that

Y +Y −Y1Y
′
2 =

∏

τ∈T

ye(τ,ρ)
τ .

This completes the proof when ρ /∈ T .
If ρ ∈ T , the proof is nearly the same. In this case, one gets a contribution to the shear

coordinates from the laminate Lρ associated to ρ, see Figure 35. Equations (12.5) and
(12.6) remain the same, and equations (12.4) and (12.7) become

xρxρ′ = Y +Y +
q Y

+
p yρxβxδ + Y −xαxγ(12.8)

xρ(pq)xρ′ = Y +xβ(q)xδ(p) + Y −Y −q Y
−
p yρxα(p)xγ(q) .(12.9)

Using the four Ptolemy relations, i.e. (12.8)(12.9) −yρ(12.5)(12.6), we get

x2
ρ′(xρxρ(pq) −yρxρ(p)xρ(q)) = Y +Y −(yρY

+
p Y

−
p xα(p)xδ −xαxδ(p))(yρY

+
q Y

−
q xγ(q)xβ −xβ(q)xγ).

In this case yρY
+
p Y

−
p = Y4 and yρY

+
q Y

−
q = Y ′3 , and the proof continues as before. �

There is a version of Theorem 12.9 which makes no assumptions on the notching of arcs
in T at p or q. Although we won’t use it later, we record the statement.
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Figure 40. Illustration for Remark 12.11

Theorem 12.10. Fix a tagged triangulation T of (S,M) which comes from an ideal tri-
angulation, and let A be the cluster algebra associated to (S,M) with principal coefficients
with respect to T . Let p and q be punctures in S, and let ρ be an ordinary arc between p
and q. Then

xρxρ(pq)y
χ(ρ(p)∈T )

ρ(p) y
χ(ρ(q)∈T )

ρ(q) − xρ(p)xρ(q)yχ(ρ∈T )
ρ y

χ(ρ(pq)∈T )

ρ(pq)

is equal to
∏

τ∈T

ye(τ,ρ)
τ (

∏

τ∈T

y
e⊲⊳
p (τ)

τ −
∏

τ∈T

y
ep(τ)
τ )(

∏

τ∈T

y
e⊲⊳
q (τ)

τ −
∏

τ∈T

y
eq(τ)
τ ),

where ep(τ) (respectively, e⊲⊳p (τ)) is the number of ends of τ that are incident to the puncture
p with an ordinary (respectively, notched) tagging.

Remark 12.11. In the degenerate case of a bordered surface with two punctures p and q
and only one other marked point v, Theorem 12.9 still holds and the proof is analogous.
Here we let ρ′ be a loop based at v crossing ρ exactly once, and define α, β = γ, and δ
as in Figure 40. Note that we can view α, β, γ, and δ as the four sides of a degenerate
quadrilateral with diagonals ρ and ρ′. We then obtain the analogues of equations (12.4)-
(12.9), replacing all instances of vertex w with v, γ with β, xβxβ(p) with xρ′ , Y

′
2 with 1,

and Y +
q Y

−
q with

∏
τ∈T y

eq(τ)
τ .

Remark 12.12. In the degenerate case when p = q, Theorem 12.9 also holds, but we need
to make sense of notation such as xρ(p) when ρ is a loop. See Section 12.4.

12.3. Combinatorial identities satisfied by γ-compatible pairs of matchings. We
now use Theorem 12.9 to prove Proposition 4.21, where γ ∈ T ◦, and then Theorem 4.20,
where γ 6∈ T ◦. In both proofs, we will use Theorems 4.10 and 4.17 to replace appearances of
cluster variables xγ , xγ(p) , and xγ(q) with generating functions of perfect (and γ-symmetric)
matchings of graphs GT ◦,γ , GT ◦,ℓp

and GT ◦,ℓq
. We are then reduced to proving combina-

torial identities concerning these sets of matchings.

Lemma 12.13. Assume that the ideal triangulation T ◦ contains the arc γ between the
punctures q and p (p 6= q). Let ℓp denote the loop based at puncture q enclosing the arc γ
and puncture p, but no other marked points. Let P−(ℓp) and P+(ℓp) denote the minimal
and maximal matchings of GT ◦,ℓp

, respectively. Define ℓq, P−(ℓq), and P+(ℓq) analogously.
Assume the local configuration around arc γ and punctures p and q is as in Figure 41. Let
ζ1 = γ and ζ2 through ζep label the arcs that ℓp crosses as we follow it clockwise around
puncture p. Analogously, let η1 = γ and η2 through ηeq label the arcs that ℓq crosses as we
follow it clockwise around puncture q. Then we have the following.
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Figure 41. The local configuration around arc γ between p and q

γ ζ3ζ2 ζ4

ζep
η2

ζep−1 ζep
γ

ηeq
ζ2

ζep−1ζ3

ζep−2

Figure 42. The graph GT ◦,ℓp
with the minimal matching P−(ℓp) highlighted

x(P−(ℓp))h(P−(ℓp)) = xγ

( ep−1∏

j=2

xζj

)
xη2 ,(12.10)

x(P+(ℓp))h(P+(ℓp)) = xηeq

( ep∏

j=3

xζj

)
xγ

( ep∏

j=2

hζj

)
.(12.11)

Analogous identies for ℓq are obtained by replacing p with q and switching the η’s and ζ’s.

Proof. The minimal and maximal matchings are precisely those that contain only boundary
edges. We distinguish between the two based on the fact that arcs ζep , γ, and ζ2 are assumed
to be given in clockwise order, as are ηeq , γ, and η2. The edges of the minimal and maximal
matchings both have a regular alternating pattern on the interior of Hζ (resp. Hη). See
Figure 42 for the verification of (12.10). The weights in the other equation are analogous.

The height monomial of a minimal matching is 1, and the height monomial of a maximal
matching of a graph is the product of hτi

’s, one for each label of a tile in the graph. Looking
at the diagonals (i.e. labels) of the tiles in GT ◦,ℓp

and GT ◦,ℓq
completes the proof. �

Proof of Proposition 4.21. We define ζ1 through ζep and η1 through ηeq as in Lemma 12.13.
Based on Lemma 12.13, it follows that

x(P−(ℓq))h(P−(ℓq))x(P+(ℓp))h(P+(ℓp))hγ = x2
γhγ

ep∏

j=2

(xζj
hζj

)

eq∏

j=2

xηj
and

x(P−(ℓp))h(P−(ℓp))x(P+(ℓq))h(P+(ℓq))hγ = x2
γhγ

ep∏

j=2

xζj

eq∏

j=2

(xηj
hηj

).
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Therefore

∑
Pp∈P(ℓp) x(Pp)h(Pp)

xγxζ2xζ3 · · · xζep

·

∑
Pq∈P(ℓq) x(Pq)h(Pq)

xγxη2xη3 · · · xηeq

· hγ(12.12)

− hγ

( ep∏

j=2

hζj

)
− hγ

( eq∏

j=2

hηj

)
+ 1 + h2

γ

( ep∏

j=2

hζj

)( eq∏

j=2

hηj

)

is positive, since P±(ℓp) ∈ P(ℓp), P±(ℓq) ∈ P(ℓq), and thus the two negative terms cancel
with terms coming from the product of Laurent polynomials.

Since we assumed that T does not contain any arcs with notches at p or q, it follows

that Φ(hγ) = yγ , Φ(h(Pp)) = y(Pp),
∏ep

j=2 Φ(hζj
) =

∏
τ∈T y

ep(τ)
τ , and

∏eq

j=2 Φ(hηj
) =

∏
τ∈T y

eq(τ)
τ . Applying Φ to (12.12), we obtain that

(12.13)

∑
Pp∈P(ℓp) x(Pp) y(Pp)

xγxζ2xζ3 · · · xζep

·

∑
Pq∈P(ℓq) x(Pq) y(Pq)

xγxη2xη3 · · · xηeq

·yγ +(1−
∏

τ∈T

y
ep(τ)
τ )(1−

∏

τ∈T

y
eq(τ)
τ )

is positive. Since γ ∈ T , xγ is an initial cluster variable and the left-hand-side of (12.13)
can be rewritten using Remark 4.12. Theorem 12.9 then gives

xγ(pq) =
xγ(p)xγ(q)yγ +

(
1 −

∏
τ∈T y

ep(τ)
τ

)(
1 −

∏
τ∈T y

eq(τ)
τ

)

xγ
.

It follows that the cluster expansion of xγ(pq) is positive. �

For the remainder of this section, we assume that γ (as well as γ(p), γ(q) and γ(pq)) is not
in the tagged triangulation T . We use the notation of Definition 12.8, and additionally we
let CP(γ(pq)) denote the set of pairs of γ-compatible matchings (Pp, Pq) of GT ◦,ℓp

⊔GT ◦,ℓq
,

and let P(ζ) (resp. P(ζ(i)), P(η), and P(η(i))) denote the set of perfect matchings of Hζ

(resp. H
(i)
ζ , Hη, and H

(i)
η ). Following Section 4.4, we label the tiles of GT ◦,ℓp

so that they
match the labels of the arcs crossed as we travel along ℓp in clockwise order:

Gτi1
, Gτi2

, . . . , Gτid
, Gζ1 , Gζ2 , . . . , Gζep−1 , Gζep

, Gτid
, Gτid−1

, . . . , Gτi2
, Gτi1

.

See Figure 8. Analogously, the tiles of GT ◦,ℓq
are labeled so that they match the arcs

crossed as we travel along ℓq in clockwise order:

Gτid
, Gτid−1

, . . . , Gτi1
, Gη1 , Gη2 , . . . , Gηeq−1 , Gηeq

, Gτi1
, Gτi2

, . . . , Gτid−1
, Gτid

.

It follows that the tiles Gτid
in both GT ◦,ℓp

and GT ◦,ℓq
have two adjacent sides labeled ζ1

and ζep , and the tiles Gτi1
contain two adjacent sides labeled η1 and ηeq .

We let JT ◦,γ,p,i denote the induced subgraph obtained from GT ◦,γ,p,i by deleting vertices
vi and wi, and all edges incident to either of these two vertices.

Lemma 12.14. If P is a γ-symmetric matching of GT ◦,ℓp
then P can be partitioned into

three perfect matchings of subgraphs in exactly one of the two following ways:

(1) P = P |GT◦,γ,p,1
⊔ P |

H
(1)
ζ

⊔ P |JT◦,γ,p,2
, or

(2) P = P |JT◦,γ,p,1
⊔ P |

H
(2)
ζ

⊔ P |GT◦,γ,p,2
.

Proof. See Figures 33 and 34. We will divide the set of γ-symmetric matchings of GT ◦,ℓp

into two classes, depending on whether or not they contain one of the edges labeled τid−1
on

the tiles containing vertex v1 and v2. By definition, a γ-symmetric matching must contain
both of these edges or neither.

(1) If P contains the specified edges, then P must also contain the edge labeled ζ1 that is
incident to vertex v1. (Otherwise, v1 could only be covered by the edge labeled ζ2 and this
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would leave a connected component with an odd number of vertices to match together.)
Filling in the rest of the edges on tiles Gτi1

throughGτid−1
, we see that P |GT◦,γ,p,1

is a perfect

matching. Such a P does not contain the edge labeled τid on the tile Gτid−1
since that

would also leave a connected component with an odd number of vertices. Consequently,
vertices v2 and w2 must be covered by edges from Gζep

. We conclude that the remainder

of the set P can be decomposed disjointly as the perfect matchings P |
H

(1)
ζ

and P |JT◦,γ,p,2
.

(2) If P does not contain the specified edges, then P must contain the edge labeled ζep

that is incident to v2. (Otherwise the vertex where edges labeled ζep and τid−1
meet on

that tile would not be covered by an edge of P .) Filling in the rest of P , we see that it
restricts to a perfect matching on GT ◦,γ,p,2. Since the edge labeled τid−1

incident to w1 is
not in P , the edge ζ1 incident to v1 cannot be contained in P . (Otherwise vertex w1 could
only be covered by the edge labeled τid and this also leaves an odd number of vertices to
match together.) We conclude that the rest of the set P can be decomposed disjointly as
the perfect matchings P |JT◦,γ,p,1

and P |
H

(2)
ζ

.

As P either contains or does not contain the specified edges, the proof is complete. �

Remark 12.15. By Lemma 12.14, it is impossible for both the edge labeled ζ1 incident to
v1 (resp. v2) and the edge labeled ζep incident to v2 (resp. v1) to appear in a γ-symmetric
matching of GT ◦,ℓp

. Furthermore Case (1) of Lemma 12.14 corresponds to the case where
P contains one edge labeled ζ1 incident to v1 or v2, but does not contain either edge labeled
ζep incident to v1 or v2. Case (2) is the reverse, and analogous statements hold for edges
labeled η1 and ηeq in GT ◦,ℓq

.

We use this observation to partition various sets of matchings into disjoint sets.

Definition 12.16 (Pa,b(γ), SPa,b(γ
(p)), and CPa,b(γ

(pq))). For a ∈ {1, ep} and b ∈ {1, eq},

let Pa,b(γ) (resp. SPa,b(γ
(p)) and CPa,b(γ

(pq))) denote the set of matchings in P(γ) (resp.

SP(γ(p)) and CP(γ(pq))) that contains at least one edge labeled ζa and at least one edge
labeled ηb.

By Remark 12.15, we have the following.

P(γ) = P1,1(γ) ⊔ P1,eq(γ) ⊔ Pep,1(γ) ⊔ Pep,eq(γ),(12.14)

SP(γ(p)) = SP1,1(γ
(p)) ⊔ SP1,eq(γ

(p)) ⊔ SPep,1(γ
(p)) ⊔ SPep,eq(γ

(p)),(12.15)

CP(γ(pq)) = CP1,1(γ
(pq)) ⊔ CP1,eq(γ

(pq)) ⊔ CPep,1(γ
(pq)) ⊔ CPep,eq(γ

(pq)).(12.16)

We let P1(ζ) (resp. Pep(ζ)) denote the subset of perfect matchings of Hζ that contains

the edge labeled ζ1 (resp. ζep) on the tile Gζep
(resp. Gζ1). We define Pb(η), Pa(ζ

(i)), and
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Pb(η
(i)) analogously for graphs Hη, H

(i)
ζ , and H

(i)
η . We also define the following.

Ma,b(γ) =
∑

P∈Pa,b(γ)

x(P )h(P ),(12.17)

M(γ) =
∑

P∈P(γ)

x(P )h(P ),(12.18)

SM(γ(p)) =
∑

Pp∈SP(γ(p))

x(Pp)h(Pp),(12.19)

CM(γ(pq)) =
∑

(Pp,Pq)∈CP(γ(pq))

x(Pp, Pq)h(Pp, Pq),(12.20)

Ma(ζ) =
∑

P∈Pa(ζ)

x(P )h(P ),(12.21)

M(ζ(1)) =

∑
P∈P(ζ) x(P )h(P )

xζ1

, and(12.22)

M(ζ(2)) =
hζep

∑
P∈P(ζ) x(P )h(P )

xζep

.(12.23)

We define Mb(η), M(η(1)), and M(η(2)) analogously. In equations (12.21)-(12.23), h(P )
is the height monomial with respect to the relevant subgraph.

Lemma 12.17. By Remark 12.3, we can assume without loss of generality that the tiles
Gτid−1

, Gτid
, and Gζ1 (resp. Gτi2

, Gτi1
, and Gη1) all lie in a single row or column, while

the tiles Gζep
, Gτid

, and Gτid−1
(resp. Gηeq

, Gτi1
, and Gτi2

) do not. Then

M(γ) = M1,1(γ) + M1,eq(γ) + Mep,1(γ) + Mep,eq(γ);

SM(γ(p)) = (M1,1(γ) + M1,eq(γ))M(ζ(1)) + (Mep,1(γ) + Mep,eq(γ))M(ζ(2));

SM(γ(q)) = (M1,1(γ) + Mep,1(γ))M(η(1)) + (M1,eq(γ) + Mep,eq(γ))M(η(2));

CM(γ(pq)) = M1,1(γ)M(ζ(1))M(η(1)) + M1,eq(γ)M(ζ(1))M(η(2))

+ Mep,1(γ)M(ζ(2))M(η(1)) + Mep,eq(γ)M(ζ(2))M(η(2)).

Proof. The identity for M(γ) follows directly from (12.14). We use (12.15) to get

SM(γ(p)) =
∑

Pp∈SP1,1(γ(p))

x(Pp)h(Pp) +
∑

Pp∈SPep,1(γ(p))

x(Pp)h(Pp)(12.24)

+
∑

Pp∈SP1,eq (γ(p))

x(Pp)h(Pp) +
∑

Pp∈SPep,eq (γ(p))

x(Pp)h(Pp).

By Lemma 12.14, a γ-symmetric matching Pp of GT ◦,ℓp
restricts to the disjoint union of

perfect matchings of

GT ◦,γ,p,1 ⊔H
(1)
ζ ⊔ JT ◦,γ,p,2 or JT ◦,γ,p,1 ⊔H

(2)
ζ ⊔GT ◦,γ,p,2,
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based on whether Pp contains an edge labeled ζ1 or ζep , respectively. Thus we obtain

x(Pp) =
x(Pp)

x(Pp|GT◦,γ,p,1
)

= x(Pp|H(1)
ζ

)x(Pp|JT◦,γ,p,2
) = x(Pp|H(1)

ζ

)
x(Pp|GT◦,γ,p,2

)

xζ1

or

=
x(Pp)

x(Pp|GT◦,γ,p,2
)

= x(Pp|H(2)
ζ

)x(Pp|JT◦,γ,p,1
) = x(Pp|H(2)

ζ

)
x(Pp|GT◦,γ,p,2

)

xζep

,

respectively. To calculate the height, note that the minimal matching P−(ℓp) appears in
the subset SP1,1(ℓp) ⊔ SP1,eq(ℓp), so

h(Pp) =
h(Pp)

h(Pp|GT◦,γ,p,1
)

= h(Pp|H(1)
ζ

)h(Pp|JT◦,γ,p,2
) = h(Pp|H(1)

ζ

)h(Pp|GT◦,γ,p,2
)

in the case that Pp ∈ SP1,1(ℓp)⊔SP1,eq(ℓp). On the other hand, any γ-symmetric matching

in SPep,1(γ
(p)) ⊔ SPep,eq(γ

(p)) has a height monomial scaled by a factor of hζep
. Thus

h(Pp) =
h(Pp)

h(Pp|GT◦,γ,p,2
)

= h(Pp|H(2)
ζ

)h(Pp|JT◦,γ,p,1
) = hζep

h(Pp|H(2)
ζ

)h(Pp|GT◦,γ,p,1
)

in the case that Pp ∈ SPep,1(ℓp) ⊔ SPep,eq(ℓp). We thus can rewrite (12.24) as

SM(γ(p)) =
∑

P1∈P1,1(γ)⊔P1,eq (γ)

∑

P2∈P1(ζ(1))

x(P1)

xζ1

h(P1)x(P2)h(P2)(12.25)

+
∑

P1∈Pep,1(γ)⊔Pep,eq (γ)

∑

P2∈Pep (ζ(2))

x(P1)

xζep

h(P1)x(P2)h(P2)hζep
,

thus showing the identity for SM(γ(p)) (and SM(γ(q))).

The formula for CM(γ(pq)) follows by similar logic since specifying the four ends of a
γ-compatible pair of matchings of GT ◦,ℓp

and GT ◦,ℓq
also specifies which of the two cases

of Lemma 12.14 we are in for both GT ◦,ℓp
and GT ◦,ℓq

. �

Lemma 12.17 immediately implies the following.

Lemma 12.18. The expression CM(γ(pq))M(γ) − SM(γ(p))SM(γ(q)) equals
(
M1,1(γ)Mep,eq(γ) −M1,eq(γ)Mep,1(γ)

)(
M(ζ(1)) −M(ζ(2))

) (
M(η(1)) −M(η(2))

)
.

The next two results describe how to simplify the three factors in (12.18).

Lemma 12.19. We have
(12.26)

Φ
(
M1,1(γ)Mep,eq(γ) −M1,eq(γ)Mep,1(γ)

)
= xτi1

xτid
xζ1xζep

xη1xηeq

d−1∏

j=2

x2
τij

∏

τ∈T

ye(τ,γ)
τ .

Proof. The idea is that a superposition of two matchings corresponding to the first term
on the left-hand-side of (12.26) can be decomposed into a superposition of two matchings
corresponding to the second term on the left-hand-side of (12.26) in all cases except one.
This case corresponds to the right-hand-side of (12.26). Let P1 + P2 be the multigraph
given by the superposition of P1 and P2, let P1 be an element of P1,1(γ), and let P2 be an
element of Pep,eq(γ). Since GT ◦,γ is bipartite, P1 +P2 consists of a disjoint union of cycles
of even length (including doubled edges which we treat as cycles of length two).

By definition, P1 contains the edge labeled ζ1 on the tile Gτid
while P2 contains the edge

labeled ζep on Gτid
. Similarly, P1 contains the edge labeled η1 on Gτi1

while P2 contains
the edge labeled ηeq on Gτi1

. Consequently, the superposition P1 +P2 contains at least one
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cycle of length greater than two, and one such cycle must contain the edges labeled ζ1 and
ζep on the tile Gτid

, and one must contain the edges labeled η1 and ηeq on the tile Gτi1
.

Let k be the number of cycles in P1 + P2 of length greater than 2 which do not involve
edges on tiles Gτid

or Gτi1
. Then there are 2k ways of decomposing P1 + P2 into the

superposition of two matchings, one from P1,1(γ) and one from Pep,eq(γ). When P1 + P2

has at least two cycles of length greater than 2, there are also 2k ways to decompose P1+P2

into the superposition of two matchings with one from each of Pep,1(γ) and P1,eq(γ). Thus
we have a weight-preserving and height-preserving bijection between such superpositions.

The superposition of the minimal matching P−(γ) ∈ P1,1(γ) and the maximal matching
P+(γ) ∈ Pep,eq(γ) is of the form P1 + P2, but consists of a single cycle including all edges
on the boundary of GT ◦,γ . Recall that the sets P1,1(γ),Pep,1(γ),P1,eq(γ), and Pep,eq(γ) are
disjoint. Accordingly, a single cycle cannot decompose into a superposition of an element
of Pep,1(γ) and an element of P1,eq(γ) because P−(γ) and P+(γ) are the unique two perfect
matchings of a single cycle including all edges on the boundary of GT ◦,γ . It follows that
any superposition of an element in Pep,1(γ) and an element in P1,eq(γ) must contain at
least two cycles, and is also of the form P1 + P2, with P1 ∈ P1,1(γ) and P2 ∈ Pep,eq(γ).

In conclusion, the only monomial not canceled on the left-hand-side of (12.26) corre-
sponds to the superposition of P−(γ) and P+(γ), which includes all edges on the boundary.
To calculate the weight, note that on each tile Gτij

for 2 ≤ j ≤ d−1, there are exactly two

adjacent tiles that include edges on the boundary with weight xτij
, see Figure 6. On the

other hand, Gτi1
and Gτid

only have one adjacent tile each with an edge on the boundary

with weight xτi1
(resp. xτid

). The remaining two boundary edges of Gτi1
have weights xη1

and xηeq
, while those of Gτid

have weights xζ1 and xζep
. The product of heights is

∏d
j=1 hτij

,

the height monomial for the minimal matching multiplied by the height monomial for the

maximal matching. This specializes to
∏

τ∈T y
e(τ,γ)
τ under the map Φ. �

Lemma 12.20. We have the following two identities:

Φ
(
M(ζ(1)) −M(ζ(2))

)
= xτid

( ep−1∏

j=2

xζj

)(
1 −

∏

τ∈T

y
ep(τ)
τ

)
and

Φ
(
M(η(1)) −M(η(2))

)
= xτi1

( eq−1∏

j=2

xηj

)(
1 −

∏

τ∈T

y
eq(τ)
τ

)
.

Proof. It suffices to prove the first identity. The idea is to show that almost all terms on
the left-hand-side cancel except for two, which correspond to the two monomials on the
right. Recall the notation preceding Lemma 12.17.

The union of a perfect matching of H
(1)
ζ (resp. H

(2)
ζ ) and the edge labeled ζep (resp. ζ1)

on Gζ1 (resp. Gζep
) is an element of the set P1(ζ) (resp. Pep(ζ)). The minimal height of a

matching in P1(ζ) is hζep
while subset Pep(ζ) contains the perfect matching of Hζ with a

height monomial of 1. We accordingly obtain the identities

M1(ζ) = xζ1(xζep
M(ζ(2))) and Mep(ζ) = xζep

(xζ1M(ζ(1))), and so

Φ
(
M(ζ(1)) −M(ζ(2))

)
=

Φ
(
Mep(ζ) −M1(ζ)

)

xζ1xζep

=
Φ
(∑

P x(P )h(P )
)

xζ1xζep

,(12.27)
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where the sum is over P ∈ (P1(ζ)∪Pep(ζ))\(P1(ζ)∩Pep(ζ)). There are exactly two perfect
matchings of Hζ not in this intersection, therefore (12.27) equals

x(P−(Hζ))y(P−(Hζ)) − x(P+(Hζ))y(P+(Hζ))

xζ1xζep

.

By inspection (see the central subgraphs of Figures 33 and 34), x(P−(Hζ)) = x(P+(Hζ)) =

xτid

(∏ep

j=1 xζj

)
, y(P−(Hζ)) = 1, and y(P+(Hζ)) =

∏
τ∈T y

ep(τ)
τ . �

We can now prove Theorem 4.20.

Proof of Theorem 4.20. We conclude from Lemmas 12.18, 12.19, and 12.20 that

Φ
(
CM(γ(pq))M(γ) − SM(γ(p))SM(γ(q))

)
=(12.28)

( d∏

j=1

x2
τij

)( ep∏

j=1

xζj

)( eq∏

j=1

xηj

)( ∏

τ∈T

ye(τ,γ)
τ

)(
1 −

∏

τ∈T

y
ep(τ)
τ

)(
1 −

∏

τ∈T

y
eq(τ)
τ

)
.

Using Theorem 4.17, we have that xγ = Φ(M(γ))
Qd

j=1 xτij

and xγ(p)xγ(q) is equal to

Φ(SM(γ(p)))
∏

τ∈T x
e(γ,τ) + ep(τ)
τ

·
Φ(SM(γ(q)))

∏
τ∈T x

e(γ,τ) + eq(τ)
τ

=
Φ(SM(γ(p)))

∏d
j=1 xτij

∏ep

j=1 xζj

·
Φ(SM(γ(q)))

∏d
j=1 xτij

∏eq

j=1 xηj

.

Using (12.28), we obtain

Φ(CM(γ(pq)))Φ(M(γ))
∏d

j=1 x
2
τij

∏ep

j=1 xζj

∏eq

j=1 xηj

− xγ(p) xγ(q) = (1 −
∏

τ∈T

y
ep(τ)
τ )(1 −

∏

τ∈T

y
eq(τ)
τ )

∏

τ∈T

ye(τ,γ)
τ .

Comparing this to Theorem 12.9 and using xγ = Φ(M(γ))
Qd

j=1 xτij

yields

xγ(pq) =
Φ(CM(γ(pq)))

∏d
j=1 xτij

∏ep

j=1 xζj

∏eq

j=1 xηj

.

�

12.4. The case of a doubly-notched loop. Section 12.3 proved our formula for cluster
variables corresponding to doubly-notched arcs between two distinct punctures p and q. It
remains to understand the cluster variables corresponding to doubly-notched loops.

We will use the same strategy for doubly-notched loops as we used for doubly-notched
arcs between two punctures, namely, we will show that our combinatorial formula for
doubly-notched loops satisfies the identity of Theorem 12.9. However, we need to explain
how to interpret Theorem 12.9 when ρ is a loop, namely an arc between points p and q
where p and q happen to coincide. In this case it is not immediately clear how to interpret
the symbols xρ(p) and xρ(q) ; a “singly-notched loop” does not represent a cluster variable.

Before defining the symbol xρ(p) , we need to introduce an operation we call augmentation.

Definition 12.21 (Augmentation). Fix a bordered surface (S,M), an ideal triangulation
T ◦ of S, a puncture p, and a loop ρ based at p with a choice of orientation. Let ∆ be
the first triangle of T ◦ which ρ crosses. We assume that ∆ is not self-folded, so we can
denote the arcs of ∆ by a, b and c (in clockwise order), with a and c incident to p, a and
b incident to a marked point u, and b and c incident to a marked point v. We then define

the augmented bordered surface (Ŝ, M̂) by adding a single puncture q to (S,M), placing it

inside ∆. And we construct the augmented triangulation T̂ ◦ from T ◦ by adding three new
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Figure 43. Augmenting a bordered surface and triangulation

arcs inside ∆: an arc â from q to u, an arc ĉ from q to v, and an arc b̂ from u to v (so that

b̂ and b form a bigon with the puncture q inside). See Figure 43.

Definition 12.22 (The Laurent polynomial corresponding to a singly-notched loop). Fix
a bordered surface (S,M) and a tagged triangulation T = ι(T ◦) corresponding to an ideal
triangulation T ◦, and let A be the corresponding cluster algebra with principal coefficients
with respect to T . Let ρ be an ordinary loop based at p, with a choice of orientation, and
let ρ(p) denote the “tagged arc” obtained from ρ by notching at the final end of ρ. We
represent this “tagged arc” by the curve (with a self-intersection) ℓp obtained by following
the loop ρ along its orientation, but then looping around the puncture p and doubling
back, again following ρ. See Figure 9. Let GT ◦,ℓp

be the graph associated to ℓp in Section
4.2. Then we define xρ(p) to be

1

cross(T ◦, ρ(p))

∑

P

x(P ) y(P ),

where the sum is over all ρ-symmetric matchings P of GT ◦,ℓp
.

Proposition 12.23. Using the notation of Definition 12.22, let T̂ ◦ denote the augmented

triangulation corresponding to T ◦ and ρ, and let ρ̂ denote the arc in T̂ ◦ from q to p which
is equal to ρ after identification of p and q. We set xâ = xa, xb̂

= xb, xĉ = xc, yâ = ya,

y
b̂
= yb, and yĉ = yc. Let ℓ̂p denote the loop which is the ideal arc representing ρ̂(p). Then

xρ(p) is equal to
1

cross(T̂ ◦, ρ̂(p))

∑

P

x(P ) y(P ),

where the sum is over all ρ̂-symmetric matchings P of G
bT ◦,ℓ̂p

.

Remark 12.24. In other words, xρ(p) can be obtained by taking the formula for xρ̂(p) given
by Theorem 4.17, and making a simple substitution of variables.

Proof. By Remark 4.12, we can assume that the first triangle which ℓp crosses is not self-

folded; therefore we can augment T ◦. We defined T̂ ◦ so that the sequence of diagonals

crossed by the loop ℓ̂p in Ŝ is identical to the sequence of diagonals crossed by the curve ℓp
in S. Moreover, the local configurations of all triangles crossed is the same for both ℓ̂p and

ℓp, and after the substitution â = a, b̂ = b, and ĉ = c, even their labels coincide. (Note that

it was essential for us to define T̂ ◦ so that in the neighborhoods around p in both S and

Ŝ, the two triangulations coincide.) Therefore, after this substitution, the labeled graphs
G

bT ◦,ℓ̂p
and GT ◦,ℓp

are equal. Additionally, the notions of ρ̂-symmetric and ρ-symmetric

matchings coincide, as do the crossing monomials. This proves the proposition. �
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Figure 44. Laminations for a quadrilateral in a bigon
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Figure 45. Opening the quadrilateral in the bigon

Proposition 12.25. Fix a bordered surface (S,M) and a tagged triangulation T = ι(T ◦),
and let A be the corresponding cluster algebra. Let ρ be a loop based at a puncture p in S.
Choose two market points w and v, arcs α and β between p and v, and arcs γ and δ between
p and w, so that α, β, γ, and δ are the four sides (in clockwise order) of a quadrilateral
with simply-connected interior. Let ρ′ denote the arc between v and w so that ρ′ and ρ are
the two diagonals of this quadrilateral. Choose the orientation for ρ which starts at the
corner of the quadrilateral between β and γ, and ends at the corner between α and δ, and
define xρ(p) as in Definition 12.22. Define xρ(q) in the same way, but using the opposite

orientation for ρ. Let Y ±q , Y ±p , and Y ± be the monomials of shear coordinates coming
from laminations as in Figure 44 (which shows a degeneration of Figure 36 and 39). Then
we have (12.5) and (12.6).

Proof. It suffices to prove (12.5). We augment S and T ◦, and define arcs α̂, β̂, γ̂, δ̂, ρ̂, and

ρ̂′ in Ŝ, so that they are the same as the corresponding arcs in S except that the endpoints
of β̂, γ̂ and ρ̂ are moved from p to q. See Figure 45. The underlying triangulations are
indicated by thin lines, and the sides of the quadrilateral are bold.

By Proposition 12.23, after a simple specialization of variables (obtained by equating

â, b̂, ĉ with a, b, c), xρ(p) is equal to xρ̂. Similarly, xρ′ = x
ρ̂′

, xβ = x
β̂
, xδ(p) = x

δ̂(p) ,

xα(p) = xα̂(p) , and xγ = xγ̂ . Note that we are using the fact that the augmentation T̂ ◦

of T ◦ preserves the neighborhood around the puncture p. Finally, we know that in Ŝ the
equation (12.5) holds, so after the simple specialization above, the proposition holds. �

The proof of Theorem 4.20 for doubly-notched arcs can now be extended to loops.

Proof. We’ve now defined xρ(p) and xρ(q) , so the statement of Theorem 12.9 makes sense.

(Here ep(τ) = eq(τ) is the number of ends of arcs of T ◦ which are incident to p.) Moreover
by Proposition 12.25, (12.5) and (12.6) hold, and the proof of Theorem 12.9 works with
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minimal modifications. We now have an algebraic counterpart for a singly-notched loop
given by Proposition 12.22, which is analogous to our formula for singly-notched loops.
Using this, the proofs of Section 12.3 now hold for doubly-notched loops, with no changes
necessary. This proves our combinatorial formula for cluster variables of doubly-notched
loops as sums over γ-compatible pairs of matchings. �

Question 12.26. When ρ is a loop, is xρ(p) an element of A, or just Frac(A)?

13. Applications to F-polynomials, g-vectors, Euler characteristics

13.1. F -polynomials and g-vectors. Fomin and Zelevinsky showed [FZ4] that the Lau-
rent expansions of cluster variables can be computed from the somewhat simpler F -
polynomials and g-vectors. In this section we invert this line of thought and compute
the F -polynomials and g-vectors from our Laurent expansion formulas. F -polynomials are
obtained from Laurent expansions of cluster variables with principal coefficients by setting
all cluster variables equal to 1. Thus the F -polynomial Fγ of a tagged arc γ is obtained
from Theorems 4.10, 4.17 and 4.20 by deleting the weight and crossing monomials, and
summing up only the specialized height monomials. E.g. if γ is an ordinary arc then

Fγ =
∑

P

y(P ),

where the sum is over all perfect matchings of GT ◦,γ .
Note that this shows that F -polynomials have constant term 1, since the minimal match-

ing P− is the only matching with y(P−) = 1.
It has been shown [FZ4] that the Laurent expansion of any cluster variable with respect

to a seed (x,y, B) is homogeneous with respect to the grading given by deg(xi) = ei and
deg(yi) = Bei, where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn with 1 at position i. The g-vector gγ

of a cluster variable xγ is the degree of its Laurent expansion with respect to this grading.
Since y(P−) = 1, Theorem 4.10 implies that the g-vector is given by

gγ = deg

(
x(P−)

cross(T ◦, γ)

)
,

if γ is an ordinary arc. The same formula works for arcs with one or two notches, replacing
x(P−) by x(P−) or x(P−), respectively.

13.2. Euler-Poincaré characteristics. In this section we combine our cluster expansion
formula with results of [DWZ]. Let A = A(x,y, B) be a rank n cluster algebra with
principal coefficients associated to a surface. Associate to B = (bij) a quiver Q(B) without
loops or oriented 2-cycles, with vertices {1, 2, . . . , n} and with bij arrows from i to j if and
only if bij > 0. Let S be a potential on Q(B), and consider the corresponding Jacobian
algebra: it is the quotient of the complete path algebra of Q(B) by the Jacobian ideal,
which is the closure of the ideal generated by the partial cyclic derivatives of the potential.
In [DWZ], the authors associate to any cluster variable xγ in A a finite-dimensional module
Mγ over the Jacobian algebra (thus Mγ is a representation of the quiver Q(B) whose maps
satisfy the relations given by the Jacobian ideal). Furthermore, they prove that the F -
polynomial of xγ is given by the formula

Fγ =
∑

e

χ(Gre(Mγ))

n∏

i=1

yei

i ,

where the sum is over all dimension vectors e = (e1, e2, . . . , en), χ is the Euler-Poincaré
characteristic, and Gre(Mγ) is the e-Grassmannian of Mγ , i.e. the variety of subrepresen-
tations of dimension vector e. Comparing this to our formulas for Fγ , we get the following.
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Theorem 13.1. (1) For an ordinary arc γ, χ(Gre(Mγ)) is the number of perfect
matchings P of GT ◦,γ such that y(P ) is equal to

∏n
i=1 y

ei

i .

(2) For an arc γ = γ(p) with one notched end, χ(Gre(Mγ)) is the number of γ-
symmetric matchings P of GT ◦,ℓp

such that y(P ) =
∏n

i=1 y
ei

i .

(3) For an arc γ = γ(pq) with two notched ends, χ(Gre(Mγ)) is the number of γ-
compatible pairs (P1, P2) of GT ◦,ℓp

⊔GT ◦,ℓq
such that y(P1, P2) =

∏n
i=1 y

ei

i .

Corollary 13.2. For any cluster variable xγ in a cluster algebra associated to a surface,
the Euler-Poincaré characteristic χ(Gre(Mγ)) is a non-negative integer.

Remark 13.3. In the case where Q(B) has no oriented cycles, Corollary 13.2 was already
proved in [CR], and for unpunctured surfaces in [S2].
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