A Graph Theoretic Interpretation for Cluster Algebras of Classical Type

Gregg Musiker

MIT

March 14, 2008

Outline.

(1) Introduction

2 Cluster Algebras of Finite Type (Bipartite Seeds)
(3) A Graph Theoretic Approach

4 Graphs for the Classical Types (Bipartite Seeds)
(5) Other Examples of Graph Theoretic Interpretations

Cluster Algebras

Definition [Sergey Fomin and Andrei Zelevinsky 2001] A cluster algebra \mathcal{A} is a certain subalgebra of $k\left(x_{1}, \ldots, x_{m}\right)$, the field of rational functions over $\left\{x_{1}, \ldots, x_{m}\right\}$. Generators constructed by a series of exchange relations, which in turn induce all relations satisfied by the generators.

Definition. A seed for \mathcal{A} is an initial cluster $\left\{x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right\}$ and an m-by- n skew-symmetrizable integral matrix B with $(m \geq n)$. $\left(d_{i} b_{i j}=-d_{j} b_{j i}\right.$ for some positive integers $\left.d_{i}\right)$

Columns of B encode the exchanges

$$
x_{k} x_{k}^{\prime}=\prod_{b_{i k}>0} x_{i}^{\left|b_{i k}\right|}+\prod_{b_{i k}<0} x_{i}^{\left|b_{i k}\right|}
$$

for $k \in\{1,2, \ldots n\}$. Note: If only one sign occurs (e.g. $b_{i k}>0$), we still get binomial

$$
\prod_{b_{i k}>0} x_{i}^{\left|b_{i k}\right|}+1
$$

Mutation

For all $k \in\{1,2, \ldots, n\}$, there exists another seed for \mathcal{A} consisting of cluster $\left\{x_{1}, \ldots, \widehat{x_{k}}, \ldots, x_{m}\right\} \cup\left\{x_{k}^{\prime}\right\}$ and matrix $\mu_{k}(B)$.

$$
\mu_{k}(B)_{i j}=\left\{\begin{array}{l}
-b_{i j} \text { if } k=i \text { or } k=j \\
b_{i j} \text { if } b_{i k} b_{k j} \leq 0 \\
b_{i j}+b_{i k} b_{k j} \text { if } b_{i k}, b_{k j}>0 \\
b_{i j}-b_{i k} b_{k j} \text { if } b_{i k}, b_{k j}<0
\end{array}\right.
$$

Point: Matrix $\mu_{k}(B)$ is again integral and skew-symmetrizable. Thus $\left(\left\{x_{1}, \ldots, \widehat{x_{k}}, \ldots, x_{m}\right\} \cup\left\{x_{k}^{\prime}\right\}, \mu_{k}(B)\right)$ is also a cluster algebra seed. Also mutation is an involution, $\mu_{k}^{2}(B)=B$.

After all exchanges, the x_{k}^{\prime} 's obtained this way are the generators of the cluster algebra $\mathcal{A} \subset k\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. Relations induced by the exchange relations used to construct the generators.

Exchange Graphs

A priori, get a tree of exchanges:

In practice, often get identifications among clusters.
In extreme cases, get only a finite number of clusters as tree closes up on itself.

Example: B_{2}

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right] \quad\left\{x_{1}, x_{2}\right\}-\mu_{1}-\left\{\frac{1+x_{2}^{2}}{x_{1}}, x_{2}\right\}-\mu_{2}-\left\{\frac{1+x_{2}^{2}}{x_{1}}, \frac{x_{2}^{2}+x_{1}+1}{x_{1} x_{2}}\right\}} \\
& -\mu_{1}-\left\{\frac{x_{1}^{2}+2 x_{1}+x_{2}^{2}+1}{x_{1} x_{2}^{2}}, \frac{x_{2}^{2}+x_{1}+1}{x_{1} x_{2}}\right\}
\end{aligned}
$$

$$
-\mu_{2}-\left\{\frac{x_{2}^{2}+2 x_{1}+x_{2}^{2}+1}{x_{1} x_{2}^{2}}, \frac{x_{1}+1}{x_{2}}\right\}-\mu_{1}-\left\{x_{1}, \frac{x_{1}+1}{x_{2}}\right\}
$$

$\mathcal{L}_{2} _\left\{x_{1}, x_{2}\right\}$. Thus exchange graph is a hexagon.

Cluster Expansion Formulas

Definition. The union of all clusters is the set of cluster variables. These are generators of the cluster algebra \mathcal{A} defined by seed $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, B$.

Example: Cluster algebra with seed $\left(\left\{x_{1}, x_{2}\right\},\left[\begin{array}{cc}0 & 1 \\ -2 & 0\end{array}\right]\right)$ has cluster variables

$$
\left\{x_{1}, x_{2}, \frac{1+x_{2}^{2}}{x_{1}}, \frac{x_{2}^{2}+x_{1}+1}{x_{1} x_{2}}, \frac{x_{1}^{2}+2 x_{1}+x_{2}^{2}+1}{x_{1} x_{2}^{2}}, \frac{x_{1}+1}{x_{2}}\right\} .
$$

Theorem. (The Laurent Phenomenon FZ 2001) Given any cluster algebra defined by initial seed $\left(\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, B\right)$, all cluster variables of $\mathcal{A}(B)$ are Laurent polynomials in $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ (with no coefficient x_{n+1}, \ldots, x_{m} in the denominator).

Thus we can write any cluster variable in the form $x_{\alpha}=\frac{P_{\alpha}\left(x_{1}, \ldots, x_{m}\right)}{x_{1}^{\alpha_{1}^{1} \ldots x_{n}^{\alpha n}}}$ where P_{α} is a polynomial with integer coefficients.

Finite Type

Definition. A cluster algebra $\mathcal{A}(B)$ is of finite type if the corresponding set of cluster variables is finite.

Definition. The bipartite exchange matrix B_{Φ} for root system Φ, also called the Cartan counterpart, is constructed as follows:

1) Take the Cartan Matrix C_{Φ} and replace its diagonal of 2 's with zeros,
2) Alter the signs of C_{Φ} so that the resulting matrix is skew-symmetrizable with elements in columns having common signs.

Finite Type (cont.)

Theorem. (FZ 2002) A cluster algebra is of finite type if and only if B is mutation equivalent to B_{Φ} for a root system Φ.

The non-initial cluster variables of the system are in bijection with the positive roots of Φ. (In particular notation x_{α} well defined in this case.) When the seed matrix is B_{Φ}, the denominator vectors are in fact explicitly given by

$$
x_{\alpha}=\frac{P_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}}
$$

where $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a positive root, i.e. if s_{1}, \ldots, s_{n} are the simple roots of Φ, then $\alpha_{1} \cdot s_{1}+\cdots+\alpha_{n} \cdot s_{n}$ is a positive root of Φ.

For cluster algebras of finite type, the coefficients of P_{α} are nonnegative integers.

Examples of B_{ϕ} 's

$$
\begin{aligned}
& B_{A_{5}}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] B_{B_{5}}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
-2 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \\
& B_{C_{5}}=\left[\begin{array}{ccccc}
0 & 2 & 0 & 0 & 0 \\
-1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] B_{D_{5}}=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
-1 & -1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & -1 & 0
\end{array}\right]
\end{aligned}
$$

For D_{n}, I use the indexing $1, \overline{1}, 2,3,4, \ldots,(n-1)$.

Positivity Conjecture

Conjecture. (FZ 2001) Given any cluster variable

$$
x_{\alpha}=\frac{P_{\alpha}\left(x_{1}, \ldots, x_{m}\right)}{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}},
$$

the polynomial $P_{\alpha}\left(x_{1}, \ldots, x_{n}\right)$ has nonnegative integer coefficients.
This conjecture is still wide open for general cluster algebras. Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy algeras, examples of cluster algebras of type A_{n} with coefficients. [FZ 2002] proved positivity for finite type with bipartite seed. Positivity also proven for those cluster variables in cluster algebra with acyclic seed [Caldero-Reineke 2006] and cluster algebras arising from unpunctured surfaces [Schiffler-Thomas 2007]. Work of Schiffler-Thomas also includes expansion formulas.

A different approach to proving positivity for $\mathcal{A}\left(B_{\Phi}\right)$ (Φ classical) follows, yielding explicit combinatorial interpretations for expansions.

Perfect Matchings and their weightings

Given a simple undirected graph $G=(V, E)$, a perfect matching $M \subseteq E$ is a set of distinguished edges so that every vertex of V is covered exactly once.

We let the edges of our graph have weights $w(e)$ which are each either 1 (unweighted) or some variable x_{i}.

The weight of a matching M is the product of the weights of the constituent edges, i.e. $w(M)=\prod_{e \in M} w(e)$.

Definition. The perfect matching enumerator of a weighted graph G is given by the polynomial

$$
P(G)=\sum_{M \text { is a matching of } G} w(M)
$$

A Framework for Graph Theoretic Interpretations of Cluster Expansions

Notice that starting with a seed $\left\{x_{1}, \ldots, x_{n}\right\}, B$ that there are n elementary exchanges, which lead to cluster variables of the form

If the corresponding Binomial has degree d, then the cluster variable $x_{s_{k}}=\frac{P_{s_{k}}\left(x_{1}, \ldots, x_{n}\right)}{x_{k}}$ can be expressed as $\frac{P\left(T_{k}\right)}{x_{k}}$ where graph T_{k} is a weighted cycle graph of even length, which is greater than or equal to $2 d$.

We wish to generalize this interpretation to other positive roots α.

Main Theorem

Theorem. (M 2007) For every classical root system there exists a family of graphs $\mathcal{G}_{\Phi}=\left\{G_{\alpha}\right\}_{\alpha \in \Phi_{+}}$such that x_{α}, the cluster variable of $\mathcal{A}\left(B_{\Phi}\right)$ corresponding to $\alpha \in \Phi_{+}$, can be expressed as

$$
x_{\alpha}=\frac{P_{G_{\alpha}}\left(x_{1}, \ldots, x_{n}\right)}{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}}
$$

Further, we will construct the graphs in a very simple manner using the tiles T_{k}.

Tiles for the four classical types

Tiles for the four classical types (cont.)

Graphs for A_{n} and B_{n}

We will construct the graphs G_{α} for other cluster variables x_{α} (for α a positive root of Φ) by gluing together these tiles.

Example: A_{n}, positive roots look like $(0, \ldots, 0,1,1, \ldots, 1,0, \ldots, 0)=s_{a}+\cdots+s_{b}$.

We glue tiles T_{a} through T_{b} together horizontally.

$$
G_{\alpha}=\begin{array}{|l|c|c|}
\hline a & a+1 & a+2 \\
\hline & \bullet \bullet & \begin{array}{|l|}
\hline \mathrm{b} \\
\hline
\end{array} \\
\hline
\end{array}
$$

Cluster variable $x_{\alpha}=\frac{P\left(G_{\alpha}\right)}{x_{a} x_{a}+1 \cdots x_{b}}$ where $P\left(G_{\alpha}\right)$ is the perfect matching enumerator.

Graphs for A_{n} and B_{n} (cont.)

Example: B_{n}, positive roots are of the form $s_{a}+\cdots+s_{b}$ as in the A_{n} case, or

$$
s_{a}+s_{a-1}+\cdots+s_{2}+s_{1}+s_{2}+\cdots+s_{b}
$$

with $a \leq b$.

We again glue tiles together horizontally in this order.

Graphs for A_{n} and B_{n} (cont.)

A_{5}

Graphs for A_{n} and B_{n} (cont.)

B_{3} folds onto A_{5} (Take right-half including middle)

2
2

Sketch of proof for A_{n} and B_{n}

Not only is this lattice a useful visualization of the set of cluster variables, it also provides a helpful graphical description of the proof.

In particular, what I have drawn are also known as the layers of the bipartite belt.

Since matrices B_{Φ} are bipartite (in fact stratified by odds versus evens), we can mutate all odd indicies independently, followed by a mutation of all even indicies.

The mutated matrix will always be $\pm B_{\Phi}$ at the end of a row.

Sketch of proof for A_{n} and B_{n} (cont.)

Thus, these lattices are frieze patterns defined completely by the diamond condition.

$$
a d=b c+1 \quad b{ }_{d}^{a}
$$

3	4	5

Example.

1	2	3	4	5	6	7

Sketch of proof for A_{n} and B_{n} (cont.)

3	4	5

1	2	3	4	5	6	7

| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |\quad| 7 |
| :--- |\rightarrow| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |

Only one matching left:

ए $4 \quad 5$

does not decompose, contributes

$$
\left(x_{1} x_{3}\right)\left(x_{2} x_{4}\right)\left(x_{3} x_{5}\right)\left(x_{4} x_{6}\right)\left(x_{5} x_{7}\right)=x_{1} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} x_{6} x_{7} .
$$

Sketch of proof for A_{n} and B_{n} (cont.)

Thus, these lattices are frieze patterns defined completely by the diamond condition.

$$
a d=b c+1 \quad b{ }_{d}^{a}
$$

3	4	5

Example.

1	2	3	4	5	6	7

Sketch of proof for A_{n} and B_{n} (cont.)

Secondly, to avoid boundary behavior, we use excision.

Example. $\quad \sqrt[1]{1 / 2 / 3 / 4 \sqrt{5}}$

In A_{5}, we let $x_{6}=1, x_{7}=0, x_{8}=-1$, and pattern continues with $x_{9}=-x_{5}, x_{10}=-x_{4}, \ldots$, thereby obtaining

$$
\begin{aligned}
& \frac{P(\sqrt[3]{3})}{x_{3} x_{4}}=\lim _{y_{0} \rightarrow 0} \frac{P\left(\sqrt{3 \sqrt{4}_{5}^{6} \sqrt{6}^{7}}\right)}{x_{3} x_{4}(1)\left(y_{0}\right)(-1)}
\end{aligned}
$$

The C_{n} and D_{n} cases

$C_{4} \quad$ After mutating with respect to x_{1} and $x_{3}\left(x_{2}\right.$ and $\left.x_{4}\right)$, we obtain

3

The C_{n} and D_{n} cases (cont.)

The C_{n} and D_{n} cases (cont.)

The C_{n} and D_{n} cases (cont.)

The C_{n} and D_{n} cases (cont.)

D_{5} (cont.)

The C_{n} and D_{n} cases (cont.)

D_{5} (cont.)

The C_{n} and D_{n} cases (cont.)

D_{5} (cont.)

2

The C_{n} and D_{n} cases (cont.)

The proof comes down to superpositions similar to the A_{n} and B_{n} cases. We deal with boundary behavior by excision.

We use a different frieze pattern, which is identical except for the first two columns.

For C_{n} and b in the first column

$$
a d=b^{2} c+1 \quad b^{a}
$$

The C_{n} and D_{n} cases (cont.)

The proof comes down to superpositions similar to the A_{n} and B_{n} cases. We deal with boundary behavior by excision.

We use a different frieze pattern, which is identical except for the first two columns.

For D_{n} and b, \bar{b} in the first column

$$
a d=b \bar{b} c+1 \quad b \bar{b} \quad{ }_{d}
$$

We let $\tilde{b}=b^{2}$ or $b \bar{b}$, respectively.

The C_{n} and D_{n} cases (cont.)

Suffices to show that numerator of $\tilde{b}=b^{2}$ corresponds to perfect

There is a weight-preserving bijection between matchings of

The right hexagon is rotated clockwise 120°, and so we in fact obtain a weight of $x_{1}^{2} x_{2} x_{3}$ from the forced arcs in both graphs.

Seed matrix is $B=\left[\begin{array}{cc}0 & 1 \\ -3 & 0\end{array}\right]$ Hexagon has x_{1} on NW, NE, and S sides, Trapezoid has x_{2} on N side.

Affine Rank 2

Joint work with Jim Propp.
Let $B=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]$ or $\left[\begin{array}{cc}0 & -4 \\ 1 & 0\end{array}\right]$.
Here we also exploit invariance of matrices B under mutation.
So we are considering (b, c)-sequence

$$
x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { odd } \\
x_{n-1}^{c}+1 \text { if } n \text { even }
\end{array}\right.
$$

for $(b, c)=(2,2)$ or $(1,4)$.

Affine Rank 2 (cont.)

Since cluster algebra structure, (b, c) sequence consists of Laurent polynomials.

Work of Sherman and Zelevinsky verifies positive coefficients for $(1,4)$ and $(2,2)$ using Newton polytope, and Caldero-Zelevinsky give another proof of positivity for $(2,2)$ case via Quiver Grassmannians.

We give proof of positivity via graph theoretical interpretation similar to above.

Affine Rank 2 (cont.)

$(2,2)$: all cluster variables have denominators $x_{1}^{d} x_{2}^{d+1}$ (resp. $x_{1}^{d+1} x_{2}^{d}$) We string together corresponding number of sqares

in an intertwining fashion.
Examples:

$\frac{x_{2}{ }^{4}+2 x_{2}^{2}+1+x_{1}^{2}}{x_{1}{ }^{2} x_{2}} \leftrightarrow$| 1 | 2 | 1 |
| :--- | :--- | :--- |

$\frac{x_{1}{ }^{6}+3 x_{1}{ }^{4}+3 x_{1}{ }^{2}+2 x_{2}{ }^{2} x_{1}{ }^{2}+x_{2}{ }^{4}+1+2 x_{2}{ }^{2}}{x_{2}{ }^{3} x_{1}{ }^{2}} \leftrightarrow$| 2 | 1 | 2 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |

Affine Rank 2 (cont.)

$(1,4)$: Tiles are a square and an octagon:

Sequnce Continues

$x_{4} \quad 17$ terms

Sequnce Continues (cont.)

Running the $(1,4)$ sequence backwards

X_{-1}
3 terms

x_{-2}
41 terms

Running the $(1,4)$ sequence backwards (cont.)

x_{-5}
67 terms

x_{-7}
321 terms

Markoff polynomials

Joint work by Carroll, Itsara, Le, M, Price, Thurston, and Viana under Propp in REACH program.

$$
B=\left[\begin{array}{ccc}
0 & 2 & -2 \\
-2 & 0 & 2 \\
2 & -2 & 0
\end{array}\right], \quad \text { Exchange graph is free ternary tree. }
$$

B invariant under mutation. All exchanges have form $(x, y, z) \mapsto\left(x^{\prime}, y, z\right)$ where $x x^{\prime}=y^{2}+z^{2}$.
These also have graph theoretic interpretation: Snake Graphs, .e.g

Further directions

I am investigating how to push these interpretations further: i.e. different seeds, with coefficients, other cases of infinite type.

Recent work with Ralf Schiffler seems to indicate similar interpetations for cluster algebras from unpunctured triangulated surfaces, which includes more cases of affine cluster algebras.

References

A Graph Theoretic Expansion Formula for Cluster Algebras of Classical Type, http://www-math.mit.edu/~ musiker/Finite.pdf

Combinatorial Interpretations for Rank-Two Cluster Algebras of Affine Type (with Jim Propp), Electronic Journal of Combinatorics. Vol. 14 (R15), 2007.

The Combinatorics of Frieze Patterns and Markoff Numbers (by Jim Propp), arXiv:math.CO/0511633

Thanks for Listening

Happy π Day.

