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Abstract. We study cluster algebras with principal coefficient systems that
are associated to unpunctured surfaces. We give a direct formula for the
Laurent polynomial expansion of cluster variables in these cluster algebras in
terms of perfect matchings of a certain graph GT,γ that is constructed from
the surface by recursive glueing of elementary pieces that we call tiles. We
also give a second formula for these Laurent polynomial expansions in terms
of subgraphs of the graph GT,γ .

1. Introduction

Cluster algebras, introduced in [FZ1], are commutative algebras equipped with
a distinguished set of generators, the cluster variables. The cluster variables are
grouped into sets of constant cardinality n, the clusters, and the integer n is called
the rank of the cluster algebra. Starting with an initial cluster x = {x1, . . . , xn}
(together with a skew symmetrizable integer n×n matrix B = (bij) and a coefficient
vector y = (yi) whose entries are elements of a torsion-free abelian group P) the
set of cluster variables is obtained by repeated application of so called mutations.
Note that this set may be infinite.

It follows from the construction that every cluster variable is a rational function
in the initial cluster variables x1, x2, . . . , xn. In [FZ1] it is shown that every cluster
variable u is actually a Laurent polynomial in the xi, that is, u can be written as
a reduced fraction

(1) u =
f(x1, x2, . . . , xn)

∏n
i=1 xdi

i

,

where f ∈ ZP[x1, x2, . . . , xn] and di ≥ 0. The right hand side of equation (1) is
called the cluster expansion of u in x.

The cluster algebra is determined by the initial matrix B and the choice of
the coefficient system. A canonical choice of coefficients is the principal coefficient
system, introduced in [FZ2], which means that the coefficient group P is the free
abelian group on n generators y1, y2, . . . , yn, and the initial coefficient vector y =
{y1, y2, . . . , yn} consists of these n generators. In [FZ2], the authors show that
knowing the expansion formulas in the case where the cluster algebra has principal
coefficients allows one to compute the expansion formulas for arbitrary coefficient
systems.

Inspired by the work of Fock and Goncharov [FG1, FG2, FG3] and Gekhtman,
Shapiro and Vainshtein [GSV1, GSV2] which discovered cluster structures in the
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context of Teichmüller theory, Fomin, Shapiro and Thurston [FST, FT] initiated
a systematic study of the cluster algebras arising from triangulations of a surface
with boundary and marked points. In this approach, cluster variables in the cluster
algebra correspond to arcs in the surface, and clusters correspond to triangulations.
In [S2], building on earlier results in [S1, ST], this model was used to give a direct
expansion formula for cluster variables in cluster algebras associated to unpunctured
surfaces, with arbitrary coefficients, in terms of certain paths on the triangulation.

Our first main result in this paper is a new parametrization of this formula in
terms of perfect matchings of a certain weighted graph that is constructed from
the surface by recursive glueing of elementary pieces that we call tiles. To be more
precise, let xγ be a cluster variable corresponding to an arc γ in the unpunctured
surface and let d be the number of crossings between γ and the triangulation T of
the surface. Then γ runs through d + 1 triangles of T and each pair of consecutive
triangles forms a quadrilateral which we call a tile. So we obtain d tiles, each of
which is a weighted graph, whose weights are given by the cluster variables xτ

associated to the arcs τ of the triangulation T .
We obtain a weighted graph GT,γ by glueing the d tiles in a specific way and

then deleting the diagonal in each tile. To any perfect matching P of this graph we
associate its weight w(P ) which is the product of the weights of its edges, hence a
product of cluster variables. We prove the following cluster expansion formula:

Theorem 3.1.

xγ =
∑

P

w(P ) y(P )

xi1xi2 . . . xid

,

where the sum is over all perfect matchings P of GT,γ , w(P ) is the weight of P ,
and y(P ) is a monomial in y.

We also give a formula for the coefficients y(P ) in terms of perfect matchings as
follows. The F -polynomial Fγ , introduced in [FZ2] is obtained from the Laurent
polynomial xγ (with principal coefficients) by substituting 1 for each of the cluster
variables x1, x2, . . . , xn. By [S2, Theorem 6.2, Corollary 6.4], the F -polynomial
has constant term 1 and a unique term of maximal degree that is divisible by all
the other occurring monomials. The two corresponding matchings are the unique
two matchings that have all their edges on the boundary of the graph GT,γ . With
respect to the construction of section 3.2, P− is the matching of GT,γ using the

western edge of tile S̃1. Now, for an arbitrary perfect matching P , the coefficient
y(P ) is determined by the set of edges of the symmetric difference P− ⊖ P =
(P− ∪ P ) \ (P− ∩ P ) as follows.

Theorem 5.1. The set P− ⊖ P is the set of boundary edges of a (possibly discon-
nected) subgraph GP of GT,γ which is a union of tiles GP = ∪j∈JSj . Moreover,

y(P ) =
∏

j∈J

yij
.

Note that y(P−) = 1. As an immediate corollary, we see that the corresponding
g-vector, introduced in [FZ2], is

gγ = deg

(

w(P−)

xi1 · · ·xid

)

.

Our third main result is yet another description of the formula of Theorem 3.1
in terms of the graph GT,γ only, see Theorem 6.1.
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Theorem 3.1 has interesting intersections with work of other people. In [CCS2],
the authors obtained a formula for the denominators of the cluster expansion in
types A, D and E, see also [BMR]. In [CC, CK, CK2] an expansion formula was
given in the case where the cluster algebra is acyclic and the cluster lies in an acyclic
seed. Palu generalized this formula to arbitrary clusters in an acyclic cluster algebra
[Pa]. These formulas use the cluster category introduced in [BMRRT], and in [CCS]
for type A, and do not give information about the coefficients.

Recently, Fu and Keller generalized this formula further to cluster algebras with
principal coefficients that admit a categorification by a 2-Calabi-Yau category [FK],
and, combining results of [A] and [ABCP, LF], such a categorification exists in the
case of cluster algebras associated to unpunctured surfaces.

In [SZ, CZ, Z, MP] cluster expansions for cluster algebras of rank 2 are given,
in [Pr1, CP, FZ3] the case A is considered. In section 4 of [Pr1], Propp describes
two constructions of snake graphs, the latter of which are unweighted analogues for
the case A of the graphs GT,γ that we present in this paper. Propp assigns a snake
graph to each arc in the triangulation of an n-gon and shows that the numbers of
matchings in these graphs satisfy the Conway-Coxeter frieze pattern induced by
the Ptolemy relations on the n-gon. In [M] a cluster expansion for cluster algebras
of classical type is given for clusters that lie in a bipartite seed.

The formula for y(P ) given in Theorem 5.1 also can be formulated in terms of
height functions, as found in literature such as [EKLP] or [Pr2]. We discuss this
connection in Remark 5.3 of section 5.

The paper is organized as follows. In section 2, we recall the construction of
cluster algebras from surfaces of [FST]. Section 3 contains the construction of the
graph GT,γ and the statement of the cluster expansion formula. Section 4 is devoted
to the proof of the expansion formula. The formula for y(P ) and the formula for
the g-vectors is given in section 5. In section 6, we present the expansion formula
in terms of subgraphs and deduce a formula for the F -polynomials. We give an
example in section 7.

Acknowledgements. The authors would like to thank Jim Propp and Lauren
Williams for useful conversations related to this work. We thank the anonymous
referees for their suggestions that have improved the exposition.

Note added in print. In a sequel to the present paper [MSW], the authors
give expansion formulas for the cluster variables in cluster algebras from arbitrary
surfaces (allowing punctures) and prove the positivity conjecture for these cluster
algebras.

2. Cluster algebras from surfaces

In this section, we recall the construction of [FST] in the case of surfaces without
punctures.

Let S be a connected oriented 2-dimensional Riemann surface with boundary
and M a non-empty finite set of marked points in the closure of S with at least
one marked point on each boundary component. The pair (S, M) is called bordered
surface with marked points. Marked points in the interior of S are called punctures.
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In this paper we will only consider surfaces (S, M) such that all marked points
lie on the boundary of S, and we will refer to (S, M) simply as an unpunctured
surface.

We say that two curves in S do not cross if they do not intersect each other
except that endpoints may coincide.

Definition 1. An arc γ in (S, M) is a curve in S such that

(a) the endpoints are in M ,
(b) γ does not cross itself,
(c) the relative interior of γ is disjoint from the boundary of S,
(d) γ does not cut out a monogon or a digon.

Curves that connect two marked points and lie entirely on the boundary of S

without passing through a third marked point are called boundary arcs. Hence an
arc is a curve between two marked points, which does not intersect itself nor the
boundary except possibly at its endpoints and which is not homotopic to a point
or a boundary arc.

Each arc is considered up to isotopy inside the class of such curves. Moreover,
each arc is considered up to orientation, so if an arc has endpoints a, b ∈ M then
it can be represented by a curve that runs from a to b, as well as by a curve that
runs from b to a.

For any two arcs γ, γ′ in S, let e(γ, γ′) be the minimal number of crossings of γ

and γ′, that is, e(γ, γ′) is the minimum of the numbers of crossings of arcs α and α′,
where α is isotopic to γ and α′ is isotopic to γ′. Two arcs γ, γ′ are called compatible
if e(γ, γ′) = 0. A triangulation of S is a maximal collection of compatible arcs
together with all boundary arcs. The arcs of a triangulation cut the surface into
triangles. Since (S, M) is an unpunctured surface, the three sides of each triangle
are distinct (in contrast to the case of surfaces with punctures). Any triangulation
has n + m elements, n of which are arcs in S, and the remaining m elements are
boundary arcs. Note that the number of boundary arcs is equal to the number
of marked points. Each arc will correspond to a cluster variable, whereas each
boundary arc will correspond to the multiplicative identity 1 in the cluster algebra.

Proposition 2.1. The number n of arcs in any triangulation is given by the for-
mula n = 6g + 3b + m − 6, where g is the genus of S, b is the number of boundary
components and m = |M | is the number of marked points. The number n is called
the rank of (S, M).

Proof. [FST, 2.10] �

Note that b > 0 since the set M is not empty. Table 1 gives some examples of
unpunctured surfaces.

Following [FST], we associate a cluster algebra to the unpunctured surface (S, M)
as follows. Choose any triangulation T , let τ1, τ2, . . . , τn be the n interior arcs of T

and denote the m boundary arcs of the surface by τn+1, τn+2, . . . , τn+m. For any
triangle ∆ in T define a matrix B∆ = (b∆

ij)1≤i≤n,1≤j≤n by

b∆
ij =























1 if τi and τj are sides of ∆ with τj following τi in the
counter-clockwise order;

−1 if τi and τj are sides of ∆ with τj following τi in the
clockwise order;

0 otherwise.
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b g m surface
1 0 n+3 polygon
1 1 n-3 torus with disk removed
1 2 n-9 genus 2 surface with disk removed
2 0 n annulus
2 1 n-6 torus with 2 disks removed
2 2 n-12 genus 2 surface with 2 disks removed
3 0 n-3 pair of pants

Table 1. Examples of unpunctured surfaces

τ2 τ3

τ1

Figure 1. A triangulation with b23 = 2

Note that this matrix is the transpose of the matrix defined in [FST]. Then define
the matrix BT = (bij)1≤i≤n,1≤j≤n by bij =

∑

∆ b∆
ij , where the sum is taken over all

triangles in T . Note that the boundary arcs of the triangulation are ignored in the
definition of BT . Let B̃T = (bij)1≤i≤2n,1≤j≤n be the 2n × n matrix whose upper
n×n part is BT and whose lower n×n part is the identity matrix. The matrix BT

is skew-symmetric and each of its entries bij is either 0, 1,−1, 2, or −2, since every
arc τ can be in at most two triangles. An example where bij = 2 is given in Figure
1.

Let A(xT ,yT , BT ) be the cluster algebra with principal coefficients for the tri-
angulation T , that is, A(xT ,yT , BT ) is given by the seed (xT ,yT , BT ) where
xT = {xτ1

, xτ2
, . . . , xτn

} is the cluster associated to the triangulation T , and
the initial coefficient vector yT = (y1, y2, . . . , yn) is the vector of generators of
P = Trop(y1, y2, . . . , yn). We refer to [FZ2, Definition 2.2] for the definition of
tropical semifield.

For the boundary arcs we define xτk
= 1, k = n + 1, n + 2, . . . , n + m.

For each k = 1, 2, . . . , n, there is a unique quadrilateral in T \ {τk} in which
τk is one of the diagonals. Let τ ′

k denote the other diagonal in that quadrilateral.
Define the flip µkT to be the triangulation (T \ {τk}) ∪ {τ ′

k}. The mutation µk of
the seed ΣT in the cluster algebra A corresponds to the flip µk of the triangulation
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T in the following sense: The matrix µk(BT ) is the matrix corresponding to the
triangulation µkT , the cluster µk(xT ) is (xT \{xτk

})∪{xτ ′

k
}, and the corresponding

exchange relation is given by

xτk
xτ ′

k
= xρ1

xρ2
y+ + xσ1

xσ2
y−,

where y+, y− ∈ P are some coefficients, and ρ1, σ1, ρ2, σ2 are the sides of the quadri-
lateral in which τk and τ ′

k are the diagonals, with ρ1 opposite to ρ2, and σ1 opposite
to σ2, see [FST].

For convenience, we recall the definition of mutation in the cluster algebra. We
use the notation [i]+ = max(i, 0), [1, n] = {1, . . . , n}, and

sgn (i) =











−1 if i < 0;

0 if i = 0;

1 if i > 0.

Let ⊕ denote the addition in P.

Definition 2 (Seed mutations). Let (x,y, B) be a seed, and let k ∈ [1, n]. The
seed mutation µk in direction k transforms (x,y, B) into the seed µk(x,y, B) =
(x′,y′, B′) defined as follows:

• The entries of B′ = (b′ij) are given by

(2) b′ij =

{

−bij if i = k or j = k;

bij + sgn (bik) [bikbkj ]+ otherwise.

• The coefficient tuple y′ = (y′
1, . . . , y

′
n) is given by

(3) y′
j =

{

y−1
k if j = k;

yjy
[bkj ]+
k (yk ⊕ 1)−bkj if j 6= k.

• The cluster x′ = (x′
1, . . . , x

′
n) is given by x′

j = xj for j 6= k, whereas x′
k is

determined by the exchange relation

(4) x′
k =

yk

∏

x
[bik]+
i +

∏

x
[−bik]+
i

(yk ⊕ 1)xk

.

3. Expansion formula

In this section, we will present an expansion formula for the cluster variables in
terms of perfect matchings of a graph that is constructed recursively using so-called
tiles.

3.1. Tiles. For the purpose of this paper, a tile Sk is a planar four vertex graph
with five weighted edges having the shape of two equilateral triangles that share
one edge, see Figure 2. The weight on each edge of the tile Sk is a cluster variable.
The unique interior edge is called diagonal and the four exterior edges are called
sides of Sk. We shall use Sk to denote the graph obtained from Sk by removing
the diagonal.

Now let T be a triangulation of the unpunctured surface (S, M). If τk ∈ T is
an interior arc, then τk lies in precisely two triangles in T , hence τk is the diagonal
of a unique quadrilateral Qτk

in T . We associate to this quadrilateral a tile Sk

by assigning the weight xk to the diagonal and the weights xa, xb, xc, xd to the
sides of Sk in such a way that there is a surjective map φk : Qτk

→ Sk which
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xb

xa

xkxd

xc

Figure 2. The tile Sk

restricts to a homeomorphism between the respective interiors and which sends
the arc labeled τi, i = a, b, c, d, k to the edge with weight xi, see Figure 2. If
k = 1, we require that φ1 is such that its restriction to the interior is an orientation
preserving homeomorphism, but for k > 1, we allow the restriction of φk to be any
homeomorphism.

3.2. The graph GT,γ. Let T be a triangulation of an unpunctured surface (S, M)
and let γ be an arc in (S, M) which is not in T . If necessary, replace γ with an
isotopic arc so that γ intersects transversally each of the arcs in T and minimizes
the number of crossings with each of these arcs. An example is given in Figure 9.
Choose an orientation on γ and let s ∈ M be its starting point, and let t ∈ M be
its endpoint. We denote by

p0 = s, p1, p2, . . . , pd+1 = t

the points of intersection of γ and T in order along γ under the orientation chosen
above. Let i1, i2, . . . , id be such that pk lies on the arc τik

∈ T . Note that ik
may be equal to ij even if k 6= j. In the example in section 7, this sequence is

i1, i2, i3, i4, i1, i2. Let S̃1, S̃2, . . . , S̃d be a sequence of tiles so that S̃k is isomorphic
to the tile Sik

, for k = 1, 2, . . . , d. In the example in section 7, this sequence is
S1, S2, S3, S4, S1, S2.

For k from 0 to d, let γk denote the segment of the path γ from the point pk to
the point pk+1. Each γk lies in exactly one triangle ∆k in T , and if 1 ≤ k ≤ d − 1
then ∆k is formed by the arcs τik

, τik+1
, and a third arc that we denote by τ[γk].

Note that the arc τ[γk] may be a boundary arc. In the example in section 7, the
triangle ∆0 has sides τ5, γ1 and τ4; the triangle ∆1 has sides γ2, γ1 and τ6

We will define a graph GT,γ by recursive glueing of tiles. Start with GT,γ,1
∼= S̃1,

where, if necessary, we rotate the tile S̃1 so that the diagonal goes from northwest
to southeast, and the starting point p0 of γ is in the southwest corner of S̃1. For
all k = 1, 2, . . . , d− 1 let GT,γ,k+1 be the graph obtained by adjoining the tile S̃k+1

to the tile S̃k of the graph GT,γ,k along the edge weighted x[γk], see Figure 3. We
always orient the tiles so that the diagonals go from northwest to southeast. This
implies that the tiles in odd positions have the orientation induced from the surface
and the tiles in even positions have the opposite orientation. Note that the edge
weighted x[γk] is either the northern or the eastern edge of the tile S̃k. Finally, we

define GT,γ to be GT,γ,d.

Let GT,γ be the graph obtained from GT,γ by removing the diagonal in each

tile, that is, GT,γ is constructed in the same way as GT,γ but using the graphs Sik

instead of Sik
. For an example see, Figure 10.
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x[γk]

xk xk+1

xk xk+1

Figure 3. Glueing tiles Sk and Sk+1 along the edge weighted x[γk]

A perfect matching of a graph is a subset of the edges so that each vertex is
covered exactly once by an edge in the perfect matching. We define the weight
w(P ) of a perfect matching P of GT,γ to be the product of the weights of all edges
in P .

3.3. Cluster expansion formula. Let (S, M) be an unpunctured surface with
triangulation T , and let A = A(xT ,yT , B) be the cluster algebra with principal
coefficients in the initial seed (xT ,yT , B) defined in section 2. Take an arbitrary
cluster variable in A that is not in the initial cluster x. Since each cluster variable
in A corresponds to an arc in (S, M), we can denote our cluster variable by xγ

where γ is an arc not in T . Choose an orientation of γ, and let τi1 , τi2 . . . , τid
be

the arcs of the triangulation that are crossed by γ in this order, with multiplicities
possible. Let GT,γ be the graph constructed in section 3.2.

Theorem 3.1. With the above notation

xγ =
∑

P

w(P ) y(P )

xi1xi2 . . . xid

,

where the sum is over all perfect matchings P of GT,γ , w(P ) is the weight of P ,
and y(P ) is a monomial in yT .

The proof of Theorem 3.1 will be given in section 4.

4. Proof of Theorem 3.1

We will use results of [S2] to prove the theorem. Throughout this section, T

is a triangulation of an unpunctured surface (S, M), γ is an arc in S with a fixed
orientation, and s ∈ M is its starting point and t ∈ M is its endpoint. Moreover,
p0 = s, p1, p2, . . . , pd+1 = t are the points of intersection of γ and T in order along
γ under the orientation chosen above, and i1, i2, . . . , id are such that pk lies on the
arc τik

∈ T . Let γk denote the segment of γ between the points pk, pk+1.

4.1. Complete (T, γ)-paths. Following [ST], we will consider paths α in S that
are concatenations of arcs and boundary arcs in the triangulation T , more precisely,
α = (α1, α2, . . . , αℓ(α)) with αi ∈ T , for i = 1, 2, . . . , ℓ(α) and the starting point of
αi is the endpoint of αi−1. Such a path is called a T -path.

We call a T -path α = (α1, α2, . . . , αℓ(α)) a complete (T, γ)-path if the following
axioms hold:

(T1) The even arcs are precisely the arcs crossed by γ in order, that is, α2k = τik
.
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(T2) For all k = 0, 1, 2, . . . , d, the segment γk is homotopic to the segment of
the path α that starts at the point pk, then goes along α2k to the starting
point of α2k+1, then along α2k+1 to the starting point of α2k+2 and then
along α2k+2 until the point pk+1.

We define the Laurent monomial x(α) of the complete (T, γ)-path α by

x(α) =
∏

i odd

xαi

∏

i even

x−1
αi

.

Remark 4.1. • Every complete (T, γ)-path starts and ends at the same
points as γ, because of (T2).

• Every complete (T, γ)-path has length 2d + 1.
• For all arcs τ in the triangulation T , the number of times that τ occurs as

α2k is exactly the number of crossings between γ and τ .
• In contrast to the ordinary (T, γ)-paths defined in [ST], complete (T, γ)-

paths allow backtracking.
• The denominator of the Laurent monomial x(α) is equal to xi1xi2 · · ·xid

.

Example 4.2. The following are two examples of complete (T, γ)-paths, in the
situation in Figure 9.

(τ5, τ1, τ2, τ2, τ2, τ3, τ7, τ4, τ5, τ1, τ2, τ2, τ8)

(τ4, τ1, τ1, τ2, τ3, τ3, τ4, τ4, τ5, τ1, τ2, τ2, τ8)

4.2. Universal cover. Let π : S̃ → S be a universal cover of the surface S, and
let M̃ = π−1(M) and T̃ = π−1(T ).

Choose s̃ ∈ π−1(s). There exists a unique lift γ̃ of γ starting at s̃. Then γ̃ is the
concatenation of subpaths γ̃0, γ̃1, . . . , γ̃d+1 where γ̃k is a path from a point p̃k to a
point p̃k+1 such that γ̃k is a lift of γk and p̃k ∈ π−1(pk), for k = 0, 1, . . . , d + 1. Let
t̃ = p̃d+1 ∈ π−1(t).

For k from 1 to d, let τ̃ik
be the unique lift of τik

running through p̃k and let

τ̃[γk] be the unique lift of τ[γk] that is bounding a triangle in S̃ with τ̃ik
and τ̃ik+1

.

Each γ̃k lies in exactly one triangle ∆̃k in T̃ . Let S̃(γ) ⊂ S̃ be the union of the

triangles ∆̃0, ∆̃1, . . . , ∆̃d+1 and let M̃(γ) = M̃ ∩ S̃(γ) and T̃ (γ) = T̃ ∩ S̃(γ). Then

(S̃(γ), M̃(γ)) is a simply connected unpunctured surface of which T̃ (γ) is a tri-

angulation. This triangulation T̃ (γ) consists of arcs, respectively boundary arcs,
τ̃ik

, τ̃[γk] with k = 1, 2, . . . , d, and two boundary arcs incident to s̃ and two bound-

ary arcs incident to t̃. The simple connectedness of S̃(γ) follows from the simple
connectedness of the universal cover and the fact that the vertices of each triangle
lie on the boundary of the universal cover. The fact that T̃ (γ) is a triangulation

follows from the homotopy lifting property of S̃. Moreover, this triangulation does
not contain any internal triangles, since each τ̃[γk] is a boundary arc.

The underlying graph of T̃ (γ) is the graph with vertex set M̃(γ) and whose set

of edges consists of the (unoriented) arcs in T̃ (γ).
By [S2, section 5.5], we can compute the Laurent expansion of xγ using complete

(T̃ (γ), γ̃)-paths in (S̃(γ), M̃(γ)).

4.3. Folding. The graph GT,γ was constructed by glueing tiles S̃k+1 to tiles S̃k

along edges with weight x[γk], see Figure 3. Now we will fold the graph along
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the edges weighted x[γk], thereby identifying the two triangles incident to x[γk],
k = 1, 2, . . . , d − 1.

To be more precise, the edge with weight x[γk], that lies in the two tiles S̃k+1

and S̃k, is contained in precisely two triangles ∆k and ∆′
k in GT,γ : ∆k lying inside

the tile S̃k and ∆′
k lying inside the tile S̃k+1. Both ∆k and ∆′

k have weights x[γk],

xk, xk+1, but opposite orientations. Cutting GT,γ along the edge with weight x[γk],
one obtains two connected components. Let Rk be the component that contains
the tile S̃k and Rk+1 the component that contains S̃k+1.

The folding of the graph GT,γ along x[γk] is the graph obtained by flipping Rk+1

and then glueing it to Rk by identifying the two triangles ∆k and ∆′
k. In this new

graph, we can now fold along any of the edges x[γℓ] with k 6= ℓ, by cutting along
x[γℓ], defining subgraphs Rk,ℓ and Rk,ℓ+1 in a similar way, and then flipping Rk,ℓ+1

and glueing it to Rk,ℓ by identifying the two triangles ∆ℓ and ∆ℓ′ .

The graph obtained by consecutive folding of GT,γ along all edges with weight
x[γk] for k = 1, 2, . . . , d−1, is isomorphic to the underlying graph of the triangulation

T̃ (γ) of the unpunctured surface (S̃(γ), M̃(γ)). Indeed, there clearly is a bijection
between the triangles in both graphs, and, in both graphs the way the triangles are
glued together is uniquely determined by γ.

We obtain a map that we call the folding map

φ :
{

perfect matchings
in GT,γ

}

→
{

complete (T̃ (γ), γ̃)-paths

in (S̃(γ), M̃(γ))

}

P 7→ α̃P

as follows. First we associate a path αP in GT,γ to the matching P as follows. Let
αP be the path starting at s going along the unique edge of P that is incident to
s, then going along the diagonal of the first tile S̃1, then along the unique edge of
P that is incident to the endpoint of that diagonal, and so forth. The fact that P

is a perfect matching guarantees that each endpoint of a diagonal is incident to a
unique edge in P and from the construction of GT,γ it follows that each edge in P

connects two endpoints of two distinct diagonals. It is clear from the construction
of GT,γ that one can never come back to the same vertex, and therefore the path
must reach t.

Since P has cardinality d + 1, the path αP consists of 2d + 1 edges, thus α =
(α1, α2, . . . , α2d+1). Now we define α̃P = (α̃1, α̃2, . . . , α̃2d+1) by folding the path
αP . Thus, if P = {β1, β3, . . . , β2d−1, β2d+1}, where the edges are ordered according
to γ, then φ(P ) = (α̃1, α̃2, . . . , α̃2d+1), where α̃2k+1 is the image of β2k+1 under the
folding and α̃2k = τ̃ik

is the arc crossing γ̃ at p̃k. Then φ(P ) satisfies the axiom
(T1) by construction. Moreover, φ(P ) satisfies the axiom (T2), because, for each
k = 0, 1, . . . , d, the segment of the path φ(P ), which starts at the point p̃k, then
goes along α̃2k to the starting point of α̃2k+1, then along α̃2k+1 to the starting point
of α̃2k+2 and then along α̃2k+2 until the point p̃k+1, is homotopic to the segment

γ̃k, since both segments lie in the simply connected triangle ∆̃k formed by τ̃ik
, τ̃ik+1

and τ̃[γk]. Therefore, the folding map φ is well defined.
Note that it is possible that α̃k, α̃k+1 is backtracking, that is, α̃k and α̃k+1 run

along the same arc τ̃ ∈ T̃ (γ).

Example 4.3. Figure 4 displays an example of a perfect matching P , whose edges
are the solid bold lines, of the graph GT,γ of Figure 10. The matching contains edges
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τ1

t

s

x3

x5 x2

x8

x4

x4

x1

τ3 τ4 τ1

τ2

τ2

Figure 4. Example of complete (T, γ) path associated to a matching

labeled x5, x2, x8, x4, x4, x1, x3. The figure also shows the corresponding (not yet
folded) complete (T, γ)-path obtained by inserting the diagonals τ1, τ2, τ3, τ4, τ1, τ2,
given as dashed bold lines. In the surface in Figure 9, the corresponding complete
(T, γ)-path

αP = (τ5, τ1, τ2, τ2, τ8, τ3, τ4, τ4, τ4, τ1, τ1, τ2, τ3)

is obtained by folding the path in Figure 4.

4.4. Unfolding the surface. Let α be a boundary arc in (S̃(γ), M̃(γ)) that is not

adjacent to s̃ and not adjacent to t̃. Then there is a unique triangle ∆ in T̃ (γ) in
which α is a side. The other two sides of ∆ are two consecutive arcs, which we
denote by τ̃j and τ̃j+1, see Figure 5.

By cutting the underlying graph of T̃ (γ) along τ̃j , we obtain two pieces. Let

Rj+1 denote the piece that contains α, τ̃j+1 and t. Similarly, cutting (S̃(γ), M̃(γ))
along τ̃j+1, we obtain two pieces, and we denote by Rj the piece that contains s, τ̃j

and α.
The graph obtained by unfolding along α is the graph obtained by flipping Rj and

then glueing it to Rj+1 along α. In this new graph, we label the edge of Rj that had
the label τ̃j+1 by τ̃b

j+1 and the edge of Rj+1 that had the label τ̃j by τ̃b
j , indicating

that these edges are on the boundary of the new graph, see Figure 5. Now, in
the graph obtained from unfolding along α, we can continue unfolding along (the

image of) a different boundary arc α′ in (S̃(γ), M̃(γ)) that is not adjacent to s̃ and

not adjacent to t̃, again using the unique triangle ∆′ in T̃ (γ) in which α′ is a side,
cutting the graph obtained from unfolding along α along τ̃j′ to obtain Rj′+1 and
cutting the graph obtained from unfolding along α along τ̃j′+1 to obtain Rj′ , then

flipping and glueing in a similar way will give a new graph obtained from T̃ (γ) by
consecutive unfolding along α and α′.

Lemma 4.4. The graph obtained by repeated unfolding of the underlying graph of
T̃ (γ) along all boundary edges not adjacent to s or t is isomorphic to the graph
GT,γ . Moreover, for each unfolding along an edge α, the edges labeled τ̃b

j , τ̃b
j+1 are

on the boundary of GT,γ and carry the weights xj , xj+1 respectively, the edges labeled
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unfolding

τ̃ b
j

α
τ̃j

τ̃j

α

τ̃j+1

τ̃ b
j+1

τ̃j+1

Figure 5. Completion of paths

τ̃j−1

τ̃[γj−1 ]

τ̃[γj ]

τ̃j+1 τ̃j+1τ̃j

τ̃[γj ]

β2k+1

τ̃j−1

β2ℓ+1

τ̃[γj−1]

τ̃j

Figure 6. Unfolding along τ̃[γj−1] and τ̃[γj ]

τ̃j , τ̃j+1 are diagonals in GT,γ and carry the weights xj , xj+1 respectively, and α is

an interior edge of Gγ that is not a diagonal and carries the weight x[γj ].

Proof. This follows from the construction. �

4.5. Unfolding map. We define a map

{complete (T̃ (γ), γ̃) − paths} → {perfect matchings of GT,γ}
α̃ = (α̃1, α̃2, . . . , α̃2d+1) 7→ Pα̃ = {β1, β3, β5, . . . , β2d+1}

where β1 = α̃1, β2d+1 = α̃2d+1 and

β2k+1 =

{

α̃2k+1 if α̃2k+1 is a boundary arc in T̃ (γ),

τ̃b
j if α̃2k+1 = τ̃j is an arc in T̃ (γ).

We will show that this map is well-defined. Suppose β2k+1 and β2ℓ+1 have a com-

mon endpoint x. Then α̃2k+1 and α̃2ℓ+1 have a common endpoint y in (S̃(γ), M̃(γ))
and the two edges are not separated in the unfolding described in Lemma 4.4. Con-
sequently, there is no triangle in T̃ (γ) that is contained in the subpolygon spanned
by α̃2k+1 and α̃2ℓ+1, hence α̃2k+1 is equal to α̃2l+1. This implies that every arc
in the subpath (α̃2k+1, α̃2k+2 . . . α̃2ℓ+1) is equal to the same arc τ̃j , and the only
way this can happen is when ℓ = k + 1 and (α̃2k+1, α̃2k+2 . . . α̃2ℓ+1) = (τ̃j , τ̃j , τ̃j)
and both endpoints of τ̃j are incident to an interior arc other than τ̃j . In this case,

τ̃j bounds the two triangles τ̃j−1, τ̃j , τ̃[γj−1] and τ̃j , τ̃j+1, τ̃[γj ] in T̃ (γ). Unfolding
along τ̃[γj−1 ] and τ̃[γj ] will produce edges β2k+1 and β2ℓ+1 that are not adjacent, see
Figure 6. This shows that no vertex of GT,γ is covered twice in Pα̃.

To show that every vertex of GT,γ is covered in Pα̃, we use a counting argument.
Indeed, the number of vertices of GT,γ is 2(d + 1), and, on the other hand, 2d + 1
is the length of α̃, since α̃ is complete, and thus Pα̃ has d+1 edges. The statement
follows since every βj ∈ Pα̃ has two distinct endpoints. This shows that Pα̃ is a
perfect matching and our map is well-defined.
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Lemma 4.5. The unfolding map α̃ 7→ Pα̃ is the inverse of the folding map P 7→ α̃P .
In particular, both maps are bijections.

Proof. Let α̃ = (α̃1, α̃2, . . . , α̃2d+1) be a complete (T̃ (γ), γ̃)-path. Then α̃Pα̃
=

(α1, α2, . . . , α2d+1) where α2k+1 is the image under folding of the arc τ̃b
j if α̃2k+1 =

τ̃j is an arc in T̃ (γ) or, otherwise, the image under the folding of the arc α̃2k+1.
Thus α2k+1 = α̃2k+1. Moreover, α2k = τik

= α̃2k, and thus α̃Pα̃
= α̃.

Conversely, let P = {β1, β3, . . . , β2d−1, β2d+1} be a perfect matching of GT,γ .

Then Pα̃P
= {β̃1, β̃3, . . . , β̃2d−1, β̃2d+1} where

β̃2k+1 =







α̃2k+1 if α̃2k+1 is a boundary arc,

τ̃b
j if α̃2k+1 = τ̃j is an arc

=







τ̃[γj ] if β2k+1 = τ̃[γj ],

τ̃b
j if β2k+1 = τ̃b

j .

Hence Pα̃P
= P . �

Combining Lemma 4.5 with the results of [S2], we obtain the following Theorem.

Theorem 4.6. There is a bijection between the set of perfect matchings of the graph
GT,γ and the set of complete (T, γ)-paths in (S, M) given by P 7→ π(α̃P ), where α̃P

is the image of P under the folding map and π is induced by the universal cover
π : S̃ → S. Moreover, the numerator of the Laurent monomial x(π(α̃P )) of the
complete (T, γ)-path π(α̃P ) is equal to the weight w(P ) of the matching P .

Proof. The map in the Theorem is a bijection, because it is the composition of
the folding map, which is a bijection, by Lemma 4.5, and the map π, which is a
bijection, by [S2, Lemma 5.8]. The last statement of the Theorem follows from the
construction of the graph GT,γ . �

Example 4.7. The unfolding of the path

α̃ = (τ5, τ1, τ2, τ2, τ8, τ3, τ4, τ4, τ4, τ1, τ1, τ2, τ3)

in the surface of Figure 9 is the perfect matching Pα̃ = P of example 4.3.

4.6. Proof of Theorem 3.1. It has been shown in [S2, Theorem 3.2] that

(5) xγ =
∑

α

x(α) y(α),

where the sum is over all complete (T, γ)-paths α in (S, M), y(α) is a monomial in
yT , and

(6) x(α) =
∏

k odd

xαk

∏

k even

x−1
αk

.

Applying Theorem 4.6 to equation (5) yields

(7) xγ =
∑

P

w(P ) y(P )(xi1xi2 · · ·xid
)−1,
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∆k

∆k−1

α2k

γ

α2k+1

α2k−1

∆k

∆k−1

α2k

γα2k+1

α2k−1

Figure 7. Two examples of the (T, γ)-path segment
(α2k−1, α2k, α2k+1). On the left, α2k is not γ-oriented and
on the right, α2k is γ-oriented.

where the sum is over all perfect matchings P of GT,γ , w(P ) is the weight of the
matching and y(P ) = y(π(α̃P )), by definition. This completes the proof of Theorem
3.1.

5. A formula for y(P )

In this section, we give a description of the coefficients y(P ) in terms of the
matching P . First, we need to recall some results from [S2].

Recall that T is a triangulation of the unpunctured surface (S, M) and that γ is
an arc in (S, M) that crosses T exactly d times. We also have fixed an orientation
for γ, and denote by s = p0, p1, . . . , pd, pd+1 = t the intersection points of γ and T

in order of occurrence on γ. Let i1, i2, . . . , id be such that pk lies on the arc τik
∈ T ,

for k = 1, 2, . . . , d. For k = 0, 1, . . . , d, let γk denote the segment of the path γ from
the point pk to the point pk+1. Each γk lies in exactly one triangle ∆k in T . If
1 ≤ k ≤ d − 1, the triangle ∆k is formed by the arcs τik

, τik+1
and a third arc that

we denote by τ[γk].
The orientation of the surface S induces an orientation on each of these triangles

in such a way that, whenever two triangles ∆, ∆′ share an edge τ , then the orien-
tation of τ in ∆ is opposite to the orientation of τ in ∆′, There are precisely two
such orientations. We assume without loss of generality that S has the “clockwise
orientation”, that is, in each triangle ∆, going around the boundary of ∆ according
to the orientation of S is clockwise when looking at it from outside the surface.

Let α be a complete (T, γ)-path. Then α2k = τik
is a common arc of the two

triangles ∆k−1 and ∆k. We say that α2k is γ-oriented if the orientation of α2k in
the path α is the same as the orientation of τik

in the triangle ∆k, see Figure 7.
It is shown in [S2, Theorem 3.2] that

(8) y(α) =
∏

k:α2k is γ-oriented

yik
.

Each perfect matching P of GT,γ induces a path αP in GT,γ as in the construction
of the folding map in section 4.3. The even arcs of αP are the diagonals of the graph
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GT,γ . We say that an even arc of αP has upward orientation if αP is directed from
southeast to northwest on that even arc, otherwise we say that the arc has downward
orientation. Since going upward on the first even arc of αP is γ-oriented then we
have that the (2k)-th arc of π(α̃P ) is γ-oriented if and only if the 2k-th arc of αP

is upward if k is odd, and downward if k is even.
There are precisely two perfect matchings P+ and P− of GT,γ that contain only

boundary edges of GT,γ . The orientations of the even arcs in both of the induced
(T, γ)-paths α̃P+

and α̃P−
are alternatingly upward and downward, thus for one of

the two paths, say P+, each even arc of π(α̃P+
) is γ-oriented, whereas for P− none of

the even arcs of π(α̃P−
) is γ-oriented. That is, y(P−) = 1 and y(P+) = yi1yi2 · · · yid

.

Note that, since the tile S̃1 has the same orientation as the surface, the matching
P− contains the western edge of S̃1, while P+ contains the southern edge of S̃1

For an arbitrary perfect matching P , the coefficient y(P ) is determined by the
set of edges of the symmetric difference P− ⊖ P = (P− ∪ P ) \ (P− ∩ P ) as follows.

Theorem 5.1. The set P− ⊖ P is the set of boundary edges of a (possibly discon-
nected) subgraph GP of GT,γ which is a union of tiles

GP = ∪j∈JSj .

Moreover,

y(P ) =
∏

j∈J

yij

Proof. Choose any edge e1 and either endpoint in P− \ (P−∩P ), and walk along
that edge until its other endpoint. Since P is a perfect matching, this endpoint is
incident to an edge e2 in P , which is different from e1 and, hence, not in P−. Thus
e2 ∈ P \ (P− ∩ P ). Now walk along e2 until its other endpoint. This endpoint
is incident to an edge e3 in P− which is different from e2, and, hence, not in P .
Thus e3 ∈ P− \ (P− ∩ P ). Continuing this way, we construct a sequence of edges
in P− ⊖ P . Since GT,γ has only finitely many edges, this sequence must become
periodic after a certain number of steps; thus there exist p, N such that ek = ek+p

for all k ≥ N .
We will show that one can take N = 1. Suppose to the contrary that N ≥ 2 is

the smallest integer such that ek = ek+p for all k ≥ N . Then eN−1, eN and eN+p−1

share a common endpoint. But eN−1, eN and eN+p−1 are elements of the union of
two perfect matchings, hence eN−1 = eN+p−1, contradicting the minimality of N .

Therefore the sequence e1, e2, . . . , ep in P ⊖P− is the set of boundary edges of a
connected subgraph of GT,γ which is a union of tiles.

The graph GP is the union of these connected subgraphs and, hence, it is a union
of tiles. Let H be a connected component of GP . There are precisely two perfect
matchings P−(H) and P+(H) of H that consist only of boundary edges of H .
Clearly, these two matchings are P− ∩E(H) and P ∩E(H), where E(H) is the set
of edges of the graph H . Therefore, in each tile of H , the orientation of the diagonal
in αP−

and αP are opposite. The restrictions of P− and P to E(GT,γ) \E(GP ) are
identical, hence in each tile of GT,γ \ GP , the orientations of the diagonal in αP−

and αP are equal. It follows from equation (8) that y(P ) =
∏

j∈J yij
. �

It has been shown in [FZ2] that, for any cluster variable xγ in A, its Laurent ex-
pansion in the initial seed (xT ,yT , BT ) is homogeneous with respect to the grading
given by deg(xi) = ei and deg(yi) = BTei, where ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Z

n
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with 1 at position i. By definition, the g-vector gγ of a cluster variable xγ is the
degree of its Laurent expansion with respect to this grading.

Corollary 5.2. The g-vector gγ of xγ is given by

gγ = deg
w(P−)

xi1xi2 · · ·xid

.

Proof. This follows from the fact that y(P−) = 1. �

Remark 5.3. The formula for y(P ) can also be phrased in terms of height func-
tions. As described in section 3 of [Pr2], one way to define the height function
on the faces of a bipartite planar graph G, covered by a perfect matching P , is
to superimpose each matching with the fixed matching P0̂ (the unique matching
of minimal height). In the case where G is a snake graph, we take P0̂ to be P−,
the matching of G only involving edges on the boundary and including the western
edge of tile S̃1. Color the vertices of G black and white so that no two adjacent
vertices have the same color. In this superposition, we orient edges of P from black
to white, and edges of P− from white to black. We thereby obtain a spanning set
of cycles, and removing the cycles of length two exactly corresponds to taking the
symmetric difference P ⊖ P−. We can read the resulting graph as a relief-map, in
which the altitude changes by +1 or −1 as one crosses over a contour line, accord-
ing to whether the counter-line is directed clockwise or counter-clockwise. By this
procedure, we obtain a height function hP : F (G) → Z which assigns integers to
the faces of graph G. When G is a snake graph, the set of faces F (G) is simply the
set of tiles {Sj} of G. Comparing with the definition of y(P ) in Theorem 5.1, we
see that

y(P ) =
∏

Sj∈F (G)

y
hP (j)
j .

An alternative definition of height functions comes from [EKLP] by translating the
matching problem into a domino tiling problem on a region colored as a checker-
board. We imagine an ant starting at an arbitrary vertex at height 0, walking along
the boundary of each domino, and changing its height by +1 or −1 as it traverses
the boundary of a black or white square, respectively. The values of the height
function under these two formulations agree up to scaling by four.

Example 5.4. We illustrate the construction of the graph GP in Figure 8. The
perfect matching of GT,γ is the set of bold face edges on the left side of the figure,
and the graph GP is given on the right. Note that the matching P− in this example
consists of the two edges labeled x2, x5 in the first tile and the boundary edges of
the graph GP that are not in GP .

6. Cluster expansion without matchings

In this section, we give a formula for the cluster expansion of xγ in terms of the
graph GT,γ only.

For any subgraph H of GT,γ , let c(H) be the number of connected components
of H . Let E(H) be the set of edges of H , and denote by ∂H the set of boundary
edges of H . Define Hk to be the set of all subgraphs H of GT,γ such that H is
a union of k tiles H = Sj1 ∪ · · · ∪ Sjk

and the number of edges of P− that are
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Figure 8. Perfect matching P and associated graph GP

contained in H is equal to k + c(H). For H ∈ Hk, let

y(H) =
∏

Sij
tile in H

yij
.

Theorem 6.1. The cluster expansion of the cluster variable xγ is given by

xγ =

d
∑

k=0

∑

H∈Hk

w(∂H ⊖ P−) y(H)

xi1xi2 · · ·xid

,

Proof. It follows from Theorems 3.1 and 5.1 that

xγ =

d
∑

k=1

∑

P :|y(P )|=k

w(P ) y(GP )

xi1xi2 · · ·xid

,

where |y(P )| is the number of tiles in GP . We will show that for all k, the map
P 7→ GP is a bijection between the set of perfect matchings P of GT,γ such that
|y(P )| = k and the set Hk.

- The map is well-defined. Clearly, GP is the union of k tiles. Moreover,
E(GP ) ∩ P− is a perfect matching of GP , since P− consists of every other
boundary edge of GT,γ . Thus the cardinality of (E(GP ) ∩ P−) is half the
number of vertices of GP , which is equal to 2k + 2c(GP ). Therefore, the
cardinality of (E(GP ) ∩ P−) is k + c(GP ) and GP ∈ Hk.

- The map is injective, since two graphs GP , GP ′ are equal if and only if their
boundaries are.

- The map is surjective. Let H = Sj1 ∪ · · · ∪Sjk
be such that the cardinality

of E(H) ∩ P− equals k + c(H). The boundary of H consists of 2k + 2c(H)
edges, half of which lie in P−. As in the proof of Theorem 5.1, let P−(H) =
E(H) ∩ P− and P+(H) be the two perfect matchings of H that consist of
boundary edges only. Let P = P+(H)∪ (P− \P−(H)). Then P is a perfect
matching of GT,γ such that GP = H , and moreover, |y(P )| is equal to the
number of tiles in H , which is k. Thus the map is surjective.
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Now the boundary edges of GP are precisely the elements of P ⊖ P−, which
implies that ∂(GP ) ⊖ P− = (P ⊖ P−) ⊖ P− = P ⊖ (P− ⊖ P−) = P . Therefore
w(P ) = w(∂(GP ) ⊖ P−), and this completes the proof. �

Corollary 6.2. The F -polynomial of γ is given by

Fγ =

d
∑

k=0

∑

H∈Hk

y(H).

7. Example

τ3

γ2

γ0γ1

γ3

τ1

τ6τ2τ8 τ7τ4

γ5 γ4

γ6

τ5

s

t

p2

p3

p5p6

p1

p4

Figure 9. Triangulated surface with dotted arc γ

We illustrate Theorem 3.1, Theorem 5.1 and Theorem 6.1 in an example. Let
(S, M) be the annulus with two marked points on each of the two boundary com-
ponents, and let T = {τ1, . . . , τ8} be the triangulation shown in Figure 9. The
corresponding cluster algebra has the following principal exchange matrix









0 1 0 −1
−1 0 −1 0
0 1 0 −1
1 0 1 0









,



CLUSTER EXPANSION FORMULAS AND PERFECT MATCHINGS 19

GT,γ

x4

x1 x2

x5 x2

x2

t

s

x1

x6

x1 x3

x3x8 x4

x2 x3 x5 x1

x4 x1 x6

x2

x3

x8

x7 x4

GT,γ

x4

x1

x5 x2

t

s

x6

x1 x3

x3x8 x4

x2 x5

x4 x1 x6

x2

x3

x8

x7

Figure 10. Construction of the graphs GT,γ and GT,γ

which can also be visualized by a quiver, simply by drawing bij arrows i → j for
each positive entry bij in the matrix:

1 // 2 3oo 4oo
ww

.

Let γ be the dotted arc in Figure 9. It has d = 6 crossings with the triangulation.
The sequence of crossed arcs τi1 , . . . , τi6 is τ1, τ2, τ3, τ4, τ1, τ2, and the corresponding
segments γ0, . . . , γ6 of the arc γ are labeled in the figure. Moreover, τ[γ1] = τ6,
τ[γ2] = τ8, τ[γ3] = τ7, τ[γ4] = τ5 and τ[γ5] = τ6.

The graph GT,γ is obtained by glueing the corresponding six tiles S̃1, S̃2, S̃3, S̃4,

S̃1, and S̃2. The result is shown in Figure 10.
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Theorems 3.1 and 5.1 imply that xγ(xi1xi2 · · ·xid
) is equal to

x5x2x2x3x1x2x8 + x4x6x2x3x1x2x8 y1

+ x5x2x2x7x5x2x8 y4 + x4x6x2x7x5x2x8 y1y4

+ x5x2x8x4x5x2x8 y3y4 + x5x2x2x7x4x6x8 y4y1

+ x4x6x8x4x5x2x8 y1y3y4 + x4x6x2x7x4x6x8 y1y4y1

+ x5x2x8x4x4x6x8 y3y4y1 + x5x2x2x7x4x1x3 y4y1y2

+ x4x1x3x4x5x2x8 y1y2y3y4 + x4x6x8x4x4x6x8 y1y3y4y1

+ x4x6x2x7x4x1x3 y1y4y1y2 + x5x2x8x4x4x1x3 y3y4y1y2

+ x4x1x3x4x4x6x8 y1y2y3y4y1 + x4x6x8x4x4x1x3 y1y3y4y1y2

+ x4x1x3x4x4x1x3 y1y2y3y4y1y2

which is equal to

x1x
3
2x3 + x1x

2
2x3x4 y1

+ x3
2 y4 + x2

2x4 y1y4

+ x2
2x4 y3y4 + x2

2x4 y1y4

+ x2x
2
4 y1y3y4 + x2x

2
4 y2

1y4

+ x2x
2
4 y3y4y1 + x1x

2
2x3x4 y1y2y4

+ x1x2x3x
2
4 y1y2y3y4 + x3

4 y2
1y3y4

+ x1x2x3x
2
4 y2

1y2y4 + x1x2x3x
2
4 y3y4y1y2

+ x1x3x
3
4 y2

1y2y3y4 + x1x3x
3
4 y2

1y2y3y4

+ x2
1x

2
3x

2
4 y2

1y
2
2y3y4.

The first term corresponds to the matching P− consisting of the boundary edges
weighted x5 and x2 in the first tile, x2 in the third tile, x1 and x3 in the forth, x2

in the fifth and x8 in the sixth tile. For example, the twelfth term corresponds to
the matching P consisting of the horizontal edges of the first three tiles and the
horizontal edges of the last two tiles. Thus P− ⊖ P = (P− ∪ P ) \ (P− ∩ P ) is the
union of the first, third, forth and fifth tile, whence y(P ) = yi1yi3yi4yi5 = y1y3y4y1.

To illustrate Theorem 6.1, let k = 2. Then Hk consists of the subgraphs H of
GT,γ which are unions of two tiles and such that E(H) ∩ P− has three elements
if H is connected, respectively four elements if H has two connected components.
Thus H2 has three elements

H2 = {Si3 ∪ Si4 , Si4 ∪ Si5 , Si1 ∪ Si4}

corresponding to the three terms

x2
2x4y3y4, x

2
2x4y1y4 and x2

2x4y1y4.
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