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ABSTRACT. We study cluster algebras with principal coefficient systems that
are associated to unpunctured surfaces. We give a direct formula for the
Laurent polynomial expansion of cluster variables in these cluster algebras in
terms of perfect matchings of a certain graph G that is constructed from
the surface by recursive glueing of elementary pieces that we call tiles. We
also give a second formula for these Laurent polynomial expansions in terms
of subgraphs of the graph G .

1. INTRODUCTION

Cluster algebras, introduced in [FZ1], are commutative algebras equipped with
a distinguished set of generators, the cluster variables. The cluster variables are
grouped into sets of constant cardinality n, the clusters, and the integer n is called
the rank of the cluster algebra. Starting with an initial cluster x = {z1,...,z,}
(together with a skew symmetrizable integer n xn matrix B = (b;;) and a coefficient
vector y = (y;) whose entries are elements of a torsion-free abelian group P) the
set of cluster variables is obtained by repeated application of so called mutations.
Note that this set may be infinite.

It follows from the construction that every cluster variable is a rational function
in the initial cluster variables 1, 2, ..., 2,. In [FZ1] it is shown that every cluster
variable u is actually a Laurent polynomial in the z;, that is, v can be written as
a reduced fraction

_ flxr, @, 2p)
(1) U=——% a4
|
where f € ZP[x1,x2,...,2,] and d; > 0. The right hand side of equation (1) is
called the cluster expansion of u in x.

The cluster algebra is determined by the initial matrix B and the choice of
the coefficient system. A canonical choice of coefficients is the principal coefficient
system, introduced in [FZ2], which means that the coefficient group P is the free
abelian group on n generators yi,¥ys, - .., Yn, and the initial coefficient vector y =
{y1,y2,...,yn} consists of these n generators. In [FZ2], the authors show that
knowing the expansion formulas in the case where the cluster algebra has principal
coefficients allows one to compute the expansion formulas for arbitrary coeflficient
systems.

Inspired by the work of Fock and Goncharov [FG1, FG2, FG3] and Gekhtman,
Shapiro and Vainshtein [GSV1, GSV2] which discovered cluster structures in the
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context of Teichmiiller theory, Fomin, Shapiro and Thurston [FST, FT] initiated
a systematic study of the cluster algebras arising from triangulations of a surface
with boundary and marked points. In this approach, cluster variables in the cluster
algebra correspond to arcs in the surface, and clusters correspond to triangulations.
In [S2], building on earlier results in [S1, ST], this model was used to give a direct
expansion formula for cluster variables in cluster algebras associated to unpunctured
surfaces, with arbitrary coefficients, in terms of certain paths on the triangulation.

Our first main result in this paper is a new parametrization of this formula in
terms of perfect matchings of a certain weighted graph that is constructed from
the surface by recursive glueing of elementary pieces that we call tiles. To be more
precise, let x., be a cluster variable corresponding to an arc v in the unpunctured
surface and let d be the number of crossings between v and the triangulation 7" of
the surface. Then v runs through d + 1 triangles of 7" and each pair of consecutive
triangles forms a quadrilateral which we call a tile. So we obtain d tiles, each of
which is a weighted graph, whose weights are given by the cluster variables x,
associated to the arcs 7 of the triangulation 7T'.

We obtain a weighted graph Gr, by glueing the d tiles in a specific way and
then deleting the diagonal in each tile. To any perfect matching P of this graph we
associate its weight w(P) which is the product of the weights of its edges, hence a
product of cluster variables. We prove the following cluster expansion formula:

Theorem 3.1. (P)y(P)
Z W)Y

Ty =
iy Tiy -+ - Ty

P
where the sum is over all perfect matchings P of Gr., w(P) is the weight of P,

and y(P) is a monomial in'y.

We also give a formula for the coefficients y(P) in terms of perfect matchings as
follows. The F-polynomial F.,, introduced in [FZ2] is obtained from the Laurent
polynomial x, (with principal coefficients) by substituting 1 for each of the cluster
variables x1,2a,...,2,. By [S2, Theorem 6.2, Corollary 6.4], the F-polynomial
has constant term 1 and a unique term of maximal degree that is divisible by all
the other occurring monomials. The two corresponding matchings are the unique
two matchings that have all their edges on the boundary of the graph Gr . With
respect to the construction of section 3.2, P_ is the matching of G, using the
western edge of tile S;. Now, for an arbitrary perfect matching P, the coefficient
y(P) is determined by the set of edges of the symmetric difference P— & P =
(P-UP)\ (P-nNP) as follows.

Theorem 5.1. The set P— © P is the set of boundary edges of a (possibly discon-
nected) subgraph Gp of Gr~ which is a union of tiles Gp = Ujc 7 S;. Moreover,

jeJ
Note that y(P-) = 1. As an immediate corollary, we see that the corresponding
g-vector, introduced in [FZ2], is

w(P_)
gy = deg (7) .
le ... xld
Our third main result is yet another description of the formula of Theorem 3.1
in terms of the graph G, only, see Theorem 6.1.
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Theorem 3.1 has interesting intersections with work of other people. In [CCS2],
the authors obtained a formula for the denominators of the cluster expansion in
types A, D and E, see also [BMR]. In [CC, CK, CK2| an expansion formula was
given in the case where the cluster algebra is acyclic and the cluster lies in an acyclic
seed. Palu generalized this formula to arbitrary clusters in an acyclic cluster algebra
[Pa]. These formulas use the cluster category introduced in [BMRRT], and in [CCS]
for type A, and do not give information about the coefficients.

Recently, Fu and Keller generalized this formula further to cluster algebras with
principal coefficients that admit a categorification by a 2-Calabi-Yau category [FK],
and, combining results of [A] and [ABCP, LF], such a categorification exists in the
case of cluster algebras associated to unpunctured surfaces.

In [SZ, CZ, Z, MP] cluster expansions for cluster algebras of rank 2 are given,
in [Prl, CP, FZ3] the case A is considered. In section 4 of [Prl], Propp describes
two constructions of snake graphs, the latter of which are unweighted analogues for
the case A of the graphs G'r , that we present in this paper. Propp assigns a snake
graph to each arc in the triangulation of an n-gon and shows that the numbers of
matchings in these graphs satisfy the Conway-Coxeter frieze pattern induced by
the Ptolemy relations on the n-gon. In [M] a cluster expansion for cluster algebras
of classical type is given for clusters that lie in a bipartite seed.

The formula for y(P) given in Theorem 5.1 also can be formulated in terms of
height functions, as found in literature such as [EKLP] or [Pr2]. We discuss this
connection in Remark 5.3 of section 5.

The paper is organized as follows. In section 2, we recall the construction of
cluster algebras from surfaces of [FST]. Section 3 contains the construction of the
graph G and the statement of the cluster expansion formula. Section 4 is devoted
to the proof of the expansion formula. The formula for y(P) and the formula for
the g-vectors is given in section 5. In section 6, we present the expansion formula
in terms of subgraphs and deduce a formula for the F-polynomials. We give an
example in section 7.

Acknowledgements. The authors would like to thank Jim Propp and Lauren
Williams for useful conversations related to this work. We thank the anonymous
referees for their suggestions that have improved the exposition.

Note added in print. In a sequel to the present paper [MSW], the authors
give expansion formulas for the cluster variables in cluster algebras from arbitrary
surfaces (allowing punctures) and prove the positivity conjecture for these cluster
algebras.

2. CLUSTER ALGEBRAS FROM SURFACES

In this section, we recall the construction of [FST] in the case of surfaces without
punctures.

Let S be a connected oriented 2-dimensional Riemann surface with boundary
and M a non-empty finite set of marked points in the closure of S with at least
one marked point on each boundary component. The pair (S, M) is called bordered
surface with marked points. Marked points in the interior of S are called punctures.
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In this paper we will only consider surfaces (S, M) such that all marked points
lie on the boundary of S, and we will refer to (S, M) simply as an unpunctured
surface.

We say that two curves in S do not cross if they do not intersect each other
except that endpoints may coincide.

Definition 1. An arc vy in (S, M) is a curve in S such that

(a) the endpoints are in M,

(b) ~v does not cross itself,

(c) the relative interior of v is disjoint from the boundary of S,
(d) ~ does not cut out a monogon or a digon.

Curves that connect two marked points and lie entirely on the boundary of S
without passing through a third marked point are called boundary arcs. Hence an
arc is a curve between two marked points, which does not intersect itself nor the
boundary except possibly at its endpoints and which is not homotopic to a point
or a boundary arc.

Each arc is considered up to isotopy inside the class of such curves. Moreover,
each arc is considered up to orientation, so if an arc has endpoints a,b € M then
it can be represented by a curve that runs from a to b, as well as by a curve that
runs from b to a.

For any two arcs 7,7’ in S, let e(~,~’) be the minimal number of crossings of
and 7/, that is, e(y,7’) is the minimum of the numbers of crossings of arcs « and o,
where « is isotopic to vy and o’ is isotopic to «'. Two arcs 7,7’ are called compatible
if e(y,7") = 0. A triangulation of S is a maximal collection of compatible arcs
together with all boundary arcs. The arcs of a triangulation cut the surface into
triangles. Since (S, M) is an unpunctured surface, the three sides of each triangle
are distinct (in contrast to the case of surfaces with punctures). Any triangulation
has n + m elements, n of which are arcs in S, and the remaining m elements are
boundary arcs. Note that the number of boundary arcs is equal to the number
of marked points. Each arc will correspond to a cluster variable, whereas each
boundary arc will correspond to the multiplicative identity 1 in the cluster algebra.

Proposition 2.1. The number n of arcs in any triangulation is given by the for-
mula n = 6g + 3b+m — 6, where g is the genus of S, b is the number of boundary
components and m = |M| is the number of marked points. The number n is called

the rank of (S, M).

Proof. [FST, 2.10] O

Note that b > 0 since the set M is not empty. Table 1 gives some examples of
unpunctured surfaces.

Following [FST], we associate a cluster algebra to the unpunctured surface (S, M)
as follows. Choose any triangulation 7', let 71, 7, ..., T, be the n interior arcs of T'
and denote the m boundary arcs of the surface by 7,41, Tnt2, ..., Tnem. For any
triangle A in T define a matrix B2 = (biAj)lgign,lgjgn by

1 if 7; and 7; are sides of A with 7; following 7; in the
counter-clockwise order;
biAj = —1 if 7; and 7; are sides of A with 7; following 7; in the
clockwise order;
0 otherwise.
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b g m surface

1 0 n+3 || polygon

1 1 n-3 torus with disk removed

1 2 n-9 genus 2 surface with disk removed

2 0 n annulus

2 1 n-6 torus with 2 disks removed

2 2 n-12 || genus 2 surface with 2 disks removed
3 0 n-3 pair of pants

TABLE 1. Examples of unpunctured surfaces

FIGURE 1. A triangulation with bag = 2

Note that this matrix is the transpose of the matrix defined in [FST]. Then define
the matrix By = (bij)1<i<n,1<j<n by bij = Y bf;, where the sum is taken over all
triangles in 7". Note that the boundary arcs of the triangulation are ignored in the
definition of By. Let By = (bij)1<i<2n,1<j<n be the 2n x n matrix whose upper
n x n part is By and whose lower n x n part is the identity matrix. The matrix B
is skew-symmetric and each of its entries b;; is either 0,1, —1,2, or —2, since every
arc 7 can be in at most two triangles. An example where b;; = 2 is given in Figure
1.

Let A(xr,yr, Br) be the cluster algebra with principal coefficients for the tri-
angulation T, that is, A(xr,yr,Br) is given by the seed (xr,yr,Br) where
xr = {%r,Try,..., 2., } is the cluster associated to the triangulation 7', and
the initial coefficient vector yr = (y1,¥2,...,yn) is the vector of generators of
P = Trop(y1,y2,---,yn). We refer to [FZ2, Definition 2.2] for the definition of
tropical semifield.

For the boundary arcs we define x,, =1, k=n+1,n+2,...,n+m.

For each k = 1,2,...,n, there is a unique quadrilateral in 7'\ {73} in which
Tk is one of the diagonals. Let 7 denote the other diagonal in that quadrilateral.
Define the flip T to be the triangulation (T"\ {73 }) U {7/.}. The mutation py of
the seed X7 in the cluster algebra A corresponds to the flip py of the triangulation
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T in the following sense: The matrix pug(Br) is the matrix corresponding to the
triangulation p14 T, the cluster g (x7) is (x7\{z7, })U{z, }, and the corresponding
exchange relation is given by

_ + -
Ly = Lpy Lp, Y + %o T6,Y

where y,y~ € P are some coefficients, and py, o1, p2, 02 are the sides of the quadri-
lateral in which 75, and 7], are the diagonals, with p; opposite to pa, and o1 opposite
to o2, see [FST].

For convenience, we recall the definition of mutation in the cluster algebra. We

use the notation [i]; = max(¢,0), [1,n] ={1,...,n}, and
1 ifi<O0;
sgn(i) =<0 ifi=0;
1 if i > 0.

Let @ denote the addition in P.

Definition 2 (Seed mutations). Let (x,y,B) be a seed, and let k € [1,n]. The
seed mutation py in direction k transforms (x,y, B) into the seed ui(x,y,B) =
(x',y', B') defined as follows:
e The entries of B' = (b};) are given by

b’,,: —bij Zf’LZk orjzk;

“ bij + sgn (bir) [bikbrjl+  otherwise.

(2)

o The coefficient tuple y' = (yi,...,y.,) is giwven by

o [ut if j =k
(3) Yi = [brj]+ —by;  if i
it (e ®@ 1) i §# K
o The cluster X' = (z1,...,2,) is given by x; = x; for j # k, whereas zj, is

determined by the exchange relation

e Ty T
(4) Ty =
(yr © 1)y,

3. EXPANSION FORMULA

In this section, we will present an expansion formula for the cluster variables in
terms of perfect matchings of a graph that is constructed recursively using so-called
tiles.

3.1. Tiles. For the purpose of this paper, a tile S} is a planar four vertex graph
with five weighted edges having the shape of two equilateral triangles that share
one edge, see Figure 2. The weight on each edge of the tile S}, is a cluster variable.
The unique interior edge is called diagonal and the four exterior edges are called
sides of Sj. We shall use Sj to denote the graph obtained from Sk by removing
the diagonal.

Now let T' be a triangulation of the unpunctured surface (S, M). If 7, € T is
an interior arc, then 7 lies in precisely two triangles in 7', hence 7 is the diagonal
of a unique quadrilateral @,, in T. We associate to this quadrilateral a tile Sy
by assigning the weight x; to the diagonal and the weights x,,xp, xc, x4 to the
sides of S}, in such a way that there is a surjective map ¢ : @, — Si. which
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FIGURE 2. The tile Si

restricts to a homeomorphism between the respective interiors and which sends
the arc labeled 7;, ¢ = a,b,c,d,k to the edge with weight z;, see Figure 2. If
k =1, we require that ¢; is such that its restriction to the interior is an orientation
preserving homeomorphism, but for k > 1, we allow the restriction of ¢y to be any
homeomorphism.

3.2. The graph ETW. Let T be a triangulation of an unpunctured surface (S, M)
and let v be an arc in (S, M) which is not in T. If necessary, replace v with an
isotopic arc so that ~ intersects transversally each of the arcs in 7" and minimizes
the number of crossings with each of these arcs. An example is given in Figure 9.
Choose an orientation on v and let s € M be its starting point, and let ¢t € M be
its endpoint. We denote by

Po = $,P1,P2,---,Pd+1 =t

the points of intersection of v and T in order along + under the orientation chosen
above. Let ¢1,%2,...,iq be such that pj lies on the arc 7;,, € T. Note that iy
may be equal to i; even if k # ] In the example in section 7, this sequence is
i1,i2,13,44,%1,792. Let S1,S5,...,54 be a sequence of tiles so that Sy, is isomorphic
to the tile Slk, for k = 1,2,...,d. In the example in section 7, this sequence is
S1,52,53,84,51, 5.

For k from 0 to d, let v denote the segment of the path v from the point pj to
the point pry1. Each «; lies in exactly one triangle Ay in T, and if 1 <k <d -1
then Ay is formed by the arcs 7;,,7;,,,, and a third arc that we denote by 7(,,;.
Note that the arc 7(,,) may be a boundary arc. In the example in section 7, the
triangle A has sides 75,1 and 74; the triangle A has sides 72,71 and ¢

We will define a graph Gr. ~ by recursive glueing of tiles. Start with Gr. 1 = Sl,
where, if necessary, we rotate the tile S; so that the diagonal goes from northwest
to southeast, and the starting point py of 7y is in the southwest corner of Sy. For
all k=1,2,...,d—1let Gr k+1 be the graph obtained by adjoining the tile Skt
to the tile Sy of the graph Gr,, along the edge weighted T[], see Figure 3. We
always orient the tiles so that the diagonals go from northwest to southeast. This
implies that the tiles in odd positions have the orientation induced from the surface
and the tiles in even positions have the opposite orientation. Note that the edge
weighted [, is either the northern or the eastern edge of the tile Si. Finally, we
define G to be Gr 4.

Let G7,, be the graph obtained from ETW by removing the diagonal in each
tile, that is, G is constructed in the same way as @Tﬁ but using the graphs S;,
instead of S;,. For an example see, Figure 10.
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Tk

Th41

FIGURE 3. Glueing tiles S and Sk along the edge weighted x,,;

A perfect matching of a graph is a subset of the edges so that each vertex is
covered exactly once by an edge in the perfect matching. We define the weight
w(P) of a perfect matching P of Gt~ to be the product of the weights of all edges
in P.

3.3. Cluster expansion formula. Let (S, M) be an unpunctured surface with
triangulation 7', and let A = A(xp,yr, B) be the cluster algebra with principal
coefficients in the initial seed (x7,yr, B) defined in section 2. Take an arbitrary
cluster variable in A that is not in the initial cluster x. Since each cluster variable
in A corresponds to an arc in (S, M), we can denote our cluster variable by .,
where v is an arc not in 7'. Choose an orientation of v, and let 7;,, 7, ..., 7, be
the arcs of the triangulation that are crossed by ~ in this order, with multiplicities
possible. Let G be the graph constructed in section 3.2.

Theorem 3.1. With the above notation
o N w(P)y(P)
v I LigLijg « - - Tiy
where the sum is over all perfect matchings P of Gr~, w(P) is the weight of P,
and y(P) is a monomial in yr.

The proof of Theorem 3.1 will be given in section 4.

4. PROOF OF THEOREM 3.1

We will use results of [S2] to prove the theorem. Throughout this section, T
is a triangulation of an unpunctured surface (S, M), v is an arc in S with a fixed
orientation, and s € M is its starting point and ¢t € M is its endpoint. Moreover,
Po = S,P1,D2,---,Pa+1 = t are the points of intersection of v and 7" in order along
~ under the orientation chosen above, and 41, i9, ..., %4 are such that p; lies on the
arc 7;, € T'. Let -y, denote the segment of v between the points px, pr+y1.

4.1. Complete (T,~)-paths. Following [ST], we will consider paths « in S that
are concatenations of arcs and boundary arcs in the triangulation 7', more precisely,
a = (ar,az,...,04)) with a; € T, for i = 1,2,...,£(a) and the starting point of
«; is the endpoint of ;1. Such a path is called a T-path.

We call a T-path a = (a1, a2, ..., 04)) a complete (T, ~)-path if the following
axioms hold:

(T1) The even arcs are precisely the arcs crossed by v in order, that is, asr, = 7,
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(T2) For all k = 0,1,2,...,d, the segment ~y; is homotopic to the segment of
the path o that starts at the point pg, then goes along awgy to the starting
point of awagy1, then along aor41 to the starting point of agi4e and then
along auag4o until the point pr1.

We define the Laurent monomial z(«) of the complete (T, v)-path « by

z(a) = H T, H z

i odd 7 even

Remark 4.1. e Every complete (T,7v)-path starts and ends at the same
points as v, because of (T2).
e Every complete (T,v)-path has length 2d + 1.
e For all arcs 7 in the triangulation 7', the number of times that 7 occurs as
iy, is exactly the number of crossings between ~ and 7.
e In contrast to the ordinary (T,~)-paths defined in [ST], complete (7', ~)-
paths allow backtracking.

e The denominator of the Laurent monomial z(«) is equal to x;, @i, - - - ;.

Example 4.2. The following are two examples of complete (T,~)-paths, in the
situation in Figure 9.

(7'5,7’1,7'2,7'2,7'2,7'3,7’7,7'4,7'5,7'1,7'2,7'2,7'8)
(7'4,7’1,7'1,7'2,7'3,7’3,7’4,7'4,7'5,7'1,7'2,7'2,7'8)

4.2. Universal cover. Let m : S — S be a universal cover of the surface S, and
let M =7 (M) and T = n~ (7).

Choose 5 € 7~ 1(s). There exists a unique lift 4 of v starting at 5. Then 7 is the
concatenation of subpaths 9,71, ..., 74+1 where 7% is a path from a point py to a
point P such that 7y is a lift of v, and pp € 7~ (py), for k =0,1,...,d+1. Let
{= Dd+1 € Wﬁl(t).

For k from 1 to d, let 7;, be the unique lift of 7;, running through py and let
Tly,) be the unique lift of 71,,; that is bounding a triangle in S with 7;, and Tinsr-
Each 4 lies in exactly one triangle Ay in T. Let S(y) C S be the union of the
triangles Ao, Ay,...,Agqq and let M(y) = M N S(y) and T(y) = TN S(v). Then
(S(7), M(v)) is a simply connected unpunctured surface of which T'(7) is a tri-
angulation. This triangulation T(”y) consists of arcs, respectively boundary arcs,
Tirs Tiy) With & =1,2,...,d, and two boundary arcs incident to s and two bound-
ary arcs incident to . The simple connectedness of S (7) follows from the simple
connectedness of the universal cover and the fact that the vertices of each triangle
lie on the boundary of the universal cover. The fact that T'(y) is a triangulation
follows from the homotopy lifting property of S. Moreover, this triangulation does
not contain any internal triangles, since each 7,,) is a boundary arc.

The underlying graph of T'(7) is the graph with vertex set M () and whose set
of edges consists of the (unoriented) arcs in T'(7).

By [S2, section 5.5], we can compute the Laurent expansion of = using complete

(T(7),#)-paths in (S(v), M(7)).

4.3. Folding. The graph @Tﬁ was constructed by glueing tiles S’k+1 to tiles Sy,

along edges with weight x[,,;, see Figure 3. Now we will fold the graph along
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the edges weighted 1|
k=1,2,...,d—1. .
To be more precise, the edge with weight z,,;, that lies in the two tiles Ski1

+], thereby identifying the two triangles incident to z[,,),

and S, is contained in precisely two triangles Aj and Al in 617: Ay lying inside
the tile Si and A} lying inside the tile 5’k+1. Both Ay and Aj, have weights x[,,],
Tk, Tk+1, DUt opposite orientations. Cutting ETW along the edge with weight z,,),
one obtains two connected components. Let Rj be the component that contains
the tile S’k and Rj+1 the component that contains 5’k+1.

The folding of the graph Gr,, along X[y, is the graph obtained by flipping Rj1
and then glueing it to Ry by identifying the two triangles A, and Aj. In this new
graph, we can now fold along any of the edges x[,,; with k& # ¢, by cutting along
Tlvyy)s defining subgraphs Ry ¢, and Ry, ¢41 in a similar way, and then flipping Ry ¢1
and glueing it to Ry ¢ by identifying the two triangles A, and Ap.

The graph obtained by consecutive folding of 6T77 along all edges with weight
Xy, for k =1,2,...,d—1, is isomorphic to the underlying graph of the triangulation
T(v) of the unpunctured surface (S(7), M(7)). Indeed, there clearly is a bijection
between the triangles in both graphs, and, in both graphs the way the triangles are
glued together is uniquely determined by ~.

We obtain a map that we call the folding map

(b . { perfect matchings } { complete (T'(7), 7)-paths }
: . — s a
in Gr,~ in (S(v), M(v))

P — ap

as follows. First we associate a path ap in @Tﬁ to the matching P as follows. Let
ap be the path starting at s going along the unique edge of P that is incident to
s, then going along the diagonal of the first tile S, then along the unique edge of
P that is incident to the endpoint of that diagonal, and so forth. The fact that P
is a perfect matching guarantees that each endpoint of a diagonal is incident to a
unique edge in P and from the construction of G it follows that each edge in P
connects two endpoints of two distinct diagonals. It is clear from the construction
of G'r,, that one can never come back to the same vertex, and therefore the path
must reach .

Since P has cardinality d + 1, the path ap consists of 2d + 1 edges, thus a =

(a1,a9,...,a24+1). Now we define ap = (a1,Q2,...,02q+1) by folding the path
ap. Thus, if P = {0, 0s,...,024—1, B2d+1}, where the edges are ordered according
to 7, then ¢(P) = (&1, Qg ..., &24+1), Wwhere daog41 is the image of a5 1 under the

folding and &g = 7, is the arc crossing 4 at pr. Then ¢(P) satisfies the axiom
(T1) by construction. Moreover, ¢(P) satisfies the axiom (T2), because, for each
k=0,1,...,d, the segment of the path ¢(P), which starts at the point pg, then
goes along asy to the starting point of a1, then along qo+1 to the starting point
of aop4o and then along asgpyo until the point pry1, is homotopic to the segment
&, since both segments lie in the simply connected triangle Ay, formed by Tiys Tirin
and 7,,]. Therefore, the folding map ¢ is well defined.

Note that it is possible that ay, a1 is backtracking, that is, aj and a1 run
along the same arc 7 € T(v).

Example 4.3. Figure 4 displays an example of a perfect matching P, whose edges
are the solid bold lines, of the graph G, of Figure 10. The matching contains edges
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FIGURE 4. Example of complete (T, v) path associated to a matching

labeled x5, 9,28, T4, 24,21, 23. The figure also shows the corresponding (not yet
folded) complete (T,~)-path obtained by inserting the diagonals T, T2, T3, T4, T1, T2,
given as dashed bold lines. In the surface in Figure 9, the corresponding complete
(Ta 7)_path

ap = (7'5,7’1,7’2,7'2,7'877'3,7’4,7’4,7'4,7'1,7'1,7'2,7'3)

is obtained by folding the path in Figure 4.

4.4. Unfolding the surface. Let a be a boundary arc in (S(vy), M (7)) that is not
adjacent to § and not adjacent to £. Then there is a unique triangle A in T(W) in
which « is a side. The other two sides of A are two consecutive arcs, which we
denote by 7; and 741, see Figure 5.

By cutting the underlying graph of T(v) along 7;, we obtain two pieces. Let
R;.1 denote the piece that contains a, 7j1 and t. Similarly, cutting (S(v), M (7))
along 7;41, we obtain two pieces, and we denote by R; the piece that contains s, 7;
and a.

The graph obtained by unfolding along o is the graph obtained by flipping R; and
then glueing it to ;4 along . In this new graph, we label the edge of R; that had
the label 7j11 by %;’H and the edge of ;41 that had the label 7; by %Jl-’, indicating
that these edges are on the boundary of the new graph, see Figure 5. Now, in
the graph obtained from unfolding along «, we can continue unfolding along (the
image of) a different boundary arc o/ in (S(v), M(v)) that is not adjacent to § and
not adjacent to Z, again using the unique triangle A’ in T'(y) in which o/ is a side,
cutting the graph obtained from unfolding along « along 7;» to obtain R4, and
cutting the graph obtained from unfolding along o along 7;41 to obtain R;:, then
flipping and glueing in a similar way will give a new graph obtained from T'(7) by
consecutive unfolding along « and «'.

Lemma 4.4. The graph obtained by repeated unfolding of the underlying graph of
2(7) along all boundary edges not adjacent to s or t is isomorphic to the graph
G, . Moreover, for each unfolding along an edge o, the edges labeled ?]l?, ?JZ?H are

on the boundary of G, and carry the weights xj, x ;41 respectively, the edges labeled
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unfolding
FiGURE 5. Completion of paths
Thys-1]
7’4'371 7~'j+1 - =

FIGURE 6. Unfolding along 7,

 and 7y

1

i, Tj+1 are diagonals in G and carry the weights xj, 41 respectively, and « is
an interior edge of G that is not a diagonal and carries the weight Ty,)-

Proof. This follows from the construction. O

4.5. Unfolding map. We define a map

{complete (T'(7),7) — paths} — {perfect matchings of Gr -}
&= (@1, a2,...,02411) — Pa={B,03 05, ... 0241}

where 31 = &1, B2qy1 = G2q41 and

52/94—1 = {

We will show that this map is well-defined. Suppose (32141 and PBar41 have a com-
mon endpoint 2. Then day 1 and oy 1 have a common endpoint y in (S(7y), M (v))
and the two edges are not separated in the unfolding described in Lemma 4.4. Con-
sequently, there is no triangle in T(v) that is contained in the subpolygon spanned
by dor+1 and a4, hence dopt1 is equal to aegpyq. This implies that every arc
in the subpath (&og41,&2k42 ... G2e11) is equal to the same arc 7, and the only
way this can happen is when ¢ = k + 1 and (Gokt1, Gokt2 - - - G2er1) = (75,75, 75)
and both endpoints of 7; are incident to an interior arc other than 7;. In this case,

Qo1 if Gogt1 is a boundary arc in T'(v),
~b . ~ = . i
7 if Qo1 = 75 is an arc in T'(y).

7; bounds the two triangles 7;_1,7;, 7y, ,) and 7j, Tj41, T[y,] in T(v). Unfolding
along 7:[%.71] and 7:[%,] will produce edges [2x+1 and Ba¢41 that are not adjacent, see
Figure 6. This shows that no vertex of G, is covered twice in Pj.

To show that every vertex of G, is covered in P, we use a counting argument.
Indeed, the number of vertices of Gt is 2(d + 1), and, on the other hand, 2d + 1
is the length of &, since & is complete, and thus Ps; has d+ 1 edges. The statement
follows since every (3; € P; has two distinct endpoints. This shows that Pj is a
perfect matching and our map is well-defined.
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Lemma 4.5. The unfolding map & — Pg is the inverse of the folding map P — ap.
In particular, both maps are bijections.

Proof. Let & = (&1,d2,...,a24+1) be a complete (T(7),7)-path. Then ép, =
(1,9, ..., a24+1) where aggy1 is the image under folding of the arc %]Z? if Gopy1 =

7; is an arc in T(W) or, otherwise, the image under the folding of the arc dogy1.
Thus agpy1 = doky1. Moreover, aap, = 74, = 2k, and thus ap, = a.
Conversely, let P = {f1,0s,...,82a—1,P2d+1} be a perfect matching of Gr .
Then Pa, = {1, 53, -, B2da—1, Boa+1} Where
. Qok41  if Gok41 is a boundary arc,
Bok+1 =

~b . ~ =
7 if Giop+1 = 75 is an arc

Tyl i okt = Ty,

72 if fopgr = 70
Hence P;, = P. O
Combining Lemma 4.5 with the results of [S2], we obtain the following Theorem.

Theorem 4.6. There is a bijection between the set of perfect matchings of the graph
Gr~ and the set of complete (T,~)-paths in (S, M) given by P +— w(ap), where &p
is the image of P under the folding map and 7 is induced by the universal cover
7 : S — S. Moreover, the numerator of the Laurent monomial x(m(ép)) of the
complete (T,~)-path w(&p) is equal to the weight w(P) of the matching P.

Proof. The map in the Theorem is a bijection, because it is the composition of
the folding map, which is a bijection, by Lemma 4.5, and the map =, which is a
bijection, by [S2, Lemma 5.8]. The last statement of the Theorem follows from the
construction of the graph G . O

Example 4.7. The unfolding of the path

G = (T5,T1, T2, T2, T8y T3, Ta, T4, Tds T1, T1, T2, T3)
in the surface of Figure 9 is the perfect matching Py = P of example 4.3.
4.6. Proof of Theorem 3.1. It has been shown in [S2, Theorem 3.2] that

(5) vy = x(a)y(a),

[e3

where the sum is over all complete (T, ~y)-paths a in (S, M), y(«) is a monomial in
yr, and

(6) x(a) = H Ty H xy ).

k odd k even

Applying Theorem 4.6 to equation (5) yields

(7) ‘T’Y = ZM(P) y(P)(xilxiz o ':Eid)_lu

P
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Y Q2k+1 Y

FIGURE 7. Two examples of the (7,7)-path segment
(ok—1, 0k, ap+1).  On the left, agr is not ~y-oriented and
on the right, awy is y-oriented.

where the sum is over all perfect matchings P of G, w(P) is the weight of the
matching and y(P) = y(w(ap)), by definition. This completes the proof of Theorem
3.1.

5. A FORMULA FOR y(P)

In this section, we give a description of the coefficients y(P) in terms of the
matching P. First, we need to recall some results from [S2].

Recall that T is a triangulation of the unpunctured surface (S, M) and that ~ is
an arc in (S, M) that crosses T exactly d times. We also have fixed an orientation
for v, and denote by s = pg,p1,...,Pd, Pa+1 = t the intersection points of v and T'
in order of occurrence on . Let i1,12,...,iq be such that py lies on the arc 7;, € T,
fork=1,2,...,d. Fork=0,1,...,d, let v, denote the segment of the path ~ from
the point pg to the point pryi. Each 74 lies in exactly one triangle Ay in 7. If
1 <k <d-—1, the triangle Ay, is formed by the arcs 7;,, and a third arc that
we denote by 7,1

The orientation of the surface S induces an orientation on each of these triangles
in such a way that, whenever two triangles A, A’ share an edge 7, then the orien-
tation of 7 in A is opposite to the orientation of 7 in A’, There are precisely two
such orientations. We assume without loss of generality that S has the “clockwise
orientation”, that is, in each triangle A, going around the boundary of A according
to the orientation of S is clockwise when looking at it from outside the surface.

Let « be a complete (T, v)-path. Then ag, = 7, is a common arc of the two
triangles Ap_1 and Ag. We say that asop is v-oriented if the orientation of awy in
the path « is the same as the orientation of 7;, in the triangle Ay, see Figure 7.

It is shown in [S2, Theorem 3.2] that

(8) y(a) = 11 Yir-

k:agy is «y-oriented

Tipsa

Each perfect matching P of G'r, induces a path ap in @Tﬁ as in the construction
of the folding map in section 4.3. The even arcs of ap are the diagonals of the graph
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GT-,'v- We say that an even arc of ap has upward orientation if ap is directed from
southeast to northwest on that even arc, otherwise we say that the arc has downward
orientation. Since going upward on the first even arc of ap is y-oriented then we
have that the (2k)-th arc of w(ap) is y-oriented if and only if the 2k-th arc of ap
is upward if k is odd, and downward if k is even.

There are precisely two perfect matchings P, and P_ of G that contain only
boundary edges of G . The orientations of the even arcs in both of the induced
(T,~)-paths ap, and ap_ are alternatingly upward and downward, thus for one of
the two paths, say P, each even arc of (G p, ) is y-oriented, whereas for P_ none of
the even arcs of w(&p_) is y-oriented. That is, y(P-) =1 and y(Py) = Yi, Yiy - - Yi,-
Note that, since the tile S1 has the same orientation as the surface, the matching
P_ contains the western edge of Si, while P, contains the southern edge of S;

For an arbitrary perfect matching P, the coefficient y(P) is determined by the
set of edges of the symmetric difference P- & P = (P_ U P) \ (P- N P) as follows.

Theorem 5.1. The set P_ © P is the set of boundary edges of a (possibly discon-
nected) subgraph Gp of G, which is a union of tiles

Gp = UjeJSj.

Moreover,
jedJ

Proof. Choose any edge e; and either endpoint in P_\ (P_ N P), and walk along
that edge until its other endpoint. Since P is a perfect matching, this endpoint is
incident to an edge es in P, which is different from e; and, hence, not in P_. Thus
es € P\ (P- NP). Now walk along ey until its other endpoint. This endpoint
is incident to an edge ez in P_ which is different from es, and, hence, not in P.
Thus es € P_\ (P_ N P). Continuing this way, we construct a sequence of edges
in P~ © P. Since G, has only finitely many edges, this sequence must become
periodic after a certain number of steps; thus there exist p, N such that e, = ej4p
for all £k > N.

We will show that one can take N = 1. Suppose to the contrary that N > 2 is
the smallest integer such that e, = ep4, forall k > N. Then ey_1,en and en4p—1
share a common endpoint. But ex_1, ey and exyp,—1 are elements of the union of
two perfect matchings, hence ey _1 = en4p—1, contradicting the minimality of N.

Therefore the sequence ey, eg, ..., e, in PO P_ is the set of boundary edges of a
connected subgraph of G, which is a union of tiles.

The graph G p is the union of these connected subgraphs and, hence, it is a union
of tiles. Let H be a connected component of Gp. There are precisely two perfect
matchings P_(H) and Py (H) of H that consist only of boundary edges of H.
Clearly, these two matchings are P N E(H) and PN E(H), where E(H) is the set
of edges of the graph H. Therefore, in each tile of H, the orientation of the diagonal
in ap and ap are opposite. The restrictions of P_ and P to E(Gr~) \ E(Gp) are
identical, hence in each tile of Gr ., \ Gp, the orientations of the diagonal in ap_
and ap are equal. It follows from equation (8) that y(P) = [, vi;- O

It has been shown in [FZ2] that, for any cluster variable z in A, its Laurent ex-
pansion in the initial seed (x7,yr, Br) is homogeneous with respect to the grading
given by deg(z;) = e; and deg(y;) = Bre;, where ¢; = (0,...,0,1,0,...,0)7 € Z"
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with 1 at position 4. By definition, the g-vector g, of a cluster variable z, is the
degree of its Laurent expansion with respect to this grading.

Corollary 5.2. The g-vector g, of x~ is given by
w(P-)

xil I’iQ e I’id

g~ = deg

Proof. This follows from the fact that y(P-) = 1. O

Remark 5.3. The formula for y(P) can also be phrased in terms of height func-
tions. As described in section 3 of [Pr2], one way to define the height function
on the faces of a bipartite planar graph G, covered by a perfect matching P, is
to superimpose each matching with the fixed matching P, (the unique matching
of minimal height). In the case where G is a snake graph, we take P to be P_,
the matching of G only involving edges on the boundary and including the western
edge of tile S;. Color the vertices of G black and white so that no two adjacent
vertices have the same color. In this superposition, we orient edges of P from black
to white, and edges of P_ from white to black. We thereby obtain a spanning set
of cycles, and removing the cycles of length two exactly corresponds to taking the
symmetric difference P & P_. We can read the resulting graph as a relief-map, in
which the altitude changes by 4+1 or —1 as one crosses over a contour line, accord-
ing to whether the counter-line is directed clockwise or counter-clockwise. By this
procedure, we obtain a height function hp : F(G) — Z which assigns integers to
the faces of graph GG. When G is a snake graph, the set of faces F/(G) is simply the
set of tiles {S,} of G. Comparing with the definition of y(P) in Theorem 5.1, we

see that
yP)= [I 72
S,EeF(Q)

An alternative definition of height functions comes from [EKLP] by translating the
matching problem into a domino tiling problem on a region colored as a checker-
board. We imagine an ant starting at an arbitrary vertex at height 0, walking along
the boundary of each domino, and changing its height by +1 or —1 as it traverses
the boundary of a black or white square, respectively. The values of the height
function under these two formulations agree up to scaling by four.

Example 5.4. We illustrate the construction of the graph Gp in Figure 8. The
perfect matching of Gt~ is the set of bold face edges on the left side of the figure,
and the graph Gp is given on the right. Note that the matching P_ in this example
consists of the two edges labeled xo, x5 in the first tile and the boundary edges of
the graph Gp that are not in Gp.

6. CLUSTER EXPANSION WITHOUT MATCHINGS

In this section, we give a formula for the cluster expansion of z in terms of the
graph G only.

For any subgraph H of G, let ¢(H) be the number of connected components
of H. Let E(H) be the set of edges of H, and denote by OH the set of boundary
edges of H. Define Hj, to be the set of all subgraphs H of Gr . such that H is
a union of £ tiles H = S§; U---US;, and the number of edges of P_ that are
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xg xrs

T4 Tq

T2

Gr .y

FI1GURE 8. Perfect matching P and associated graph Gp

contained in H is equal to k + ¢(H). For H € Hy, let

y )= [ v,

S; . tilein H
J

Theorem 6.1. The cluster expansion of the cluster variable x., is given by

)

d w(OH & P_)y(H
=5 3 (OH © P_)y(H)

k=0 HeMy 2 td

Proof. It follows from Theorems 3.1 and 5.1 that

d
(P)y(Gp)

k=1 P:ly(P)|=k

17

T3

where |y(P)| is the number of tiles in Gp. We will show that for all k, the map
P — Gp is a bijection between the set of perfect matchings P of G, such that

ly(P)| = k and the set Hy.

- The map is well-defined. Clearly, Gp is the union of k tiles. Moreover,
E(Gp) N P_ is a perfect matching of Gp, since P_ consists of every other
boundary edge of Gr,. Thus the cardinality of (E(Gp) N P-) is half the
number of vertices of Gp, which is equal to 2k + 2¢(Gp). Therefore, the

cardinality of (E(Gp) N P_) is k+ ¢(Gp) and Gp € Hy,.

- The map is injective, since two graphs Gp, G p: are equal if and only if their

boundaries are.

- The map is surjective. Let H = S;, U---U.S;, be such that the cardinality
of E(H) N P- equals k + ¢(H). The boundary of H consists of 2k 4+ 2¢(H)
edges, half of which lie in P_. As in the proof of Theorem 5.1, let P_(H) =
E(H)N P_ and Py (H) be the two perfect matchings of H that consist of
boundary edges only. Let P = P (H)U(P_\ P_(H)). Then P is a perfect
matching of Gr ~ such that Gp = H, and moreover, |y(P)| is equal to the

number of tiles in H, which is k. Thus the map is surjective.
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Now the boundary edges of Gp are precisely the elements of P & P_, which
implies that 9(Gp)© P- = (P& P_)o P_ = PO (P- © P_) = P. Therefore
w(P) = w(0(Gp) © P-), and this completes the proof. O

Corollary 6.2. The F-polynomial of v is given by

d
F,Y:Z Z y(H).

k=0 HeHy

7. EXAMPLE

78

FIGURE 9. Triangulated surface with dotted arc

We illustrate Theorem 3.1, Theorem 5.1 and Theorem 6.1 in an example. Let
(S, M) be the annulus with two marked points on each of the two boundary com-

ponents, and let T = {7,...,73} be the triangulation shown in Figure 9. The
corresponding cluster algebra has the following principal exchange matrix

0o 1 0 -1

-1 0 -1 0

o 1 0 -1}’

1 0 1 0
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X1/ X2 T3

GT,’Y
x1
Te
Ts Z )
S T4
T t
X1 T3
Tq Zq Te
) T Ty )
GT,’y s T3 Ta
T XT3
Tg
Ty T2
S T4

FIGURE 10. Construction of the graphs Gr . and Gr

which can also be visualized by a quiver, simply by drawing b;; arrows ¢ — j for
each positive entry b;; in the matrix:

1 2 3 4.

Let v be the dotted arc in Figure 9. It has d = 6 crossings with the triangulation.
The sequence of crossed arcs 7;,, ..., T, is 71, T2, T3, T4, T1, T2, and the corresponding
segments 7o, ...,7s of the arc v are labeled in the figure. Moreover, 7,,] = 7,
T['yz] = 78, T['va] = T7, T[’M] =175 and T[’y5] = T6-

The graph G is obtained by glueing the corresponding six tiles Sy, Sy, S3, Sy,
5’1, and 5’2. The result is shown in Figure 10.
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Theorems 3.1 and 5.1 imply that @, (z;, s, - - - ;) is equal to

T5T2X2T3L1T2T8 + LATEL2L3L1T2X8 Y1
+ T5T2T2T7T5T2T8 Ydq + TATEX2TTTEL2LR Y1Y4
+ T5T2T8T4T5T2T8 Y3Y4 + T5T2X2TT7TATELS YY1
+ LATELZLAL5T2X8 Y1Y3Y4 + LATEL2LTT4TELS Y1YaY1
+ T5L2X8X4TALELS Y3YAY1 + T5L2X2X7LTATIL3 Y4Y1Y2
+ TAT1T3T4T5T2T8 Y1Y2Y3Y4 + TATELZLALATELS Y1Y3YaY1
+ T4TET2T7TAT1T3 Y1Y4Y1Y2 +  T5T2T8TATATIT3 Y3YaY1Y2
+ T4 T3TATAT6TR Y1Y2Y3YaY1r  + TaTeXRTATATIT3 Y1Y3YaY1Y2
+  T4T1T3T4TAT1T3 Y1Y2Y3Y4Y1Y2

which is equal to
3:113%333 + 3:113%:1:33:4 Y1

+ T3 Ys + T3T4 Y194

+ ;10%;104 Y3Y4 + x%m Y1Ya

+ LT3 Y1y3Ya + To23 Yiya

+ ToT] Ysyats + 123334 Y1Y2Ya

+ T1%aw32t Y1yaysys  + T3 YT Ysya

+ 3313321?33342; y%y2y4 + I1332333I421 Y3Yayiry2

+ 3T YRYaysys  + 212373 YIYaysya

+  afedelyiydysya.

The first term corresponds to the matching P_ consisting of the boundary edges
weighted z5 and z9 in the first tile, x5 in the third tile, 7 and x3 in the forth, x;
in the fifth and =g in the sixth tile. For example, the twelfth term corresponds to
the matching P consisting of the horizontal edges of the first three tiles and the
horizontal edges of the last two tiles. Thus P- & P = (P- U P)\ (P- N P) is the
union of the first, third, forth and fifth tile, whence y(P) = i, Yi, Yi, Yis = Y1Y3YaY1-

To illustrate Theorem 6.1, let £k = 2. Then Hj, consists of the subgraphs H of
Gr~ which are unions of two tiles and such that E(H) N P_ has three elements
if H is connected, respectively four elements if H has two connected components.
Thus H, has three elements

H2 == {S13 U Si47 814 U Si5, Sle U 814}
corresponding to the three terms

2 2 2
T5T4Y3Y4, ToTay1Ys and T3T4Y1Y4.
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