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Abstract

In 2002, Feigin and Veselov [4] defined the space of m-quasiinvariants
for any Coxeter group, building on earlier work of [2]. While many prop-
erties of those spaces were proven in [3, 4, 5, 7] from this definition, an
explicit computation of a basis was only done in certain cases. In particu-
lar, in [4], bases for m-quasiinvariants were computed for dihedral groups,
including S3, and Felder and Veselov [5] also computed the non-symmetric
m-quasiinvariants of lowest degree for general Sn. In this paper, we pro-
vide a new characterization of the m-quasiinvariants of Sn, and use this
to provide a basis for the isotypic component indexed by the partition
[n − 1, 1]. This builds on a previous paper, [1], in which we computed a
basis for S3 via combinatorial methods.
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1 Introduction

A permutation σ ∈ Sn acts on a polynomial in R = Q[x1, . . . , xn] by permuta-
tion of indices:

σP (x1, . . . , xn) = P (xσ(1), . . . , xσ(n)).

The Sn-invariant polynomials are known as symmetric functions, and denoted
by Λn. It is well known that Λn is generated by the elementary symmetric
functions {e1, . . . , en} where

ej =
∑

i1<i2<···<ij

xi1 . . . xij
.

The ring of coinvariants of Sn is the quotient

R/〈e1, . . . , en〉.

As an Sn-module, the ring of coinvariants is known to be isomorphic to the left
regular representation. It is also known that R is free over Λn which implies
that if we choose a basis B = {b1, . . . , bn!} for the ring of coinvariants, any
element of P ∈ R has a unique expansion

P =

n!∑

i=1

bifi

where the fi are symmetric functions. More information is given by the Hilbert
series for the isotypic component of R corresponding to λ, namely

∑
T∈ST (λ) fλ qcocharge(T )

(1 − q)(1 − q2) . . . (1 − qn)
.

Known bases for the ring of coinvariants with very combinatorial descriptions
include the Artin monomials and the descent monomials.

In [2, 4], Chalykh, Feigin and Veselov introduced a generalization of invari-
ance known as “m-quasiinvariance”. For the symmetric group the m-quasiinvariants
are the polynomials P ∈ Q[x1, . . . , xn] which have the divisibility property

(xi − xj)
2m+1

∣∣∣∣
(

1 − (i, j)

)
P

for every transposition (i, j). We set

QIm = {m-quasiinvariants of Sn}.

The m-quasiinvariants of Sn form a ring and an Sn module, and we have the
following containments:

R = QI0 ⊃ QI1 ⊃ · · · ⊃ QIm ⊃ · · · ⊃ Λn.
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For all m, the ring of coinvariants QIm/〈e1, . . . , en〉 was conjectured in [4], and
proved in [3], to be isomorphic as an Sn-module to the left regular representa-
tion. In fact, Etingof and Ginzburg further proved that QIm is free over the
symmetric functions. The Hilbert series of the isotypic component indexed by
λ is given by [5] to be

∑
T∈ST (λ) fλ qm((n

2)−content(λ(T )))+cocharge(T )

(1 − q)(1 − q2) . . . (1 − qn)
. (1.1)

Here content and cocharge are two statistics on tableaux–we will not need the
precise definitions. In fact content only depends on the shape of T hence it is
actually a function on partitions.

In light of the simple combinatorial descriptions of a basis for the coinvariants
in the classical (or m = 0) case, the authors have looked for a basis for larger
m. In [1] and [4] a basis was given for the case n = 3. (The work [4] specifically
described the quasiinvariants for dihedral groups, so in particular for D3

∼= S3.)
Further, in [5], Felder and Veselov provide integral expressions, φ(j)(x) for 2 ≤
j ≤ n, for the lowest degree (non-symmetric) m-quasiinvariants, i.e. those of
degree mn + 1. In the present work, we give a complete basis of the isotypic
component given by the partition [n − 1, 1] for any n. This is accomplished by
means of a new characterization of QIm:

Theorem 1. The vector space of quasiinvariants has the following direct sum
decomposition:

QIm =
⊕

T∈ST (n)

(
γTR ∩ V 2m+1

T R
)

where ST (n) is the set of standard tableaux of size n, γT is a projection op-
ertor due to Young (defined in full detail in the next section) and VT is the
polynomial given by the product over the columns of T of the associated “Van-
dermonde determinants” (this is also defined in detail below). This character-
ization is proved using completely elementary methods (namely, computations
in the group algebra of the symmetric group) in section 4. In section 5 we use
this characterization to construct the basis for the [n−1, 1] isotypic component.
Precisely, for T a standard Young tableau of shape [n− 1, 1] with j the entry in
the second row, we set

Qk,m
T =

∫ xj

x1

tk
n∏

i=1

(t − xi)
mdt.

With this definition, we have

Theorem 2. The set

{Q0,m
T , Q1,m

T , Q2,m
T , . . . , Qn−2,m

T }

is a basis for γT (QIm/〈e1, . . . , en〉).
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In section 6 we evaluate the integrals that represent these polynomials in a
more explicit form.

Along the journey to these results, we have discovered other interesting facts
about the ring QIm. In section 7, we show that the Calogero-Moser operator

Lm =

n∑

i=1

∂2

∂x2
i

− 2m
∑

1≤i<j≤n

1

xi − xj

(
∂

∂xi

−
∂

∂xj

)

acts on our basis by the simple formula

LmQk,m
T = k(k − 1)Qk−2,m

T .

Finally, in section 8 we show that if we think of QIm+1 and QIm as modules
over the ring Λn, the determinant of the respective change of basis matrix is the
Vandermonde determinant to the power n!, regardless of the value of m. We
hope that these results prove as suggestive to others as to ourselves, and spur
further investigations into this newly discovered territory.

2 Definitions and Notation

Throughout this paper, we will write elements of the symmetric group Sn using
cycle notation. We will perform many calculations in the group algebra of Sn,
and as such it will be useful to have shorthand notation for many commonly
occurring elements. For a given subgroup A of Sn, we set

[A] =
∑

σ∈A

σ and

[A]′ =
∑

σ∈A

sgn(σ)σ.

We will extend this notation, abusing it slightly, and also define, for any set U
whatsoever,

[U ] =
∑

σ∈SU

σ and

[U ]′ =
∑

σ∈SU

sgn(σ)σ.

The Young diagram of a partition λ is a subset of the boxes in the positive
integer lattice, indexed by ordered pairs (i, j), where i is the row index and j is
the column index. For example, in the following Young diagram of [4, 3, 2], the
cell (2, 3) is marked:

•
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A tableau of shape λ ⊢ n is a function from the cells of the Young diagram
of λ to the set {1, . . . , n}. We write the T (i, j) for the value of T at the cell
(i, j). For example, if T is the following tableau, T (2, 3) = 8:

6 7
4 5 8
1 2 3 9

We call a tableau standard if it is injective and the entries increase across
the rows and up the columns. For example, the tableau above is standard. We
denote the set of standard tableaux of shape λ by ST (λ) and the set of all
standard tableaux with n boxes by ST (n).

Given a tableau T we let Ci be the set of elements in the ith column and we
define Ri similarly for the rows. We also set

C(T ) = {(i, j) ∈ Sn | i, j are in the same column of T }

R(T ) = {(i, j) ∈ Sn | i, j are in the same row of T }

N(T ) =
∏

i

[Ci]
′

P (T ) =
∏

i

[Ri]

fλ = the number of standard tableaux of shape λ

γT =
fλ N(T )P (T )

n!
λ(T ) = the shape of tableau T.

Finally, we define the following useful polynomial associated with a tableau T :

VT =
∏

(i,j)∈C(T )

(xi − xj).

3 Useful Facts About QSn modules

The fundamental theorem of representation theory states

Proposition 1. For W a finite dimensional Sn-module,

W ∼=
⊕

λ⊢n

V ⊕mλ

λ

where the Vλ are the irreducible representations of Sn and the mλ are non-
negative integers.

The vector space and Sn-module V ⊕mλ

λ is known as the isotypic component
of V indexed by λ. Now, QImis infinite dimensional, but it is the direct sum
of homogeneous components, each of which are finite dimensional. So we have
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that each homogeneous component of QImdecomposes into a direct sum of
irreducibles. The direct sum of all copies of Vλ occuring in this decomposition
is still itself an Sn-module, and is still referred to as the isotypic component
indexed by λ. However, we will find the following decomposition of V more
useful.

Proposition 2. On any Sn module W , the group algebra elements {γT}T∈ST (n)

act as projection operators. In symbols, we have the conditions

1. γ2
T = γT

2. W =
⊕

T∈ST (n) γT W .

Note that in this decomposition, unlike the previous one, the direct sum-
mands are not themselves Sn-modules. We do have the following proposition,
however, nicely relating the previous two.

Proposition 3. For any Sn module W ,
⊕

T∈ST (λ)

γT W

is the isotypic component of W indexed by λ.

In the case of the quasiinvariants, we have the following

Proposition 4. The Q-vector space of m-quasiinvariants has the following di-
rect sum decomposition:

QIm =
⊕

T∈ST (n)

γTQIm.

Our goal will be to use the decomposition QIm/〈e1, . . . en〉 =
⊕

T γT (QIm/〈e1, . . . en〉)
to find a basis for this quotient module.

4 A New Characterization of Sn-Quasiinvariants

In this section we prove the following theorem:

Theorem 1. The vector space of quasiinvariants has the following direct sum
decomposition:

QIm =
⊕

T∈ST (n)

(
γTR ∩ V 2m+1

T R
)
.

We will prove this by showing

γTQIm = γTR ∩ V 2m+1
T R. (4.1)

Combining (4.1) with Proposition 4 will prove the theorem. Equation (4.1) is
proved by considering some relations in the group algebra of Sn. We begin with
the following simple proposition:
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Proposition 5. Let f =
∑

σ∈Sn
fσσ ∈ QSn, and P, Q ∈ Q[x1, . . . xn] with P a

symmetric function. Then we have f(PQ) = Pf(Q).

Proof. We have the following calculation:

f(PQ) = (
∑

σ∈Sn

fσσ)(PQ)

=
∑

σ∈Sn

fσ(σP )(σQ)

= P
∑

σ∈Sn

fσ(σQ)

= Pf(Q).

Lemma 1. The group algebra element [Sn] can be written as

(
1 + (i1, i2)

)(
1 + (i1, i3) + (i2, i3)

)
· · ·

(
1 + (i1, in) + (i2, in) + · · · + (in−1, in)

)

where {i1, . . . , in} is any permutation of {1, . . . , n}. Similarly, [Sn]′ can be writ-
ten as
(

1 − (i1, i2)

)(
1 − (i1, i3) − (i2, i3)

)
· · ·

(
1 − (i1, in) − (i2, in) − · · · − (in−1, in)

)
.

Proof. The statement is trivial for n = 1. Now assume the statement is true for
Sn−1. Let H be the subgroup of Sn consisting of all permutations which leave
in fixed. Right coset decomposition gives

Sn = H + H(i1, in) + H(i2, in) + · · · + H(in−1, in).

Thus

[Sn] = [H ]

(
1 + (i1, in) + (i2, in) + · · · + (in−1, in)

)
and

[Sn]′ = [H ]′
(

1 − (i1, in) − (i2, in) − · · · − (in−1, in)

)
.

As H is isomorphic to Sn−1 the statement is proved.

Remark 1. Note that left coset decomposition could just as easily have been
used in this proof, which would give the factors in the opposite order.

For the following, we fix the following:

• T a tableau of shape λ ⊢ n,

• i, j with 1 ≤ i < j ≤ λ1.
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With T fixed, we use the boldface notation ab as shorthand for T (a, b), the
element in the ath row and bth column of T . In the following, we will make
much use of elements of Q[Sn] of the form [Ci ∪ {kj}]

′; the signed sum of all
permutations of the elements of column i, and a single element kj in column j
to the right of i. We first note that elements of this form kill P (T ):

Lemma 2. For any k ∈ {1, . . . , |Cj |} we have

[Ci ∪ {kj}]
′P (T ) = 0.

Proof. Since the rows consist of disjoint elements, all factors of the form [Rk] in
P (T ) commute, and we have

[Ci ∪ {kj}]
′P (T ) = [Ci ∪ {kj}]

′[Rk]
∏

l 6=k

[Rl]

(by Lemma 1) = [Ci ∪ {kj}]
′

(
1 +

(
ki,kj

))
(other factors)

=

(
[Ci ∪ {kj}]

′ − [Ci ∪ {kj}]
′

)
(other factors)

= 0.

Given a column Ci and an element kj in a column Cj to the right of i, we
denote by αi,kj

the sum of all transpositions consisting of kj and an element of
Ci, i.e.,

αi,kj
=

|Ci|∑

t=1

(
ti,kj

)

An important property of this element αi,kj
is the following:

Lemma 3. The element αi,kj
leaves γ(T ) invariant, i.e.,

αi,kj
γ(T ) = γ(T )

Proof. It suffices to show that (1 − αi,kj
)N(T )P (T ) = 0. The first step is to

write N(T ) as [Ci]
′
∏

r 6=i[Cr]
′. We begin by noting that

(1 − αi,kj
)N(T )P (T ) =

( ∏

t6=i,j

[Ct]
′

)
(1 − αi,kj

)[Ci]
′[Cj ]

′P (T ) (4.2)

since the elements of Ct, for t 6∈ {i, j} are disjoint from Ci ∪ {kj}. By Lemma
1 we have

(1 − αi,kj
)[Ci]

′ =

(
1 −

|Ci|∑

r=1

(ri,kj)

)
[Ci]

′ = [Ci ∪ {kj}]
′ (4.3)
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so substituting (4.3) into (4.2) and expanding [Cj ]
′ by Lemma 1 gives

(1 − αi,kj
)N(T )P (T )

=

( ∏

t6=i,j

[Ct]
′

)
[Ci ∪ {kj}]

′[Cj ]
′P (T )

=

( ∏

t6=i,j

[Ct]
′

)
[Ci ∪ {kj}]

′

(
1 − (1j,2j)

)
· · ·

· · ·

(
1 − (1j,kj) − (2j,kj) − · · · − ̂(kj,kj) − · · · − (|Cj|j,kj)

)
P (T ).

Moving the factors which do not involve kj to the left and rewriting gives

(1 − αi,kj
)N(T )P (T )

=

(
other factors

)
([Ci ∪ {kj}]

′)

(
1 − (1j,kj) − (2j,kj) − · · · − ̂(kj,kj) − · · · − (|Cj|j,kj)

)
(P (T ))

=

(
other factors

)

(
[Ci ∪ {kj}]

′P (T ) −

|Cj|∑

t=1
t6=k

[Ci ∪ {kj}]
′(tj,kj)P (T )

)

We now use the fact that [Ci ∪ {kj}]
′(tj,kj) = (tj,kj)[Ci ∪ {tj}]

′ to obtain

(1 − αi,kj
)N(T )P (T ) =

(
other factors

)

(
[Ci ∪ {kj}]

′P (T ) −

r∑

t=1
t6=k

(tj,kj)[Ci ∪ {tj}]
′P (T )

)

=0

where the last equality follows from Lemma 2.

We now have the tools to prove the difficult containment of Theorem 1.

Lemma 4. For all standard tableaux T and all m ≥ 0, we have the following
containment of vector spaces:

γTR ∩ V 2m+1
T R ⊆ γT QIm.

Proof. Since γT is an idempotent, it suffices to show that for any polynomial P
in the ideal V 2m+1

T R, γT P = P implies that P is m-quasiinvariant.
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Let P be such that V 2m+1
T |P and γT P = P . We wish to show that

(
1 −

(a, b)

)
P is divisible by (xa − xb)

2m+1 for all transpositions (a, b). We first

consider the case where a and b are in the same column of T . In this case we
have

(a, b)N(T ) = −N(T )

and so
(a, b)P = (a, b)γT P = −γT P = −P.

Thus (
1 − (a, b)

)
P = 2P ∈ V 2m+1

T R

which is divisible by the required factor.
Now suppose without loss that a = ki is to the left of b in column Cj . By

Lemma 3 P , is preserved by αi,b:

αi,bP = αi,bγT P = γT P = P. (4.4)

Equation (4.4) gives

(
1 − (a, b)

)
P = P − (a, b)P (4.5)

= αi,bP − (a, b)P (4.6)

=

|Ci|∑

t=1
t6=k

(ti, b)P. (4.7)

Since P ∈ V 2m+1
T R, for any t ∈ {1, . . . , |Ci|} with t 6= k we can rewrite P as

P = (xti − xa)2m+1(other factors).

Thus
(ti, b)P = (xb − xa)2m+1(other factors)

and we have

(xb − xa)2m+1 divides (ti, b)P for every t ∈ {1, . . . , |Ci|} with t 6= k.

Hence (xb−xa)2m+1 divides the right-hand side of equation 4.7, which completes
the proof.

The proof of Theorem 1 now follows easily.

Proof of Theorem 1. Lemma 4 gives one containment. It remains to show that

γTQIm ⊆ γTR ∩ V 2m+1
T R.
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In particular, we must show that for Q ∈ QIm we have

γT Q ∈ V 2m+1
T R.

Let P = γT Q = N(T )Q′. P must be anti-symmetric with respect to all trans-
positions in C(T ) since it is in the image of N(T ). Thus, for any (a, b) ∈

C(T ),

(
1 − (a, b)

)
P = 2P . Hence (xa − xb)

2m+1 divides 2P (and also P ) for

all (a, b) ∈ C(T ). This establishes equation (4.1) and hence the theorem.

5 A Basis For The Isotypic Component λ(T ) =

[n − 1, 1]

In this section, we refer to the quotient QIm/〈e1, . . . , en〉 by the symbol QI∗m.
Our object here is to describe a basis for γTQI∗m when T has a hook shape of
the form [n−1, 1]. Until otherwise specified, let λ be the partition [n−1, 1] and
let T be one of the (n − 1) standard tableaux of shape λ. In fact T is uniquely
defined by the lone entry of the second row. Suppose it’s j ∈ {2, 3, . . . , n}. We
define

Qk,m
T =

∫ xj

x1

tk
n∏

i=1

(t − xi)
mdt.

Our goal will be to show that the polynomials {Qk,m
T }n−2

k=0 are a set of represen-
tatives for a basis of γTQI∗m. Before we do this, we show that these polynomials
satisfy a remarkable recursion. In what follows, ei will denote the ith elemen-
tary symmetric function in the variables x1, . . . , xn, with the convention that
e0 = 1.

We first state for reference a classical symmetric function identity:

n∏

i=1

(t − xi) =

n∑

i=0

(−1)ieit
n−i. (5.1)

We now state our recursion.

Proposition 6. For m > 1 we have the identity

Q k,m
T =

n∑

i=0

(−1)iei Q n−i+k,m−1
T .

Proof. Unpacking the product in the definition of Q k,m
T we get

Q k,m
T =

∫ xj

x1

( n∏

i=1

(t − xi)

)
tk

n∏

l=1

(t − xl)
m−1dt, (5.2)
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and substituting (5.1) into (5.2) and pulling out the factors not involving t gives

Q k,m
T =

∫ xj

x1

( n∑

i=0

(−1)ieit
n−i

)
tk

n∏

l=1

(t − xl)
m−1dt

=

n∑

i=0

(−1)iei

∫ xj

x1

tn−i+k

n∏

l=1

(t − xl)
m−1dt

=

n∑

i=0

(−1)iei Q n−i+k,m−1
T .

Felder and Veselov [5, Section 4.5] gave elements of the lowest non-trivial
degree with the following function, defined for m ≥ 1, and 2 ≤ j ≤ n. These
are given by:

ϕ(j)
m =

1

1 + mn

∫ xj

x1

n∑

i=1

xi

t − xi

n∏

k=1

(t − xk)mdt

There is a very simple relationship between the ϕ
(j)
m and the Q0,m

T , which we
describe here.

Proposition 7. For fixed m ≥ 1, j ∈ {2, . . . , n}, and tableaux T of shape
(n − 1, 1) with j the element in the second row we have

Q0,m
T = −mϕ(j)

m .

Proof. Throughout this proof, f(X) will mean we evaluate the symmetric func-
tion f on the variables x1, . . . , xn, and f(Xk) will mean we omit xk; we evaluate
f on the variables x1, . . . , xk−1, xk+1, . . . , xn. The following calculation estab-

lishes a simple identity which will be useful for expressing ϕ
(j)
m in terms of the

Q k,m
T :

n∑

k=1

xk

n∏

l=1
l 6=k

(t − xl) =

n−1∑

i=0

(−1)itn−1−i

n∑

k=1

xkei(Xk) (5.3)

=

n−1∑

i=0

(−1)itn−1−i(i + 1)ei+1(X) (5.4)
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With this in hand, we can write ϕ
(j)
m in terms of the Q k,m

T as follows:

ϕ(j)
m =

1

1 + mn

∫ xj

x1

n∑

i=1

xi

t − xi

n∏

k=1

(t − xk)mdt

=
1

1 + mn

∫ xj

x1

n∑

i=1

xi

n∏

k=1

k 6=i

(t − xk)

n∏

k=1

(t − xk)m−1dt

=
1

1 + mn

∫ xj

x1

n−1∑

i=0

(−1)itn−1−i(i + 1)ei+1(X)

n∏

l=1

(t − xl)
m−1dt

=
1

1 + mn

n−1∑

i=0

(−1)i(i + 1)ei+1(X)

∫ xj

x1

n∏

l=1

tn−1−i(t − xl)
m−1dt

=
1

1 + mn

n−1∑

i=0

(−1)i(i + 1)ei+1(X)Qn−1−i,m−1
T

=
1

1 + mn

n∑

i=0

(−1)i−1(i)ei(X)Qn−i,m−1
T (5.5)

where the in last equality we have shifted the index i by 1, and then included
the (trivial) i = 0 term.

It remains to express the relationship between Q0,m
T and the previous sum.

To do this, we have the following lemma:

Lemma 5. For m ≥ 1, we have

n∑

i=0

(−1)i (m(n − i) + (k + 1)) ei(X)Qn−i+k,m−1
T = 0

Proof. We prove this by induction on m. When m = 1, we have

n∑

i=0

(−1)i (n − i + k + 1) ei(X)
1

n − i + k + 1

(
xn−i+k+1

j − xn−i+k+1
1

)

=

(
xk+1

j

n∑

i=0

(−1)iei(X)xn−i
j

)
−

(
xk+1

1

n∑

i=0

(−1)iei(X)xn−i
1

)

=xk+1
j

n∏

i=1

(xj − xi) − xk+1
1

n∏

i=1

(x1 − xi) = 0

Proceeding with the induction we must evaluate

n∑

i=0

(−1)i ((m + 1)(n − i) + (k + 1)) ei(X)Qn−i+k,m
T (5.6)
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Substituting with Proposition 6 gives

=

n∑

i=0

n∑

j=0

(−1)i+jei(X)ej(X) ((m + 1)(n − i) + (k + 1))Q
n−i+(n−j+k),m−1
T

=

n∑

j=0

(
n∑

i=0

(−1)i(m(n − i) + n − j + k + 1)ei(X)Q
n−i+(n−j+k),m−1
T

)
(−1)jej(X)+

(5.7)
n∑

j=0

n∑

i=0

(−1)i+jei(X)ej(X)(j − i)Q
2n−(i+j)+k,m−1
T (5.8)

Now, (5.7) is 0 by the inductive hypothesis and (5.8) is 0 by pairing the terms
with factor (i − j) to those with factor (j − i).

Rewriting the statement of this lemma for the case k = 0 and combining
with (5.5), we have

n∑

i=0

(−1)iei(X)(mn + 1)Qn−i,m−1
T =

n∑

i=0

(−1)iei(X)(mi)Qn−i,m−1
T

= −m

n∑

i=0

(−1)i−1(i)ei(X)Qn−i,m−1
T

= −m(mn + 1)ϕ(j)
m (5.9)

By Proposition 6 we also have

(mn + 1)Q0,m
T =

n∑

i=0

(−1)iei(X)(mn + 1)Qn−i,m−1
T . (5.10)

Combining (5.9) with (5.10), and dividing by mn + 1 completes the proof.

We now show that we have Qk,m
T ∈ γTQIm. By Theorem 1 it is enough to

show that we have Q k,m
T ∈ γT R and V 2m+1

T

∣∣ Q k,m
T .

Proposition 8. The polynomial Q k,m
T is invariant under the action of the

group algebra element γT .

Proof. We first show the statement is true in the case m = 0, and then proceed
by induction. From the definition of Q k,m

T we have

Qk,0
T =

∫ xj

x1

tk
n∏

i=1

(t − xi)
0dt (5.11)

=
xk+1

j − xk+1
1

k + 1
. (5.12)
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Thus Qk,0
T is invariant under the transposition (a, b) for a, b ∈ {2, . . . , ĵ, . . . , n}.

This immediately gives

[S{2,...,ĵ,...,n}]Q
k,0
T = (n − 2)!Qk,0

T . (5.13)

Now, P (T ) = [S{1,2,...,ĵ,...,n}] and expanding this according to Lemma 1 yields

P (T ) =

(
1 + (1, 2) + · · · + (̂1, j) + · · · (1, n)

)
[S{2,...,ĵ,...,n}]. (5.14)

Using (5.12), (5.13) and (5.14) and performing a simple calculation, we obtain

P (T )Qk,0
T = [S{1,2,...,ĵ,...,n}]

xk+1
j − xk+1

1

k + 1
(5.15)

=

(
1 + (1, 2) + · · · + (̂1, j) + · · · (1, n)

)
[S{2,...,ĵ,...,n}]

xk+1
j − xk+1

1

k + 1
(5.16)

=
(n − 2)!

k + 1

(
1 + (1, 2) + · · · + (̂1, j) + · · · (1, n)

)
(xk+1

j − xk+1
1 )

(5.17)

=
(n − 2)!

k + 1

(
(n − 1)(xk+1

j ) − xk+1
1 − (xk+1

2 + · · · + x̂k+1
j + · · · + xk+1

n )

)
.

(5.18)

Since N(T ) =

(
1 − (1, j)

)
we can use (5.18) to get

N(T )P (T )Qk,0
T =

(n − 2)!

k + 1

(
1 − (1, j)

)(
(n − 1)xk+1

j − xk+1
1 − (xk+1

2 + · · · + x̂k+1
j + · · · + xk+1

n )

)

(5.19)

=
(n − 2)!

k + 1

(
(n − 1)(xk+1

j − xk+1
1 ) − (xk+1

1 − xk+1
j ) − 0

)

(5.20)

=
n(n − 2)!

k + 1
(xk+1

j − xk+1
1 ). (5.21)

Finally, we use (5.21) and the fact fλ = (n − 1) = n!
n(n−2)! to reach the desired

conclusion

γT Qk,0
T =

n!

fλ

N(T )P (T )Qk,0
T

=
(xk+1

j − xk+1
1 )

k + 1

= Qk,0
T .
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With this in hand, we use Proposition 6 to write

γT Q k,m
T =

n∑

i=0

γT (−1)iei Q n−i+k,m−1
T .

Applying Proposition 5 and induction gives

γT Q k,m
T =

n∑

i=0

(−1)iei

(
γT Q n−i+k,m−1

T

)

=

n∑

i=0

(−1)iei

(
Q n−i+k,m−1

T

)

= Q k,m
T .

In order to complete our task of showing that Q k,m
T ∈ γT QIm, we must

show that (xj − x1)
2m+1

∣∣ Q k,m
T . We do so by proving the following stronger

statement:

Proposition 9. For all k,

lim
x1→xj

Q k,m
T

(xj − x1)2m+1
=

(−1)mm!2

(2m + 1)!
xk

j

n∏

i=2

i6=j

(xj − xi)
m.

Proof. This proof will rely on Leibniz’s integral formula, also known as the
technique of differentiation underneath the integral sign. We state the rule
here for the reader’s convenience. For f(x, y), u(x), v(x) continuous functions
we have

d

dx

∫ v(x)

u(x)

f(x, y)dy =

(
f(x, v(x)) ·

∂v

∂x

)
−

(
f(x, u(x)) ·

∂u

∂x

)
+

∫ v(x)

u(x)

∂f

∂x
dy

(5.22)

For example, we have

∂

∂xj

(∫ xj

x1

tk
n∏

i=1

(t − xi)
mdt

)
= xk

j

n∏

i=1

(xj − xi)
m − 0 +

∫ xj

x1

∂

∂xj

(
tk

n∏

i=1

(t − xi)
m

)

(5.23)

= 0 − 0 +

∫ xj

x1

(−m)tk(t − xj)
m−1

n∏

i=1

i6=j

(t − xi)
mdt.

(5.24)
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A similar calculation of ∂
∂xl

for the cases l = 1 and l 6= 1, j gives the more
general rule

∂

∂xl

(∫ xj

x1

tk
n∏

i=1

(t − xi)
mdt

)
=

∫ xj

x1

(−m)tk(t − xl)
m−1

n∏

i=1

i6=l

(t − xi)
mdt. (5.25)

Repeating this differentiation gives

∂p

∂xl
p

(∫ xj

x1

tk
n∏

i=1

(t − xi)
mdt

)
=

∫ xj

x1

(−1)p(m)pt
k(t − xl)

m−p

n∏

i=1

i6=l

(t − xi)
mdt

(5.26)

for p ≤ m. Expanding Qk,m
T according to the definition gives

lim
xj→x1

Qk,m
T

(xj − x1)2m+1
= lim

xj→x1

∫ xj

x1
tk
∏n

i=1(t − xi)
mdt

(xj − x1)2m+1
(5.27)

which is an indeterminate expression of the form 0
0 . Applying L’Hopital’s rule

and evaluating the numerator with (5.24) gives that expression (5.27) equals

lim
xj→x1

∂
∂xj

(∫ xj

x1
tk
∏n

i=1(t − xi)
mdt

)

∂
∂xj

(xj − x1)2m+1

= lim
xj→x1

∫ xj

x1
(−m)tk(t − xj)

m−1
∏n

i=1

i6=j
(t − xi)

mdt

(2m + 1)(xj − x1)2m

which is still indeterminate. However, after m applications of L’Hopital’s rule
we obtain

lim
xj→x1

(−1)m · m!
∫ xj

x1
tk
∏n

i=1

i6=j
(t − xi)

mdt

(2m + 1)(2m)(2m − 1) · · · (m + 2)(xj − x1)m+1

and one more application of L’Hopital’s rule, evaluated this time with the Fun-
damental Theorem of Calculus, yields

lim
xj→x1

(−1)m · m! · xk
j

∏n
i=1

i6=j
(xj − xi)

m

(2m + 1)(2m)(2m − 1) · · · (m + 1)(xj − x1)m
. (5.28)

We now cancel the term (xj −x1)
m from both numerator and denominator and

the Proposition is proven.

The polynomiality of limx1→xj

Q
k,m

T

(xj−x1)2m+1 immediately gives that (xj − x1)
2m+1

∣∣Q k,m
T .

Proposition 10. The polynomial Q k,m
T ∈ γT QIm for all k, m.
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Proof. By Theorem 1 we have that γT QIm = γT R∩V 2m+1
T R. Hence the result

is proved by the previous two propositions.

We now show that the polynomials Qk,m
T form a basis for the hook shape

[n − 1, 1]. For this proof, we use Felder and Veselov’s Hilbert series result, as
stated in Equation (1.1). Furthermore, they show in [5] that QI∗m affords the
left-regular representation, so that one can break up a basis for QI∗m into a set
of bases for the various isotypic components. In particular, this shows for T of
shape [n − 1, 1] that the projection of the quotient γT QI∗m has Hilbert series
given by

n−2∑

k=0

qmn+1+k.

With this result in mind, we now prove the following main theorem.

Theorem 2. The set

{Q0,m
T , Q1,m

T , Q2,m
T , . . . , Qn−2,m

T }

is a basis for γTQI∗m.

Proof. We first note that Qk,m
T has degree mn+k+1, and in particular, each of

these elements are of different degrees, and matching that of the Hilbert series.
Since the set S = {Q0,m

T , Q1,m
T , Q2,m

T , . . . , Qn−2,m
T } has size n − 1, proving S is

linearly independent in γTQI∗m shows that S is a basis for γTQI∗m.

Since the quotient QI∗m is graded and the polynomials Qk,m
T are of different

degrees as k varies, it suffices to show that Qk,m
T is nonzero in the quotient for

0 ≤ k ≤ n− 2. Put another way, we must show that Qk,m
T is not in the ideal of

γTQIm generated by 〈e1, . . . , en〉. Equivalently we must show that polynomials
of the form

Pk = Qk,m
T + A1Q

k−1,m
T + · · · + Ak−1Q

1,m
T + AkQ0,m

T

(where the Ai are symmetric functions of degree i) can only equal 0 if k ≥ n−1.

In fact, we use the explicit formulas for limxj→x1
Qk,m

T /V 2m+1
T given by

Proposition 9 to show the stronger statement

lim
xj→x1

Pk/V 2m+1
T = 0 =⇒ k ≥ n − 1

regardless of the choice of the symmetric functions. Letting Ãi denote the limit
xj → x1 applied to the symmetric function Ai, and assuming w.l.o.g. that
j = 2, we have

lim
x2→x1

Pk/V 2m+1
T = 0

=⇒

(
(−1)mm!2

(2m + 1)!

n∏

i=3

(x1 − xi)
m

)(
xk

1 + Ã1x
k−1
1 + · · · + Ãk−1x1 + Ãk

)
= 0

=⇒ xk
1 + Ã1x

k−1
1 + · · · + Ãk−1x1 + Ãk = 0

=⇒ lim
x2→x1

(
xk

1 + A1x
k−1
1 + · · · + Ak

)
= 0
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Setting

Q(x1, . . . , xn) = xk
1 + A1x

k−1
1 + · · · + Ak

we must have

Q(x1, . . . , xn) = (x2 − x1) · R(x1, . . . , xn)

However, Q must be symmetric with respect to all pairs of variables not involving
x1. Thus, for any σ ∈ S{2,3,...,n}, σQ = Q and so

Q(x1, . . . , xn) = σQ(x1, . . . , xn) = (xσ(2) − x1) · σR(x1, . . . , xn),

and so
∏n

i=2(xi−x1) divides Q(x1, . . . , xn). Consequently, k, which is the degree
of Q(x1, . . . , xn), must be greater than or equal to n − 1.

6 A More Explicit Description of Q
k,m
T

We now know that the set {Qk,m
T }n−2

k=0 is indeed a basis for γTQI∗m. In this

section we show an even more explicit formula for the Qk,m
T ’s. Throughout, we

shall assume without loss that the element in the second row of T (which we have

been calling j) is 2. Since VT = (x2 − x1) divides Q k,m
T , we change variables to

understand Q k,m
T from a more combinatorial point of view. Namely, we expand

with respect to the variables

Z = {x1, x̂2, . . . , xn, z = x2 − x1}.

This is in contrast to the usual set of variables

X = {x1, x2, . . . , xn}.

Theorem 3. The coefficient of (x2 − x1)
r = zr in Q k,m

T (when expanded with
respect to Z) is

m!
r(r−1)(r−2)···(r−m)

m∑

i3=0

m∑

i4=0

· · ·

m∑

in=0

(−1)m+i3+i4+···+in

(
m

i3

)(
m

i4

)
· · ·

(
m

in

)
×

(
k + m(n − 2) − i3 − i4 − · · · − in

r − (2m + 1)

)
x

(k+m(n−2)−i3−i4−···−in)−(r−(2m+1))
1 xi3

3 xi4
4 · · ·xin

n .

Proof. We begin by evaluating the integral

∫ x2

tm=x1

∫ tm

tm−1=x1

· · ·

∫ t1

t0=x1

(−1)mm! tk0

n∏

i=1

i6=2

(t0 − xi)
m dt0 · · ·dtm. (6.1)
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We will then show that this integral is another way of writing Qk,m
T . We begin

our evaluation of (6.1) by expanding each of the (t0 − xi)
m for i ≥ 3 by the

binomial theorem, thus obtaining

∫ x2

tm=x1

∫ tm

tm−1=x1

· · ·

∫ t1

t0=x1

(−1)mm! tk0(t0 − x1)
m

( m∑

i3=0

(−1)i3

(
m

i3

)
tm−i3
0 xi3

3

)
×

( m∑

i4=0

(−1)i4

(
m

i4

)
tm−i4
0 xi4

4

)
· · ·

( m∑

in=0

(−1)in

(
m

in

)
tm−in

0 xin

n

)
dt0 · · · dtm.

This quantity simplifies to

∫ x2

tm=x1

∫ tm

tm−1=x1

· · ·

∫ t1

t0=x1

m! tk0(t0 − x1)
m

( m∑

i3=0

m∑

i4=0

· · ·

m∑

in=0

(−1)m+i3+i4+···+in×

(
m

i3

)(
m

i4

)
· · ·

(
m

in

)
xi3

3 xi4
4 · · ·xin

n · t
m·(n−2)−i3−i4−···−in

0

)
dt0 · · · dtm,

and by rearranging we obtain

m!

m∑

i3=0

m∑

i4=0

· · ·

m∑

in=0

(−1)m+i3+i4+···+in

(
m

i3

)(
m

i4

)
· · ·

(
m

in

)
xi3

3 xi4
4 · · ·xin

n ×

(∫ x2

tm=x1

∫ tm

tm−1=x1

· · ·

∫ t1

t0=x1

t
k+m(n−2)−i3−i4−···−in

0 (t0 − x1)
m dt0 · · · dtm

)
.

For convenience of notation we let K = k + m · (n − 2) − i3 − i4 − · · · − in,
allowing us to write the above as

m!

m∑

i3=0

m∑

i4=0

· · ·

m∑

in=0

(−1)m+i3+i4+···+in

(
m

i3

)(
m

i4

)
· · ·

(
m

in

)
xi3

3 xi4
4 · · ·xin

n ×

(∫ x2

tm=x1

∫ tm

tm−1=x1

· · ·

∫ t1

t0=x1

tK0 (t0 − x1)
m dt0 · · · dtm

)
.

At this point, we rewrite tK0 as (x1 + (t0 − x1))
K , which allows us to simplify

tK0 (t0 − x1)
m as

∑K

R=0

(
K
R

)
xK−R

1 (t0 − x1)
R+m, hence we conclude (6.1) equals

m!

m∑

i3=0

m∑

i4=0

· · ·

m∑

in=0

(−1)m+i3+i4+···+in

(
m

i3

)(
m

i4

)
· · ·

(
m

in

)
×

K∑

R=0

xK−R
1 · xi3

3 xi4
4 · · ·xin

n

(∫ x2

tm=x1

∫ tm

tm−1=x1

· · ·

∫ t1

t0=x1

(t0 − x1)
m+R dt0 · · · dtm

)
,

and the inside integral is easily seen to evaluate to

(x2 − x1)
2m+1+R

(R + 2m + 1)(R + 2m) · · · (R + m + 1)
.
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Finally, we let r = R + (2m + 1), i.e. R = r − (2m + 1), so that r signifies the
power of z = (x2−x1) in the expression. Thus the coefficient of zr is as claimed
in the statement of the theorem.

It remains to show that Qk,m
T is in fact equal to the quantity in (6.1). We

note that the argument above shows that z2m divides (6.1). We also know from

Proposition 9 that z2m divides Qk,m
T . Thus, showing

∂m

∂zm
Qk,m

T =
∂m

∂zm
(6.1)

shows equality of Qk,m
T and (6.1). Furthermore, the operator ∂

∂z
applied to a

polynomial in the generating set Z is equivalent to the operator ∂
∂x2

applied to

the same polynomial in the generating set X . Thus, we will show Qk,m
T = (6.1)

by showing

∂m

∂xm
2

Qk,m
T =

∂m

∂xm
2

(6.1) (6.2)

For the LHS, consider the function f(t) = tk
∏n

i=1(t− xi)
m. As in the previous

section, we use Leibniz’s formula to obtain

∂

∂x2

∫ x2

t=x1

f(t) dt = f(x2) +

∫ x2

t=x1

(
∂

∂x2
f(t)

)
dt

=

∫ x2

t=x1

(
∂

∂x2
f(t)

)
dt.

After iterating m times, we obtain

∂m

∂xm
2

∫ x2

x1

tk
n∏

i=1

(t − xi)
mdt = (−1)mm!

∫ x2

x1

tk
n∏

i=1

i6=2

(t − xi)
mdt.

For the RHS, we let

g(t, m) =

∫ t

tm−1=x1

· · ·

∫ t1

t0=x1

(−1)mm! tk0

n∏

i=1

i6=2

(t0 − xi)
m dt0 · · ·dtm−1,

and note by the Fundamental Theorem of Calculus that

∂

∂x2

∫ x2

tm=x1

g(t, m) dtm =

∫ x2

tm−1=x1

g(t, m − 1) dtm−1
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since the integrand does not include variable x2. Thus

∂m

∂xm
2

∫ x2

tm=x1

∫ tm

tm−1=x1

· · ·

∫ t1

t0=x1

(−1)mm! tk0

n∏

i=1

i6=2

(t0 − xi)
m dt0 · · · dtm

=(−1)mm!

∫ x2

x1

tk
n∏

i=1

i6=2

(t − xi)
mdt

=
∂m

∂xm
2

∫ x2

x1

tk
n∏

i=1

(t − xi)
mdt

which establishes (6.2).

7 The Action of Calogero-Moser Operator Lm

In this section, we discuss a further property of our basis for γT QI∗m for T a
standard Young tableau of shape [n − 1, 1]. In particular, as discussed in [4, 6]
and elsewhere in the literature, there is a natural family of operators which act
on the quasiinvariants. These are called the Calogero-Moser operators and we
denote them by Lm. In particular these operators are defined, in the symmetric
group case, as

Lm =

n∑

i=1

∂2

∂x2
i

− 2m
∑

1≤i<j≤n

1

xi − xj

(
∂

∂xi

−
∂

∂xj

)
.

The action of Lm on our basis is striking. In particular, we obtain the following
formulas for this action:

Theorem 4. Lm(Qk,m
T ) = k(k − 1)Qk−2,m

T for k ≥ 2 and equals zero for k = 0
or 1.

The significance of this formula is how Lm acts as second differentiation with
respect to the basis {Q0,m

T , Q1,m
T , . . . , Qn−2,m

T }. This action naturally generalizes

the action of L0 =
∑n

i=1
∂2

∂x2
i

on the polynomial ring QI0.

Proof. We now proceed with the proof of Theorem 4. For m = 0, we have

Qk,0
T =

x
k+1

j
−x

k+1

1

k+1 by (5.12). Thus

L0Q
k,0
T =

(
∂2

∂x1
2

+
∂2

∂xj
2

)(
xk+1

j − xk+1
1

k + 1

)
− 0

= (k)(xk−1
j − xk−1

1 )

= (k)(k − 1)Qk−2,0
T .
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We state here some useful identities which are valid for m ≥ 1. First, we have

∫ xj

x1

∂2

∂t2

(
tk

n∏

i=1

(t − xi)
m

)
dt (7.1)

=

∫ xj

x1

(
∂2

∂t2
tk
) n∏

i=1

(t − xi)
mdt (7.2)

+ 2

∫ xj

x1

(
∂

∂t
tk
)(

∂

∂t

n∏

i=1

(t − xi)
m

)
dt (7.3)

+

∫ xj

x1

tk

(
∂2

∂t2

n∏

i=1

(t − xi)
m

)
dt. (7.4)

We also have

∫ xj

x1

∂

∂t

[
tk

∂

∂t

(
n∏

i=1

(t − xi)
m

)]
dt (7.5)

=

∫ xj

x1

(
∂

∂t
tk
)(

∂

∂t

n∏

i=1

(t − xi)
m

)
dt +

∫ xj

x1

tk

(
∂2

∂t2

n∏

i=1

(t − xi)
m

)
dt

=
1

2
(7.3) + (7.4).

Additionally, we can compute (7.2) as follows:

∫ xj

x1

(
∂2

∂t2
tk
) n∏

i=1

(t − xi)
mdt = k(k − 1)

∫ xj

x1

tk−2
n∏

i=1

(t − xi)
mdt

= k(k − 1)Qk−2,m
T .

Now, for m ≥ 2 we recall equations (5.25) and (5.26) where we used Leibniz’s
integral formula to obtain

∂

∂xi

(Qk,m
T ) =

∫ xj

x1

(−m)tk(t − xi)
m−1

n∏

l=1

l 6=i

(t − xl)
mdt

and

∂2

∂xi
2
(Qk,m

T ) =

∫ xj

x1

m(m − 1)tk(t − xi)
m−2

n∏

l=1

l 6=i

(t − xl)
mdt.
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Using these we can compute

∑

1≤i<l≤n

1

xi − xl

(
∂

∂xi

−
∂

∂xl

)
Qk,m

T

=(−m)

∫ xj

x1

tk
∑

1≤i<l≤n

1

xi − xl

([
(t − xi)

m−1
n∏

p=1

p6=i

(t − xp)
m

]
−

[
(t − xl)

m−1
n∏

p=1

p6=l

(t − xp)
m

])
dt

=(−m)

∫ xj

x1

tk
∑

1≤i<l≤n

1

xi − xl

[
(t − xi)

m−1(t − xl)
m − (t − xi)

m(t − xl)
m−1

] n∏

p=1

p6=i,l

(t − xp)
mdt

=(−m)

∫ xj

x1

tk

[
n∏

p=1

(t − xp)
m−1

]
∑

1≤i<l≤n

[
(t − xl) − (t − xi)

xi − xl

n∏

p=1

p6=i,l

(t − xp)

]
dt

=(−m)

∫ xj

x1

tk
∑

1≤i<l≤n

(t − xi)
m−1(t − xl)

m−1
n∏

p=1

l 6=i,l

(t − xl)
mdt

and hence

Lm(Qk,m
T ) = m(m − 1)

∫ xj

x1

tk
n∑

i=1

(t − xi)
m−2

n∏

l=1

l 6=i

(t − xl)
mdt

+ 2m2

∫ xj

x1

tk
∑

1≤i<l≤n

(t − xi)
m−1(t − xl)

m−1
n∏

p=1

p6=i,j

(t − xl)
mdt.

We recognize this expression as being nothing more than

Lm(Qk,m
T ) =

∫ xj

x1

tk
(

∂2

∂t2

n∏

i=1

(t − xi)
m

)
dt. (7.6)

Now, if we evaluate (7.1) by the fundamental theorem of calculus we get

∫ xj

x1

∂2

∂t2

(
tk

n∏

i=1

(t − xi)
m

)
dt

= ktk−1
n∏

i=1

(t − xi)
m + tk

n∑

i=1

(t − xi)
m−1

∏

l=1

l 6=i

(t − xl)
m

∣∣∣∣
t=xj

t=x1

= 0.
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Thus we have (7.2)+(7.3)+(7.4) = 0. Similarly we can evaluate (7.5) to obtain

1

2
(7.3) + (7.4)

=

∫ xj

x1

∂

∂t

[
tk

∂

∂t

(
n∏

i=1

(t − xi)
m

)]
dt

=tk
n∑

i=1

(t − xi)
m−1

∏

l=1

l 6=i

(t − xl)
m

∣∣∣∣
t=xj

t=x1

=0.

Using (7.2) + (7.3) + (7.4) = 0 and 1
2 (7.3) + (7.4) = 0, we obtain (7.2) = (7.4).

So by (7.6) we have

Lm(Qk,m
T ) = (7.4)

= (7.2)

= k(k − 1)Qk−2,m
T .

Thus we have proven the theorem for m = 0 and m ≥ 2. For m = 1 similar
logic works. We first compute

n∑

i=1

∂2

∂xi
2

(∫ xj

x1

tk
n∏

l=1

(t − xl)dt

)
=

n∑

i=1

∂

∂xi


−

∫ xj

x1

tk
n∏

l=1

l 6=i

(t − xl)dt




= −

(
∂

∂x1
+

∂

∂xj

)


∫ xj

x1

tk
n∏

l=1

l 6=i

(t − xl)dt




= xk
1

(
n∏

i=2

(x1 − xi)

)
− xk

j




n∏

i=1

i6=j

(xj − xi)




and we can easily verify that this quantity is also equal to

−

∫ xj

x1

∂2

∂t2

(
tk

n∏

i=1

(t − xi)

)
dt = −(7.1).
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With that in hand, we also compute

∑

1≤i<l≤n

1

xi − xl

(
∂

∂xi

−
∂

∂xl

)∫ xj

x1

tk
n∏

l=1

(t − xl)dt

=
∑

1≤i<l≤n

1

xi − xl

∫ xj

x1

tk




n∏

p=1

p6=i

(t − xp) −

n∏

p=1

p6=l

(t − xp)


 dt

=
∑

1≤i<l≤n

∫ xj

x1

tk




n∏

p=1

p6=i,l

(t − xp)
[ (t − xl) − (t − xi)

xi − xl

]

 dt

=
∑

1≤i<l≤n

∫ xj

x1

tk
n∏

p=1

p6=i,l

(t − xp)dt

Combining this with the following:

(7.4) =

∫ xj

x1

tk

(
∂2

∂t2

n∏

i=1

(t − xi)

)
dt

= 2
∑

1≤i<l≤n

∫ xj

x1

tk
n∏

p=1

p6=i,l

(t − xp)dt

shows that we have L1Q
k,1
T = −(7.1) + (7.4). Further, we have

(7.5) =

∫ xj

x1

∂

∂t

[
tk

∂

∂t

(
n∏

i=1

(t − xi)

)]
dt

=

∫ xj

x1

∂

∂t

[
tk

n∑

i=1

n∏

l=1

l 6=i

(t − xl)

]
dt

= xk
j




n∏

i=1

i6=j

(xj − xi)


− xk

1

(
n∏

i=2

(x1 − xi)

)

= (7.1).

Hence we conclude

(7.1) = (7.2) + (7.3) + (7.4)

= (7.2) + (−2(7.4) + 2(7.5)) + (7.4)

= (7.2) − (7.4) + 2(7.1)

⇒ (7.2) = −(7.1) + (7.4)

= L1Q
k,1
T

thus completing the proof.
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8 Change of Basis Matrix for Quasiinvariants

We now turn our attention to analyzing the relationship between the m-quasiinvariants
and the (m + 1)-quasiinvariants. In particular, recall that QIm ⊃ QIm+1 ⊃ Λn

for all m, and so we can expand any basis for QIm+1 in terms of a basis for
QIm over the ring Λn of symmetric functions. Each of these bases has n! el-
ements, and thus we obtain a square change of basis matrix. Since the only
invertible symmetric functions are the constants, any choice of bases for QIm

and QIm+1 will yield a change of basis matrix with the same determinant up
to a scalar multiple. We in fact obtain the following explicit formula for these
determinants:

Theorem 5. For all n and m, any matrix expressing the expansion of a basis
for QIm+1 in terms of a basis for QIm with symmetric function coefficients will
have a determinant equal to a scalar multiple of (∆n)n!, where ∆n denotes the
Vandermonde determinant

∏
1≤i<j≤n(xi − xj).

Lemma 6. The ring ∆2
n ·QIm is a subring of QIm+1.

Proof. Since ∆n is antisymmetric, ∆2
n is a symmetric function and by Proposi-

tion 5, we have for polynomial P ∈ QIm,

(1 − (i, j))(∆2
nP ) = ∆2

n((1 − (i, j))P ) = ∆2
n(xi − xj)

2m+1P ′

for all 1 ≤ i < j ≤ n. In particular, for all 1 ≤ i < j ≤ n, the polynomial (1 −
(i, j))(∆2

nP ) is divisible by (xi−xj)
2m+3 and thus ∆2

nP is (m+1)-quasiinvariant.

Proof of Theorem 5. We begin picking a basis (over Λn) of homogeneous poly-
nomials {βS,T} for QIm where S and T range over all pairs of standard tableaux
of the same shape and the degree of βS,T is m

((
n
2

)
− content(λ(T ))

)
+cocharge(T ).

We know this is possible by the Hilbert series stated in (1.1). We similarly pick a
basis {αS,T} for QIm+1. Now, by Lemma 6 we have the following containments:

∆2
n ·QIm ⊂ QIm+1 ⊂ QIm.

We label these modules M1, M2, and M3 respectively and use the basis {∆2
nβS,T}

for M1. We set A to be the change of basis matrix between M1 and M2 and B
to be the matrix from M2 to M3. We immediately obtain that AB = diag(∆2

n).

Thus, in particular, det(B) divides ∆
2(n!)
n .

We now consider the degree of an arbitrary non-zero term of det(B). By
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considering the difference in degrees of all basis elements, we must have

degree(det(B))

=


 ∑

T∈ST (n)

fλ(T )(m + 1)

((
n

2

)
− content(λ(T ))

)
+ cocharge(T )




−


 ∑

T ′∈ST (n)

fλ(T ′)m

((
n

2

)
− content(λ(T ′))

)
+ cocharge(T ′)




=
∑

λ⊢n

f2
λ

((
n

2

)
− content(λ)

)

However, it is easy to see that fλ = fλ′ and content(λ) = −content(λ′), where
λ′ is the conjugate (or transpose) of partition λ. Hence we have

degree(det(B)) =
∑

λ⊢n

f2
λ

(
n

2

)
=

(
n

2

)
n!.

Since det(B) is a symmetric function of degree
(
n
2

)
n! which divides ∆

2(n!)
n , and

∆2
n has no nontrivial symmetric function factors, we conclude that det(B) equals

∆n!
n , up to a scalar multiple.

9 Conclusions and Open Problems

In this paper, we provided a decomposition of the ring of m-quasiinvariants into
isotypic components and gave two easy criteria for characterizing such elements.
One application of this new characterization was an explicit description of a
basis for the isotypic component corresponding to shape [n−1, 1]. In particular
such basis elements can be written as either integrals or algebraically using
polynomials with coefficients given as products of binomial coefficients.

One natural extension of this research involves further analysis of the rep-
resentation theoretic aspects of m-quasiinvariants. In particular can one re-
characterize quasiinvariants for other Coxeter groups using analogous criteria.
Another direction is the computation of explicit bases for more isotypic com-
ponents. It would be even better if the operator Lm respected these bases in a
similar manner.
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