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The Laplacian Matrix and the Matrix-Tree Theorem

Our story begins with the Laplacian Matrix and the Matrix-Tree Theorem
for graphs.
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vertices as V = {v1, v2, . . . , vn}.
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The Laplacian Matrix and the Matrix-Tree Theorem

Our story begins with the Laplacian Matrix and the Matrix-Tree Theorem
for graphs.

Given a finite graph G = (V ,E ), possibly with multiple edges, label the
vertices as V = {v1, v2, . . . , vn}.

We let dij denote the number of edges in E of the form (vi , vj ) and
val(vi) =

∑n
j=1 dij , i.e. the number of edges incident to vi .
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The Laplacian Matrix and the Matrix-Tree Theorem

Our story begins with the Laplacian Matrix and the Matrix-Tree Theorem
for graphs.

Given a finite graph G = (V ,E ), possibly with multiple edges, label the
vertices as V = {v1, v2, . . . , vn}.

We let dij denote the number of edges in E of the form (vi , vj ) and
val(vi) =

∑n
j=1 dij , i.e. the number of edges incident to vi .

Define L(G ) to be the matrix whose diagonal entries are val(vi ) and whose
off-diagonal entries are −dij .
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Example of a Laplacian Matrix

3

1

2

4 5 L(G ) =




2 −1 −1 0 0
−1 4 −2 −1 0
−1 −2 4 −1 0
0 −1 −1 3 −1
0 0 0 −1 1




.

The Reduced Laplacian matrix L0(G ) is defined by deleting a row and
column from L(G ). It is a theorem (the Matrix-Tree Theorem) that
det L0(G ) does not depend on the choice of row and column deleted
(as long as they are of the same index).
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Example of a Laplacian Matrix
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1

2

4 5 L(G ) =




2 −1 −1 0 0
−1 4 −2 −1 0
−1 −2 4 −1 0
0 −1 −1 3 −1
0 0 0 −1 1




.

The Reduced Laplacian matrix L0(G ) is defined by deleting a row and
column from L(G ). It is a theorem (the Matrix-Tree Theorem) that
det L0(G ) does not depend on the choice of row and column deleted
(as long as they are of the same index).

For example, in the above, det L0(G ) = 12.
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The Matrix-Tree Theorem

Theorem (The Matrix-Tree Theorem or Kirchoff’s Theorem)
The determinant of the reduced Laplacian matrix L0(G ) of a graph G is
equal to the number of spanning trees of G .
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For example, in the above, det L0(G ) = 12.
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Sandpiles, Chip-firing, and G -parking functions

We can get other families of objects in bijection with the set of spanning
trees.
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Sandpiles, Chip-firing, and G -parking functions

We can get other families of objects in bijection with the set of spanning
trees.

We define a chip configuration or divisor on G to be an assignment of an
integer to each vertex of G .

We say that two chip-configurations are equivalent if one can be reached
from the other by a sequence of chip-firing moves.
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Sandpiles, Chip-firing, and G -parking functions

We can get other families of objects in bijection with the set of spanning
trees.

We define a chip configuration or divisor on G to be an assignment of an
integer to each vertex of G .

We say that two chip-configurations are equivalent if one can be reached
from the other by a sequence of chip-firing moves.

This means that we pick one vertex to share equally with all of its
neighbors, sending one chip along each incident edge.
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We can get other families of objects in bijection with the set of spanning
trees.

We define a chip configuration or divisor on G to be an assignment of an
integer to each vertex of G .

We say that two chip-configurations are equivalent if one can be reached
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We can get other families of objects in bijection with the set of spanning
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integer to each vertex of G .
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Reduced Configurations or G -parking functions

If a configuration has a nonnegative number of chips on each vertex and
no vertex can fire, we call such a configuration stable.
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Reduced Configurations or G -parking functions

If a configuration has a nonnegative number of chips on each vertex and
no vertex can fire, we call such a configuration stable.

However, in the case of a stable configuration, it might be possible for
multiple vertices to simultaneously fire:

00

1

1

0

−→ 0

1

−3

3

1 −→

Musiker (University of Minnesota) Linear Systems on Tropical Curves April 16, 2011 7 / 34



Reduced Configurations or G -parking functions
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Reduced Configurations or G -parking functions

If a configuration has a nonnegative number of chips on each vertex and
no vertex can fire, we call such a configuration stable.

However, in the case of a stable configuration, it might be possible for
multiple vertices to simultaneously fire:
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Reduced Configurations or G -parking functions
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Reduced Configurations or G -parking functions

If a configuration has a nonnegative number of chips on each vertex and
no vertex can fire, we call such a configuration stable.

However, in the case of a stable configuration, it might be possible for
multiple vertices to simultaneously fire:
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Reduced Configurations or G -parking functions

If a configuration has a nonnegative number of chips on each vertex and
no vertex can fire, we call such a configuration stable.
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Reduced Configurations or G -parking functions

If a configuration has a nonnegative number of chips on each vertex and
no vertex can fire, we call such a configuration stable.

However, in the case of a stable configuration, it might be possible for
multiple vertices to simultaneously fire:
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Reduced Configurations or G -parking functions

If a configuration has a nonnegative number of chips on each vertex and
no vertex can fire, we call such a configuration stable.

However, in the case of a stable configuration, it might be possible for
multiple vertices to simultaneously fire:

2

−1

0

0

1 −→

2

0

0

0 0

We call a configuration super-stable (with respect to v0) if no subset of
vertices S ⊆ V \ {v0} can fire.

These are also known as G -parking functions or v0-reduced divisors.
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Example of Super-stables/G -Parking Functions

In this example, we have 12 super-stable configurations
(with respect to vertex v5), which are also counted by det L0(G ).
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We designate one vertex to be a sink and allow arbitrary addition or
subtraction of chips to that vertex. Then up to equivalence by chip-firing
moves, there is a unique super-stable configuration in each orbit.
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Linear Systems on Graphs

In 2007, Matt Baker and Sergei Norine studied analogies between
chip-firing dynamics on graphs and linear systems of divisors on curves.
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Linear Systems on Graphs

In 2007, Matt Baker and Sergei Norine studied analogies between
chip-firing dynamics on graphs and linear systems of divisors on curves.

We define a chip configuration (equivalently a divisor D on graph G ) to be
effective if the number of chips on v is nonnegative for each v ∈ V .

Two divisors are linearly equivalent if their chip-configuations differ by a
sequence of chip-firing moves.

Given a divisor D, the linear system of D, denoted as |D|, is the set of all
effective divisors that are linearly equivalent to D.
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Linear Systems on Graphs

In 2007, Matt Baker and Sergei Norine studied analogies between
chip-firing dynamics on graphs and linear systems of divisors on curves.

We define a chip configuration (equivalently a divisor D on graph G ) to be
effective if the number of chips on v is nonnegative for each v ∈ V .

Two divisors are linearly equivalent if their chip-configuations differ by a
sequence of chip-firing moves.

Given a divisor D, the linear system of D, denoted as |D|, is the set of all
effective divisors that are linearly equivalent to D.

In other words, the set Z
|V |
≥0 breaks up into equivalence classes via

chip-firing. The linear systems are the orbits and each orbit has a
representative which is of the form S + dv0 where S is a super-stable
configuration (with respect to sink v0) and d ∈ Z≥0.
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Example of a Linear System

Let G be as above and D be the divisor:

00

1

1

0

.
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Example of a Linear System

Let G be as above and D be the divisor:

00

1

1

0

. Then the linear system |D| consists of D and the
following four divisors

00

2

0

0

0

0

0

0

2

0

0

0

1 1

0

0

0

0 2
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Riemann-Roch Theorem for Graphs

Define the degree of a divisor to be the total number of chips in the
configuration.

Let KG (the canonical divisor) be the chip-configuration such that there
are val(v) − 2 chips on each vertex v .

The genus g(G ) of the graph is |E | − |V | + 1 = b1(G ).
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Riemann-Roch Theorem for Graphs

Define the degree of a divisor to be the total number of chips in the
configuration.

Let KG (the canonical divisor) be the chip-configuration such that there
are val(v) − 2 chips on each vertex v .

The genus g(G ) of the graph is |E | − |V | + 1 = b1(G ).

We also have to define a rank function r(D) = r(|D|) defined as follows:

1) If D is not effective nor linearly equivalent to an effective divisor, then
r(D) = −1.

2) If D is linearly equivalent to an effective divisor, i.e. |D| 6= ∅, then
r(D) ≥ 0.

3) If |D − E | 6= ∅ for any effective divisor E of degree k, then r(D) ≥ k.
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Riemann-Roch Theorem for Graphs

We also have to define a rank function r(D) = r(|D|) defined as follows:

1) If D is not effective nor linearly equivalent to an effective divisor, then
r(D) = −1.

2) If D is linearly equivalent to an effective divisor, i.e. |D| 6= ∅, then
r(D) ≥ 0.

3) If |D − E | 6= ∅ for any effective divisor E of degree k, then r(D) ≥ k.

Theorem (Baker-Norine 2007) We have the following equality for any
graph G and any divisor D.

r(D) − r(KG − D) = deg(D) − g(G ) + 1.
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Example of Riemann-Roch

Example: Let D and G be as follows: 00

1

1

0

.
Then the canonical divisor for this graph is

KG is

0

2

1 −1

2

, and KG − D is

0

1 −1

1

1

˜ 00

1

1

0

.
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Example of Riemann-Roch

Example: Let D and G be as follows: 00

1

1

0

.
Then the canonical divisor for this graph is

KG is

0

2

1 −1

2

, and KG − D is

0

1 −1

1

1

˜ 00

1

1

0

.

Then g(G ) = 3, deg(D) = 2, r(D) = r(K − D) = 1, and the
Riemann-Roch equality 1 − 1 = 2 − 3 + 1 is satisfied.

(To see that r(D) = 1, note that we can subtract a chip from any vertex
and we are still linearly equivalent to an effective divisor.

However, it is possible to subtract two chips and get a non-effective.)
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And now for something completely different . . .
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Tropical Arithmetic

We work over the tropical semi-ring

(R ∪ {−∞},⊕,⊙)

where a ⊕ b = max(a, b) and a ⊙ b = a + b.
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Tropical Arithmetic

We work over the tropical semi-ring

(R ∪ {−∞},⊕,⊙)

where a ⊕ b = max(a, b) and a ⊙ b = a + b.

Notice that a + max(b, c) = max(a + b, a + c), so we have the tropical
distributive law

a ⊙ (b ⊕ c) = (a ⊙ b) ⊕ (a ⊙ c).
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Tropical Arithmetic

We work over the tropical semi-ring

(R ∪ {−∞},⊕,⊙)

where a ⊕ b = max(a, b) and a ⊙ b = a + b.

Notice that a + max(b, c) = max(a + b, a + c), so we have the tropical
distributive law

a ⊙ (b ⊕ c) = (a ⊙ b) ⊕ (a ⊙ c).

We also have the tropical commutative and associative laws. Also,

a ⊕ (−∞) = a and b ⊙ 0 = b

for any a and b, so we have additive and multiplicative identities.

Lastly, we have multiplicative inverses, but we do not have additive
inverses.
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Tropical Polynomials

We can form Tropical Polynomials such as

P = x⊙3 ⊕ 2 ⊙ x ⊕ 0 = max(3x , 2 + x , 0).

0

x+2 3x

Trop(P)

A tropical polynomial is a piecewise linear function with integer slopes,
whose image is convex, and a finite number of linear pieces.
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Tropical Rational Functions

A Tropical Rational Function is also a piecewise linear function of the
same form, but the requirement of convexity is dropped.

The image of a Tropical Rational Function:

z
z z

p
p

p p

z

A zero of the Tropical Rational Function is a point where the slope
increases, and a pole is a point where the slope decreases.

Notice that the image is convex at zeros, but is concave at poles.
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Tropical Curves

The Corner Locus of a Tropical Function is the set of all points where the
slope changes (i.e. the maximum is achieved twice.)

1 − D: the corner locus would be the set of zeros and poles.

2−D: The corner locus looks like a Metric Graph (plus unbounded rays).

Tropical Line: a ⊙ x ⊕ b ⊙ y ⊕ c and Tropical Cubic:
⊕

i+j≤3 x iy j .

The Degree of the polynomial equals the # of rays in each direction.

x+a is max

y+b is max

 c is max

(c−a, c−b)
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Tropical Riemann-Roch

An Abstract Tropical Curve Γ is simply a Metric Graph, where we allow
leaf edges to be of infinite length. The genus of Γ is g(Γ) = |E | − |V |+ 1.

Examples (Finite portions of Genus 2):
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Tropical Riemann-Roch

An Abstract Tropical Curve Γ is simply a Metric Graph, where we allow
leaf edges to be of infinite length. The genus of Γ is g(Γ) = |E | − |V |+ 1.

Examples (Finite portions of Genus 2):

A Chip Configuration C of Γ is a formal linear combination of points of Γ:

C =
∑

P

cPP (only finitely many cP
′s are nonzero).

The Canonical Chip Configuration K = K (Γ) =
∑

V∈Γ(val(V ) − 2)V .

(Gathmann-Kerber, Mikhalkin-Zharkov): The Baker-Norine rank
function r(C ) satisfies Riemann-Roch for Tropical Curves

r(C ) − r(K − C ) = deg C + 1 − g(Γ).
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Tropical Linear Systems

Given a tropical rational function f , we let ordP (f ) denote the sum of the
outgoing slopes locally at point P with respect to the function f .

The Chip Configuration of f is defined as (f ) =
∑

P∈Γ ordP(f )P .

Examples: g1 =

4P

P2

1

P3

P

, g2 =
3

Q2

Q1

Q

.

Then (g1) = −P1 + P2 + P3 − P4. and (g2) = −2Q1 + Q2 + Q3.
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Tropical Linear Systems

Given a tropical rational function f , we let ordP (f ) denote the sum of the
outgoing slopes locally at point P with respect to the function f .

The Chip Configuration of f is defined as (f ) =
∑

P∈Γ ordP(f )P .

Examples: g1 =

4P

P2

1

P3

P

, g2 =
3

Q2

Q1

Q

.

Then (g1) = −P1 + P2 + P3 − P4. and (g2) = −2Q1 + Q2 + Q3.

Can also think of these transformations as weighted chip-firing moves.
(We can fire a subgraph of Γ in place of a subset of vertices.)

The Tropical Linear System of C (following Gathmann-Kerber):

|C | = {C ′ ≥ 0 : C ′ = C + (f ) for some tropical rational funciton f }.
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Tropical Linear Systems (Example Continued)

For Γ =

11

with C as specified, we have |C | is

1 1

2 2
2

2 2.

The Linear System |C | contains six 0-cells, seven 1-cells and two 2-cells.
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|C | and R(C ) as polyhedral cell complexes

Recall |C | = {C ′ ≥ 0 : C ′ = C + (f ) for some tropical rational function f }.

Let R(C ) = {f : C +(f ) ≥ 0}. This is a tropical semi-module of functions.
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|C | and R(C ) as polyhedral cell complexes

Recall |C | = {C ′ ≥ 0 : C ′ = C + (f ) for some tropical rational function f }.

Let R(C ) = {f : C +(f ) ≥ 0}. This is a tropical semi-module of functions.

First observation: R(C ) is naturally embedded in R
Γ and |C | is a subset

of the dth symmetric product of Γ, where d = deg C .
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|C | and R(C ) as polyhedral cell complexes

Recall |C | = {C ′ ≥ 0 : C ′ = C + (f ) for some tropical rational function f }.

Let R(C ) = {f : C +(f ) ≥ 0}. This is a tropical semi-module of functions.

First observation: R(C ) is naturally embedded in R
Γ and |C | is a subset

of the dth symmetric product of Γ, where d = deg C .

Let 1 denote the set of constant functions on Γ. (Note that if f is
constant, then the chip configuration (f ) = 0.)

In fact, there is the natural homeomorphism:

R(C )/1 −→ |C |

f 7→ C + (f ).

So a linear system can be described also by tropical rational functions
modulo tropical multiplication (i.e. translation by adding a a constant
function). Only local slope changes matter, not the function values.
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Back To Barbell Example

In terms of tropical rational functions, we obtain the following labeling of
the polyhderal complex’s vertices instead:

f
ff2

f

3

0

1
f5 f4

Each of the 1-cells and 2-cells are tropically convex.
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the polyhderal complex’s vertices instead:

f f4ff2

f

3

0

1f
5

h

Each of the 1-cells and 2-cells are tropically convex. Second example,

h = f0 ⊕ (+1/4 ⊙ f1) ⊕ (+1/3 ⊙ f4) =
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Back To Barbell Example (Continued)

1
ff2 3

f

f0

f5 f4

In particular, every tropical rational function on Γ is the tropical convex
hull of the 0-cells {f0, f1, . . . , f5}.
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Back To Barbell Example (Continued)

f
ff2

f
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1
f5 f4

In particular, every tropical rational function on Γ is the tropical convex
hull of the 0-cells {f0, f1, . . . , f5}.

More strongly, every tropical rational function on Γ is tropical convex hull
of {f0, f2, f3}. Generators of this minimal set are called extremals.
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In particular, every tropical rational function on Γ is the tropical convex
hull of the 0-cells {f0, f1, . . . , f5}.

More strongly, every tropical rational function on Γ is tropical convex hull
of {f0, f2, f3}. Generators of this minimal set are called extremals.

For example, g = f1 ⊕ (+1/4 ⊙ f5)
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Back To Barbell Example (Continued)

f f4ff2

f

3

0

1f
5

g

In particular, every tropical rational function on Γ is the tropical convex
hull of the 0-cells {f0, f1, . . . , f5}.

More strongly, every tropical rational function on Γ is tropical convex hull
of {f0, f2, f3}. Generators of this minimal set are called extremals.

For example, g = f1 ⊕ (+1/4 ⊙ f5) = f2 ⊕ (+1/4 ⊙ f3) =

=
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Main Results

Theorem (HMY 2009) R(C ) is a finitely generated tropical semimodule.

If C ′ ∈ |C |, with C ′ = C + (f ), is in the cell with vertices C1,C2, . . . ,Ck

(with corresponding f1, f2, . . . , fk), then

f = (c1 ⊙ f1) ⊕ (c2 ⊙ f2) ⊕ · · · ⊕ (ck ⊙ fk),

i.e. the cells of |C | are tropically convex.
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Theorem (HMY 2009) R(C ) is a finitely generated tropical semimodule.

If C ′ ∈ |C |, with C ′ = C + (f ), is in the cell with vertices C1,C2, . . . ,Ck

(with corresponding f1, f2, . . . , fk), then

f = (c1 ⊙ f1) ⊕ (c2 ⊙ f2) ⊕ · · · ⊕ (ck ⊙ fk),

i.e. the cells of |C | are tropically convex.

In particular, R(C )/1 ∼= |C | is finitely generated by the 0-cells of |C |.

Theorem (HMY 2009) The 0-cells of |C |, as well as all other d-cells, can
be described explicitly.
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Dimension of a cell

Definition. A point P ∈ Γ is smooth if it has valence two and is not a
vertex (i.e. the interior of an edge).

Definition. The support of a chip configuration C is the set of points of
Γ with nonzero coefficients in C .

Let I (Γ,C ′) = Γ \ (Supp C ′ ∩ {Smooth points}) .

Theorem (HMY 2009) The cell containing chip configuration C ′ is of
Dimension = # (Connected components of I (Γ,C ′)) − 1.
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Dimension of a cell

Definition. A point P ∈ Γ is smooth if it has valence two and is not a
vertex (i.e. the interior of an edge).

Definition. The support of a chip configuration C is the set of points of
Γ with nonzero coefficients in C .

Let I (Γ,C ′) = Γ \ (Supp C ′ ∩ {Smooth points}) .

Theorem (HMY 2009) The cell containing chip configuration C ′ is of
Dimension = # (Connected components of I (Γ,C ′)) − 1.

Corollary (HMY 2009) The 0-cells, i.e. a set of generators for R(C )/1,
correspond to the C ′’s whose smooth support does not disconnect Γ.

The extremals lie inside this set: They are the functions f precisely such
that no two proper subgraphs Γ1 and Γ2 of Γ covering Γ (i.e. Γ1 ∪ Γ2 = Γ)
can both fire on the chip configuration C + (f ).
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Another return to the barbell

For Γ =

11

with C as specified, we have |C | is

1 1

2 2
2

2 2

gh

2
11

.

Notice that removal of the smooth support of C ′ (for C ′ a 0-cell) does not
disconnect the graph Γ.
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Another return to the barbell

For Γ =

11

with C as specified, we have |C | is

1 1

2 2
2

2 2

gh

2
11

.

Notice that removal of the smooth support of C ′ (for C ′ a 0-cell) does not
disconnect the graph Γ.

Chip configurations corresponding to tropical rational functions g and h

correspond to the interiors of 1-cells and 2-cells.

Removal of their breakpoints disconnects the graph into 2 and 3 pieces.
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Other Results

Theorem (HMY) If R(D) = tconv(f0, f1, . . . , fr ), then

φ : Γ → TP
r

x 7→ (f0(x), . . . , fr (x))

satisfies |D| ∼= tconv(φ(Γ)).

Recall that the tropical convex hull of two points is the tropical line
segement between them.
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Embedding the Barbell

Letting Γ =

11

with D as specified, we note that the

extremals of |D| are f0, f2, and f3 in the picture 1
ff2 3

f

f0

f5 f4
.
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ff2 3
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f0
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.

Letting P be the leftmost point of Γ, up to vertical translation (i.e. tropical
projective scaling), we can assume that f0(P) = f2(P) = f3(P) = 0.
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Embedding the Barbell

Letting Γ =

11

with D as specified, we note that the

extremals of |D| are f0, f2, and f3 in the picture 1
ff2 3

f

f0

f5 f4
.

Letting P be the leftmost point of Γ, up to vertical translation (i.e. tropical
projective scaling), we can assume that f0(P) = f2(P) = f3(P) = 0.

Graphing f0, f2, and f3 along Γ, we get an infinite matrix with three rows
and columns indexed by points of Γ.



0 . . . 0 . . . 0 . . . 0 . . . 0
0 . . . 1 . . . 3/2 . . . 2 . . . 2
0 . . . 0 . . . −1/2 . . . −1 . . . −2



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Embedding the Barbell

We then plot the columns as projective points (ignoring the zeroes in the
first row)



0 . . . 0 . . . 0 . . . 0 . . . 0
0 . . . 1 . . . 3/2 . . . 2 . . . 2
0 . . . 0 . . . −1/2 . . . −1 . . . −2




(0,0)

(2,−2)

(1,0)

(2,−1)
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Embedding the Barbell

We then plot the columns as projective points (ignoring the zeroes in the
first row)



0 . . . 0 . . . 0 . . . 0 . . . 0
0 . . . 1 . . . 3/2 . . . 2 . . . 2
0 . . . 0 . . . −1/2 . . . −1 . . . −2




(0,0)

(2,−2)

(1,0)

(2,−1)

(0,0)

(2,−2)

(0,2)

The second plot is the tropical convex hull of the points in the first.
Observe that tconv(f0, f2, f3) in TP

2 ∼= the linear system |D|.

1
ff2 3

f

f0

f5 f4
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Final Examples: Genus One Circle Graph

Take the circle Γ = S1 on one vertex and a chip configuration of degree d .
E.g. d = 3 or 4:

− 2
− 1 1

0

− 2 1 − 1 2− 1
1 − 1

1

2

− 2 1

0

− 1

0

2

1
− 1

0

2

1
0

− 1− 2

− 1 1
0

1
− 11

− 2

− 1

2

1 − 1 2

− 1 1

− 2 2

− 3

− 2

1 3− 1

1− 1

− 1
 1

 2

3

− 2

− 3

− 1

 1

− 2 2

Black Vertices correspond to Extremals. |C | is a subdivision of a
(d − 1)-simplex.

In the case of d = 4, |C | is a cone over the triangle that is shown. The
cone point is the constant function, and is another extremal.
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Final Examples: Complete Graph on 4 Vertices

For Γ = K4 with edges of equal length and K the canonical chip
configuration with 1 at all four vertices: |K | is a cone over the Petersen
graph from point K .

2

2

2

1 1

2
2

4

2

1
1

4

1
1

2
2

2
2

1

1

1

12

1

1

2

4

4

Theorem (HMY) For any Γ, the fine subdivision of link(K , |K |) contains
the fine subdivision of the Bergman complex B(M∗(Γ)) as a subcomplex.
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Final Examples: Complete Graph on 4 Vertices

(Continued)

Fourteen 0-cells, seven (black vertices) of which (not K ) are extremal.

2

2

2

1 1

2
2

4

2

1
1

4

1
1

2
2

2
2

1

1

1

12

1

1

2

4

4

��
��
��

��
��
��

��
��
��

��
��
��

1

2
1

1

1

1

1

1

1

1
1

1

1
1

1

2
2

2
1

121

1

1

1

1
1

1

1
2

This is a 2-dimensional cell complex: including K (at the bottom), here is
a close-up of a quadrilateral cell. In particular, |K | is not simplicial.
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Open Questions

Question: Is there a relationship between geometric properties of the
polyhedral cell complex |C | and the Baker-Norine rank function satisfying
Tropical Riemann-Roch?
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Question: Is there a relationship between geometric properties of the
polyhedral cell complex |C | and the Baker-Norine rank function satisfying
Tropical Riemann-Roch?

Question: Can we identify geometrically for a given |C | which of the
0-cells are extremals?

Question: What happens to |C | as either C changes, the combinatorial
type of Γ changes in a small way, or if the edge lengths of Γ change?

Thanks for Listening!

Linear Systems on Tropical Curves (with Christian Haase and Josephine
Yu), arXiv:math.AG/0909.3685. To appear in Math. Zeitschrift

Slides at http://www.math.umn.edu/∼musiker/TropTalk.pdf.
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