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Abstract

In this thesis, we will investigate the theory of cluster algebras, a recently
created combinatorial theory that is still developing. Cluster algebras are
not only intrinsically interesting, but have useful applications to the the-
ory of Somos sequences and Laurent polynomials, generalized associahedra
and many other fields. We will concentrate on an axiomatic development
of cluster algebras, motivating them by their aforementioned applications.
We will end with several open problems and conjectures. This exposition
will utilize semisimple Lie algebras and root systems; however, the nec-
essary results from these mathematical areas will be presented here and
developed as needed. This should be accessible to anyone familiar with
graph theory and recurrence relations.
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1 Introduction

This thesis surveys the work of Sergey Fomin and Andrei Zelevinksy in the
development of cluster algebras. Let us spend a moment explaining the signif-
icance of this theory. Their theory of cluster algebras is a unifying framework



which has produced more and more applications the more it is developed. Prior
to the theory of cluster algebras, the sequences Somos-4 and Somos-5 had been
proven to be integer sequences by several people including Janice Malouf and
George Bergman [10]. The integrality of Somos-6 and Somos-7 had been proven
by Raphael Robinson [10]. However, the method of cluster algebras provides
a unified proof for the integrality of Somos-4 through Somos-7 as well as the
integrality of a number of other sequences as described in [8]. More importantly,
cluster algebras hint at a deep connection between this solution in the area of
Laurent polynomial theory and their solution to a problem concerning the ex-
plicit factorization of totally positive matrices into elementary Jacobi matrices
[6, 25]. Connections between cluster algebras and algebraic topological objects
such as the associahedron have also been discovered more recently [3]. Though
the theory has surprising applications, Zelevinsky (personal communication) has
stated that he is most excited by the intrinsic beauty and elegance of the theory;
they are an interesting object of study in their own right.

Fomin and Zelevinsky were motivated to create cluster algebras based on
empirical properties of the dual canoncial bases found in total positivity theory.
We will discuss this connection more in the appendix, however, our main focus
will be the applications to Somos sequences and the properties of exchange
graphs.
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2 Laurentness and Somos Sequences

: f3_1+1 2 H
Consider the sequence f,, = F— (fafn—2 = fi_; +1). At first glance, this
sequence appears to be a sequence of non-integral rational numbers, even if one
lets fo = f1 = 1. However, after computing several terms of the sequence, one
finds that fo =2, f3 =5, f4 = 13, f5 = 34,.... Not only are these all integers,
but they are every other Fibonacci number. One might believe this pattern
continues despite the denominator in the recursion.




In fact this pattern will continue. There is a trivial proof by induction, but for
our purposes, a proof by combinatorial interpretation is more edifying.

We define G, to be the m x n grid graph where there are m vertices in
each column and each row has n vertices.

The grid graph G 5.

Let f, be the number of perfect matchings in G 2(,—1) such as

for n = 4. By convention we will set fo = fi = 1 and one can readily check
that fo = 2. One can show using Eric Kuo’s technique of graphical condensation
that f,, satisfies the recurrence fy,fn—2 = f2_, + 1 [17].

The following proof is from [20] based on [17]. Consider the set of ordered pairs
(A, B) € Ty, x T2 where T), is the set of perfect matchings of G5 5(,—1). Since
|T| = fn, the number of such pairs is exactly f, fn42. Similarly the set of pairs
(C, D) from Tpy1 X Tpy1 will have cardinality f2, ;.

Lemma 1 There is a bijection from Ty, X Tyyo — (X,Y) to Tyt X Tha1 where
X and Y are specific instances of perfect matchings as pictured below.

Sketch of Proof. One can superimpose a matching A and a matching B onto
a2 x 2(n+ 1) grid graph G with distinguished edge set Map (allowing double
edges) so that the matching B is centered on G. Each vertex of G (except those
on the outer boundary) will have two distinguished edges emanating from it.
Similarly one can superimpose matchings C' and D onto the same 2 x 2(n + 1)
grid graph G with distinguished edge set Mcp where C' is left-justified and D
is right-justified with respect to G.

G

An example of such a superposition.



Notice that the double matching on graph G can be decomposed into the
matchings (A4, B) or the matchings (C, D). This decomposition is not unique.
However the number of decomposition into (A, B) is the same as the number of
decompositions into a pair (C, D).

X

An undecomposable pair.

The correspondence between decompositions will be valid for all pairs of
matchings but one, (X,Y"). For the pair (X,Y’), it is not possible to superim-
pose (X,Y) together on G and then decompose it into two matchings of left- and
right- justified graphs. For all other pairs, there is a bijection (counting mul-
tiplicities) between the two decompositions, hence there is a bijection between
Tn X Tn+2 — (X, Y) and Tn+1 X Tn+1-

Since f, is a function that counts an actual object, it is clear that f,, must be
a nonnegative integer for all n > 1.

Similar techniques work for sequences such as g,gn—3 = gn—19n—2 + 1 where
go=g1 =g2=1,{g9n :n >3} =2,37,11,26,41,97,153,.... In fact, this
counts the number of perfect matchings of the family of graphs:

I:‘ , | ‘ , | ‘ ’ |

H , , ’

Ira Gessel [11] noticed that the sequence {g2,} = (1,3,11,41,...) appeared on
Neil Sloane’s website, the Encyclopedia of Integer Sequences [22]. On this site,
the sequence was noted to have the combinatorial interpretation of counting
domino tilings of a 3 x 2(n — 1) rectangle, which implies it counts the number
of perfect matchings of G5 5(,,—1). Eric Kuo noted that the terms {gan41} =
(1,2,7,26,97,...) counting the number of “mutilated” 3 x 2(n — 1) grid graphs
[16]. By mutilated 3 x 2(n—1) grid graphs, we mean graphs resembling the ones
in the top row of the previous figure, i.e. they are 3 x 2(n — 1) grid graphs where
the rightmost two vertices in the top row, along with their incident edges, have
been removed.



The following is an original proof of a direct bijection between the perfect
matchings of G5 5(,—1) and the perfect matchings of 6272@_1), a2x2(n-—1)
grid multi-graph where each vertical edge has been replaced with two vertical
edges (labeled A and B) and the vertical edges are paired off so that each pair
of consecutive vertical edges in the matching use the same label.

The bijection is as follows: whenever a vertical edge appears in a matching
M of G35(n—1), it will either be an edge from the 2nd row to the 3rd row, or
the 1st row to the 2nd. If it is from the 2nd to the 3rd, then the corresponding
matching of the 2 x 2(n — 1) grid multi-graph G~’2,2(n,1) has the vertical edge
labeled A in the corresponding column. If it is from the 1st to the 2nd, use the
edge labeled B.

Claim 1 Once these vertical edges have been specified there is a unique choice
of horizontal edges that will complete M to a perfect matching.

Claim 2 FEach consecutive pair of vertical edges will be in the same row.

These claims are easily verified by studying the possible perfect matchings of
G3,2(n—1)-

A A

A pair of corresponding matchings of G314 and C~¥2,14.

Furthermore, the number of perfect matchings in C~7’272(n_1) is the same as the
weighted number of perfect matchings in G 5(,—1) where we give a matching
that uses m vertical edges weight 2. Let f» be the number of perfect matchings
in G272(n—1)-

Using graphical condensation, one can show that just as f, satisfies the
recurrence fnfn—2 = f2_, +1, f, satisfies the recurrence fp, fn_» = f,%,l + 2.



In fact if f,, ., is the weighted number of perfect matchings in G's 5(,,—1) where
we give a matching that uses m vertical edges weight w™, then f, o fn_2,w =
fﬁ,lﬂ,ﬂ-w. Consequently, every other term of the sequence g, (g2, = 1,3,11,41, ...
satisfies the recurrence g,gon—4 = g%n72 + 2.

2.1 Somos Sequences

So far we’ve seen two rational recurrences give rise to integer sequences. What
about the sequence
2
SnSn—4 = Sn—1Sn—3 + Sp_o

where s1 = s3 = s3 = s4 = 1?7 This sequence is called Somos-4 where a
general Somos-k sequence is a sequence of the form S,S,—r = Sp—1Sn—k+1 +
Sn—2Sn—k+2 + . ... Such sequences were discovered by Michael Somos while he
was studying recurrences resembling relations found among elliptic functions.
More can be found about Somos sequences in David Gale’s article [10] or Jim
Propp’s website [19]. Somos-4 is in fact a sequence of positive integers, however
assigning a combinatorial interpretation to s, (like in the case of f, or g,) was
an open problem until recently.!

As mentioned in the introduction, one way to prove the integrality for the
sequence Somos-4 involves using cluster algebras. Fomin and Zelevinsky in
fact can prove a much more general result using their technique [8]. Before
describing the use of cluster algebras to prove Laurentness, we will consider a
simpler problem based on the work of David Speyer, an example which is also a
special case of the Laurent phenomenon discussed in [8]. The following is David
Speyer’s proof from an email to REACH [23].

Consider a sequence z,, that satisfies the recurrence z,z, > = p(a:n,l) for
n > 3 where p(t) is a univariate polynomial.

Definition 1 A Laurent polynomial over the variables z1, ..., z, is a finite sum
of terms where the variables a:lil, ..., =t appear rather than just z1,...,z, as
in the case of a polynomial.

Another way to think of a Laurent polynomial is as a rational function in
Z1,--.,Ty where the denominator consists of a single monomial. Let R =
Q[mfﬁl , mfl] be the ring of Laurent polynomials in the variables z; and x5 with
coefficients in Q.

Whenis z, € R Vn > 17

Proposition 1 As long as p(0) # 0, all of the x,, € R if and only if
p(t) = ¢- tdesp -p(@) for some c € Q.

LAs of March, 2002, this was solved by members of REACH in work to be written up.
Like f, and gy, the combinatorial interpretation of s, involves perfect matchings of a family
of graphs. Bousquet-Mélou and West also just recently found a combinatorial interpretation
using an earlier suggestion from Jim Propp.



Proof. Assume z, € R V n > 1 but that p(t) # c-tder -p(@) VceQ

Then,
5)

p(z2)

Iy =

p(@a)
is Laurent only if x; -p<M> =0 mod p(xz2) in R. Using p(z2) = 0,

T2

m)_

this requirement reduces to z; - p( ) = 0 mod p(z2). Since z1 and z»

(m«k - p(22)

The variable z; does not appear in p(z3) so k; must equal 0. Furthermore, the

are units in R, we obtain p(zs)

> for some choices of ki, ks.

degrees (in terms of x5) of p(z;) and z%2 -p(%) only match if ko = degp.

degp, (p(0)

However, in this case, p(z2)|z5 p(K) implies there exists a ¢ € Q such that

p(t) = c-tdegr -p(%), a contradiction.

Now assume p(t) = c - tdeer -p(@) for some ¢ € Q. z3 = 222 and

z1
p(za)
T4 = p(z@ are in R along with z; and x>. From this base case of four
elements we will inductively show that all z,, € R.

Claim 3 Suppose T, 11, Tni2,Tnts, and Tpyry € R. Then z,15 € R.

By the defining recurrence of the sequence, ,,+2%,+4 = p(x,43) which is equiv-
alent to p(0) mod z,y3. The term p(0) is nonzero and rational therefore p(0)
is a unit which implies that x,42 and z,4 are also units. Now we can divide
freely by 42 and z,44. Thus

_ (pO)\_ 1 _
pansa) =p( 20 ) = —ploni) =
Tn4-2 CT 1o
1
Tgpwn+1mn+3 =0 mod Tpt3-
& n+2

Consequently x,15 = PEnts) ¢ R Given this claim, z, € R Vn>1.0

Tn43

We will later show this result holds if we let R = A[z", 25'] where A is any
unique factorization domain. In particular, we could allow A to be Z and the first
two terms x1, 2 to be 1. In this case we recover integrality. Thus Laurentness
is a more general condition than integrality. Fomin and Zelevinsky’s result
concerns the question of whether or not all terms of a sequence are Laurent
polynomials in terms of the k initial terms. Thus they are able to prove that
a sequence satisfying the Somos-4 recurrence rors = 173 + 73 is a sequence
of Laurent polynomials in the initial four terms. In the case that x; = x5 =
r3 = x4 = 1, we get that Somos-4 is a sequence of integers. To understand their
proof, we will now introduce the theory of cluster algebras.



2.2 Fomin and Zelevinsky’s Definitions

Unless otherwise noted, the material from this section is directly from or based
on [7]. Fomin and Zelevinsky define a cluster algebra A as “a commutative
ring with unit and no zero divisors, equipped with a distinguished family of
generators called cluster variables” [7, pg. 1]. The cluster algebra is a (non-
disjoint) union of a distinguished collection of subsets called clusters. Each
of the subsets in this collection have equal size, and this size is known as the
rank of A. For every cluster X = {z1,...,z,} C A in a cluster algebra A of
rank n there exist n clusters Y1,Ys,...,Y,, C A adjacent to X. These clusters
are adjacent to X because X and each Y; = {z1,...,2i—1,¥i, Tit1,...,2,} are
related by a binomial exchange relation

Ty = M;(X) + M;(Y;), (1)

where M;(X) and M;(Y;) are two relatively prime monomials in the n — 1
variables X — {z;}. For example, the monomial? M;(X) is given by

Mi(X)=ci(X) [ =i(x))
1<j<n,j#i

and for a general cluster C, the associated monomial is
Mi(C) = ei(C) T 2"+,

Furthermore, one can switch between any two clusters of A by a series of such
exchanges. Besides the condition that M;(C) cannot depend on the i*! variable
of the cluster C, the choice of a family of monomials is restricted by specific
axioms which we will explain after some initial definitions.

For any cluster algebra of rank n we define an n-regular graph called an
exchange graph whose vertices are the different clusters, and whose edges cor-
respond to the exchanges between two clusters. If 4 is a rank 1 cluster algebra,
the only possible exchange graph is a 1-regular graph consisting of two vertices.
When n > 2 and there are no relations between the variables of the various
clusters, this graph will be an exchange tree, an infinite n-degree graph such
that each of the n edges coming out of a given vertex have a unique label out
of {1,...,n}.

2Fomin and Zelevinsky allow the coefficients ¢;(X) to be chosen from a torsion-free multi-
plicative abelian group P. However, for the remainder of this exposition, we will assume all
of the ¢;(X)’s are 1, i.e. that P = {1}.



An exchange tree for a rank 3 cluster algebra.

Also, an exchange tree T for a rank 2 cluster algebra is a line.

1 2 1 2 1 2
r————— 0 —— & — &0— 0

{al, a2} {al, b2} {b1, b2} {b1,c2} {c1,c2}

Notice that whenever {z1,y2} connects to {w1, 22} via an edge labeled 1, then
y2 = 2z and if an edge labeled 2 connects them, x;y = w;. Furthermore, we
can define an exchange pattern (3, a family of exchange binomials {B;}, so that
ziwy; = B(ys) for some B € 3 when edge 1 connects them and y222 = B'(z1)
for B' € B when edge 2 connects them. Here I emphasize that the dependent
variable of the binomial is determined by the edge label.

One can more formally define the possible exchange patterns that can be
associated to a cluster algebra. Here we will assume that the exchange graph
is an undirected tree of degree n. We will let 7 be the set of vertices in the
exchange tree, and will use the notation F;(t,t") to signify that vertices ¢ and
t' are connected by an edge labeled i.

Then if E;(¢,t") we will let the exchange binomial associated with this edge
be M;(t) + M;(t') where we will let the vertices ¢, t' stand for the associated
clusters. For A to be a cluster algebra, the exchange pattern {M;(t) : i €
{1,...,n}, t € T} must satisfy the following axioms:

If E;(t1,t2), then z;(t1) = x;(t2) when i # j,

and x;(t1)x;(t2) = M;(t1) + M;(t2).

Fort, € T, z; fM;(t1).

If E;(t1,t2) and ;| M;(t1) then x; fM;(t2).

If E;(t1,t2) and E;(t2,t3) then x;|M;(t1) if and only if x;|M;(¢2).

Suppose E;(t1,t2), Ej(ts,ts) and Ej(ts,ts). Then %:EZ; = <%:Eii;> e
where Mo = (M;(t2) + M;(t3))]e:=o-

[\

(=2}
—_ DD = D=

—~ ~ N N~



Axiom (7) is the most significant axiom. Axiom (7) will uniquely determine
how to propagate the binomial exchanges. Letting P = M;(t1) + M;(t2), Q =
M;(ts) + M;(t3) and R = M;(t3) + M;(t4), axiom (7) implies that whenever

appears in the exchange graph or tree, then the exchange binomials P, @ and R
satisfy the condition that there exists a Laurent monomial L and nonnegative
integer b such that L- Q- P = R|xj<_% where Qo = Q|z; o0 [8, pgs. 8-9].

J

A Laurent monomial is a fraction consisting of a monomial over another mono-
mial and the notation P|,,,, signifies the evaluation of polynomial P where a
has been substituted for the variable z;.

Exchange trees have another graph structure embedded in them: graphs
T;n,» which Fomin and Zelevinsky call caterpillars. A caterpillar T, for m > 2
is defined as a tree with a spine of m vertices of degree n and m(n—2)+2 vertices
of degree 1. Of the degree-1 vertices, m(n — 2) of them will be referred to as
feet and the remaining two (which must emanate from the extremities of the
spine) will be called the head and the tail.

A caterpillar T 4.

The clusters on the spine could represent a recursive sequence that we would
like to propagate. For example, consider the sequence g, = 5”’;37"_’32“ Then
the associated caterpillar T4 3 would look like

. {01,902,03} {94,92,03} {94,095 93} {94, 05, g6}

{01,092, 93} {9g4,092,03} {94,095 03} {94, g5 g6}

where g4g1 = 9293 + 1, g592 = 9394 + 1 and gegs = gags + 1 are the exchange
relations corresponding to the edges of the spine. The legs have different rela-
tions and our goal is to show that there are ways to define binomial exchanges

10



corresponding to the leg edges that keep the caterpillar consistent with axioms
(2-7) thereby making it part of the exchange graph for a cluster algebra.

To uphold these axioms in the above caterpillar, the polynomial relations
associated with the legs will be ghgs = g1 + 93,9493 = 92 + g4, 94912 = g3 + g5,
and g5gs = g4 + ge-

Notice now that if we start with the cluster {g;, g2, g3} and then travel along
edge 1, then edge 2 and edge 1, we get to

g293+1 g293+1 (g9293+1)g93+91
{ g1 792793} — { g1 ) 9192 793}
{—o (9295+1)g3+91+919293 (9293+1)g3+91 }:{g1+gs (9293+1)gs+g: }
g293+1 9192 ’ gi192 193 g2 9192 )93
— !
= {94, 95,93}

We will study this example in more depth later. As of now, it is noteable that
a priori one might expect gj to be more complicated then g4 = g”?’l"'l just as
gs is more complicated than g» but it is in fact still a Laurent polynomial. It
is just as simple if not simpler than g,. Furthermore, even though g5 is more
complicated, it also is a Laurent polynomial in the variables x1, x> and 3. One
could construct similar caterpillars with larger spines, T, s for arbitrarily large
m, and allow the exchange binomial zy + 1 to be associated to all of the edges
of the spine. We thereby would extend the sequence of g, and g/,. It is natural
to ask: Will all of the gn and g}, turn out to be Laurent polynomials in terms
of the initial variables? One can answer this in the affirmative and we will find
this is the corollary of a more general result.

2.3 The Caterpillar Lemma

The following results and proofs come from [7] and [8]. The motivation for the
Caterpillar Lemma is the following observation by Fomin and Zelevinsky.

One of the main structural features of cluster algebras established
in the present paper is the following Laurent phenomenon: any clus-
ter variable x viewed as a rational function in the variables of any
given cluster is in fact a Laurent polynomial. This property is quite
surprising: in most cases, the numerators of these Laurent polyno-
mials contain a huge number of monomials, and the numerators for
x moves into the denominator when we compute the cluster variable
z' obtained from z by an exchange (1). The magic of the Lau-
rent phenomenon is that, at every stage of the recursive process, a
cancellation will inevitably occur, leaving a single monomial in the
denominator [7, pg. 3].

Theorem 1 In a cluster algebra, any cluster variable is expressed in terms of
any given cluster as a Laurent polynomial with coefficients in Z. 3

3The statement of this theorem differs from Fomin and Zelevinsky’s formulation in the fact
that Fomin and Zelevinsky allow the cluster variables to be written in terms of coefficients from
the group ring ZP but since we previously set P = {1} we only allow for integer coefficients.

11



Remark 1 Fomin and Zelevinsky conjecture that all of the cluster variables
can be expressed using nonnegative integer coefficients.

To prove this theorem, we will prove a generalization from [8]. First, we will
need to generalize our definition of exchange pattern.

Definition 2 Let A be a unique factorization domain, and assume that a
nonzero polynomial P € Alzy,...,x,] that does not depend on zj is associ-
ated with every edge such that Ey(¢,¢') in the exchange tree T. This will be
called a generalized exchange pattern.

These generalized exchange patterns are analogous to the exchange patterns
relying on binomials and z (t)z(t') = P(z(t)).

We will label the vertices on the spine of a caterpillar, Ty, ,, t; through ¢,, and
label the tail t;4; as to.

Lemma 2 (Caterpillar Lemma) Assume that that a generalized exchange pat-
tern on T, , satisfies the following conditions:

e For any edge labeled k, the associated exchange polynomial P does not depend

on xy,, and is not divisible by any x; € {z1,...,2,}.
i i
— o+
e If two consecutive edges have P and Q) associated to them, P Q
then the polynomials P and Qo = Q|0 are coprime elements of Alxy, ..., zy].

i j

r——o6 —o— 0

o If three consecutive edges have P, and R associated to them, P Q

then there exists a nonnegative integer b and Laurent monomial L coprime with

P with coefficients in A such that L-Qb - P = R|z]-e% where Qo = Q
J

x;+0-

If those conditions are satisfied, then for everyi € {1,...,n}, t € Ty, p, ;(t) is
a Laurent polynomial in X (to) = {z1(to0), ..., zn(to)} with coefficients in A.

Remark 2 As mentioned previously, this third axiom resembles axiom (7) ex-
cept now P, () and R are allowed to be polynomials rather than just binomials.

Proof. For every t € Ty, ,, let
L(t) = Alz (). za ()]

be the Laurent polynomial ring of the cluster X (¢) with coefficients in A. We
will treat £(t) as a subring of the field of rational functions of A(X (#9)).

It suffices to prove that every cluster X (t) € L(to) = Lo. Since Ly is a
unique factorization domain, elements have a gcd defined up to units of A.
We will prove all X(t) € Lo by induction on the size of the spine, m. The
case m = 1 is trivial so we can assume there exists an M such that for all
m < M, the caterpillar lemma is true. Now assume m > 2. We will prove
that X (thead) € Lo and be done since tpeqaq will be the vertex of the caterpillar
furthest from t,. We will assume E;(to,t1) and E;(t1,t2). Letting t3 € Ty, ,, be
the vertex so that E;(ts,t3), we have

12
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ty P t; Q t, R tg

X(t1) UX(t2) UX(t3) = X(to) U{zi(t1),z;(t2),x:(t3)} and similar to Speyer’s
proof,

_ P(z;(t))
T (tl) = ; (t()())
and Q(P(?J(‘t(t()))))
zj(t2) = Tt Eto)

are clearly in £o. We now must show that all of the clusters X (¢1), X (¢2) and
X (t3) are contained in Lo as subsets. This it suffices to prove:

x; (t3) € Lo, (8)
ged(mi(t), i(t2)) = 1, 9)
ged(zi(th), zi(ts)) = 1. (10)

By the third axiom stated in the lemma (previously axiom 7), R(%) =
L(Cﬂj(to))Q(O)bP(ﬂfj(to)) where L(:IZ]' (to)) = L|z]-ez]-(t0)-

Q(x;(t1 Q(x;(t1 Q0 Q0
R(EE) _ R i) - R(ZE) | R(EE)

zi(t1) zi(t1) zi(t1)
The polynomial Q(x;(t;)) minus its constant term @(0) is divisible by x;(¢1)
and extending this property we obtain

ZT; (t3) =

R(Q(wi(tl))) _ R( Q(0) )

z;(to) z;(to)
d
it € Lo an
(25) _ L(ai(t0) Q(0) P (z;(t0))
zj(to) ) _ — I(x. by,
mz(tl) xz(tl) (wj(to))Q(O) T (tO) E ‘607
thus (8) is true. z;(ts) = ng(izl))) = I?((fo)) mod z;(tp) and z;(to),x;(to) are

invertible in Lo so ged(z;i(t1), z;(t2)) = ged(P(z;(t0)), Q(0)) = 1 by the the
second axiom of generalized exchange patterns. Thus (9) is proved.
To prove (10), we use the fact that

R(%HY) - R(S6)
ZT; (tl)

and taking the limit z;(¢1) — 0, and applying calculus, we arrive at the equality

x;(t3) = + L(l‘j(to))Q(O)bmi(to)

+ L(z(to)Q(0)’z;(to) mod z;(t1).

xi(ts) = R’( Q) ) . Q'(0)

zj(to)) w;(to)
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Since ged(L(z;(t0)Q(0)°, P(xj(to)) =1 thus ged(z;(t1), zi(ts)) = 1.

By the inductive step, the subset X (tpeqq) is contained in both L£(¢;) and
L(t3) since the length of the spine between tpeqq and ¢; or t3 is less than the
distance to to. Thus for any = € X (theqa), T = for some

fi f3
zi(t1)® = zj(t2)bai(ts)e
fi,fs € Lo and nonnegative integers a,b,c. By (10), the denominators are
relatively prime, hence = € £Ly. O

This Lemma is a generalization of Theorem 1 for the following reasons, as
explained in [7].

e T, » can be embedded in T,,.

e We are allowing polynomials with appropriate restrictions instead of bino-
mials.

e We are allowing any unique factorization domain A instead of just Z.

In the special case of k = 2 and A = Q, we get the condition L, - P (%) =

P(ty) mod t3, L; € Q[tF'], which exactly matches Speyer’s result. However,
unlike David Speyer’s proof, the converse of the caterpillar lemma does not hold.

2.4 Sample Proofs for Laurentness of Sequences

The following proofs are based on proofs given in [8]. More details have been
included below. Consider the sequence f,f, 2> = f>_; + 1 from section 2. We
can show that for all n > 1, f,, is a Laurent polynomial where only a monomial
of the form f¢ f} appears in the denominator.

Proof. We can create the following sequence of clusters

{f07fl}a{f27fl}a{f27f3}7{f47f3}7'"

and make an exchange tree of rank 2 using the clusters as vertices and label
edges with an alternating pattern of 1 and 2. We will use the exchange binomial
P(t) = 2 + 1 for all edges. Thus fafo = P(f1), fafi = P(f2), etc.

1 2 1 2 1 2
r————— 0 — 0 — 06— 0

{fofy  {f2f  {f2f3 {(fa.f3 {415

By the caterpillar lemma, it suffices to show that such a choice of an exchange
pattern is consistent with the axioms of a cluster algebra. We have an alter-
nating pattern o__1__e__ 2! e thus axiom (7) requires there exists a

Laurent monomial L = ¢ - t¢ s.t.

P(t) :L-P<w>

t

In fact, letting L = ¢2,

2 1 2
L-<O i ) +1=1+# = P().

t

14



We can similarly prove that {g,} from section 2 is a Laurent sequence. We
build the clusters

{90791792}7 {93791792}7 {93794792}7 {93794795}7 s

and the caterpillar

. {01,92,093} {94,92,03} {94,905 93} {94, g5, g6}
tﬁ" 3 1 2 3 1 .head

{91, 92", 93} {94,902, 93} {g4, 95 93} {94, g5 g6}

where each edge on the spine will have the exchange binomial P(x,y) = zy + 1.
However, now it is important to specify the domain variables: letting n be an
arbitrary integer with the property n = 0 mod 3 an edge labeled 1 will use
gn+2 and g, as domain variables, an edge labeled 2 will use g,+1 and g,, and
an edge labeled 3 will use g,,+1 and gn4-2-

From each vertex on the spine, there will be three edges stemming from it,
but only two of those edges will be contained in the spine. To show {g,} is
Laurent, it suffices to show that the remaining edges, the legs can be chosen so
that the axioms of a cluster algebra are satisfied.

Specifically, we must be able to choose a binomial B such that

2 3
P P

with P = P(gn+3,9n+1); P’ = P(gn+t1,gn+2) satisfies axiom (7) for some Lau-
rent monomial L = ¢- 2%y’ and

with P = P(gn+2,gn+s) satisfies axiom (7) for some Laurent monomial L' =
d -yt

The first relation uniquely determines B. In this particular example B =
z + y and plugging this B into the second relation we find that the second

relation is indeed satisfied. Thus we conclude {g,} is a Laurent sequence.
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Assigning fo = fi = 1 or g0 = g1 = g2 = 1 we can conclude that the
sequences f, and g, are integer sequences. For these two examples we already
knew this since we have a combinatorial interpretation of f, or g,. However,
the beauty of this Cluster Algebra method is that it can prove Laurentness even
when there is no combinatorial interpretation of a sequence. The next proofs
will demonstrate Laurentness for Somos-4, Somos-5, Somos-6, and Somos-7.

2.4.1 Proof of Laurentness for Several Somos Sequences

For the Somos-4 sequence s, we create a spine of clusters of size 4 such that
each cluster only contains a window Sy41, Sn42, Sn+3, Sn+a for some n. We build
the caterpillar starting arbitrarily at a vertex between edges labeled 4 and 1 on
the spine, and create the associated leg with edge label 4. We then continue
back onto the spine and find the exchange polynomial associated with the next
edge labeled 4. This edge will also be a leg of the caterpillar. Finally, by using
the spine edge labeled 3, we conclude that this series of exchanges is consistent
with the axioms of the caterpillar lemma. Thus Somos-4 is a Laurent sequence,
a sequence of Laurent polynomials in the first four terms.

4 1 2 3 4
o >' ? ? >' >'
P, P P P, R

4 4
E4 E4

A caterpillar for the Somos-4 sequence.

P, = xiz3+ CU% P = x9x4 + w%

Ey, = wg + 2173561 P, = x3x1 + wz

By = azsxi+23 Py=ux41s+2°
R = zi23+ x% O

The summary of the calculations for Somos-5, Somos-6, and Somos-7 are
below. They are also calculated constructing associated caterpillars according
to axiom (7). Since Ps, Ps and P; respectively equal R for each calculation,
these sequences are also Laurent sequences. The program Maple was used for
the calculations.
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Py
P
Es
Py

!
6

Py
EY
Py
EIIII
6
Py

Py
P
E;
P,
E;
Py
EY
P,
E’Irll
Py
E'IYIII
Ps
R

P = z174 4+ 7273 P, = xyx5 + 2374

Ey = :UZ + xo11 Py = x3x1 + 2475
L= zimg 4 aixs P; =430 + z571

E! = x3mq+23 Py = z525 + 2129
R = zix4+ 2223 O

2

T1T5 + T2xs + T3
2

Tokg + T3T5 + Xy

2 2 2

T5T3 + T5X, + T4X2%1 + 3T
2

T321 + T4xs + Ty

2 2 2 2 2

TET3T2 + T5TyT2 + T T4T3 + T124T5 + T3T1T2
2

T4y + T5T1 + Xg

2 2 2 2 2

TAT12T5 + T4X503 + T1T4T3 + T2X7T5 + T5T3T2
2

T5T3 + TeX2 + 7

2 2 2

T5T3 + T1X3 + Tax2T5 + THT
2

TeTy + T1T3 + X5

2
T1%5 + Toxg + 5 O

T1Tg + Toxy + T3X4

ToTr + T3Te + T425

1'31% + TgX5T4 + T5X2T1 + L3241

3T + T4x7 + TxTg

:U3:Uga:2 + TgTzTaT2 + :ngla:e + w%:ﬂ3x5 + Tax2T123
T4 + T5x1 + T

T4To2T1 + 1'31'2 + TgrsT3 + a:fa:g,

T5T3 + T + T7 T

ToT1T5T3 + mgwlwe + mg:ngm + rgr5r3T4 + w%:ﬂ5w4
Telg + T7x3 + 12T

Trer3xg + w%:m + xgx5T2 + Tox1 X3

7Ty + T1T4 + ToT3

T1Tg + Tox5 + x324 O

Notice that the axioms of cluster algebras require all exchange polynomials
to be binomials, and accordingly, the exchange polynomials associated with the
legs for Somos-4 and Somos-5 are binomials. On the other hand, for Somos-6 and
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Somos-7, the exchange polynomials for the edges of the spine are not binomials
(they are trinomials) and the number of terms in the exchange polynomials of
the legs is not bounded by three.

Unlike the previous Somos sequences, Somos-8, S, is not a Laurent se-
quence. If one attempts to use the caterpillar lemma, one finds that R is such a
large polynomial that it would be cumbersome to include it in this exposition.
Thus R # Ps. This alone does not suffice to show that Somos-8 is not Laurent.
However using the initial conditions S; = --- = Sg = 1 and applying the recur-
rence Sy Spis = Spi1Snt7+Sn+2Sn46+Sni3Snis +§2+4, one finds the first 18
terms are 1,1,1,1,1,1,1,1,4,7,13,25,61,187,775, 5827,14815,420514/7. Thus
Somos-8 is not a Laurent sequence.

3 Exchange Graphs

Another beautiful application of cluster algebra theory is the construction of
exchange graphs. In the initial definition of cluster algebras, we are given a
collection of clusters and exchange relations between the variables in the form
of exchange binomials. We saw that one could construct an n-regular tree T,
where the clusters are the vertices. In practice this graph T, need not be a
tree, it could have cycles or it could even be finite. Any exchange graph must
be n-regular [7, pg. 27]. Before delving into the theory of exchange graphs, we
will discuss some background material concerning semisimple Lie algebras and
root systems.

Lie algebras and root systems are significant to the theory of cluster algebras
because these structures appear to help classify cluster algebras. One can clas-
sify a special class of Lie algebras, known as semisimple Lie algebras, according
to their associated root systems and reflection groups. As we will see later on,
the machinery of root systems will allow us to classify the semisimple Lie alge-
bras according to Cartan matrices. This famous classification is known as the
Cartan-Killing classification. We will see that to each Cartan matrix, we can
associate an exchange matrix, and lastly each exchange matrix will uniquely
determine a cluster algebra. We will explicitly use the theory of semisimple
Lie algebras and root systems to classify the exchange graphs of some low-rank
cluster algebras of finite type. By finite type, I refer to a cluster algebra whose
exchange graph has a finite number of vertices.

3.1 Lie Algebras

The following background material is from Fulton and Harris’ text, Represen-
tation Theory [9].

Definition 3 A Lie group is a group which is also a C, smooth manifold. In
this group, the composition operator o : G x G — G and the inverse operator
~1: G — G are both differentiable [9, pg. 93].

A fundamental example of a Lie group is the general linear group GL,R, the
group of invertible n x n real matrices [9, pg. 95].
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Definition 4 A Lie algebra, g, is a vector space and a accompanying skew-
symmetric bilinear map [, ] : g X g — ¢ satisfying Jacobi’s identity [9, pg.
108]

(X, [V, Z]| + [V, [Z, X]] + [Z,[X, Y]] = 0.

Definition 5 The subspace of g such that Z(g) = {X € g: [X,Y] = 0] for all
Y € g} is defined to be the center of g [9, pg. 121].

Remark 3 A Lie Algebra and Lie Group can be associated to each other via the
exp and derivative maps [9, pgs. 104-120], however this explicit correspondence
is not needed for the rest of this exposition.

3.1.1 The Classification of Semisimple Lie Algebras

Semisimple Lie algebras are those Lie algebras that are reducible as direct prod-
ucts of simple Lie algebras. There are four infinite families of simple Lie algebras,
Ap(n > 1),B,(n > 2),Ch(n > 2), and D,(n > 3). There are also several ex-
ceptional Lie Algebras, Fg, E7, Eg, Fy, and G». (Page 326 Fulton and Harris)
The families have nice representations as fundamental matrix algebras, which
correspond to important matrix Lie groups.

(4,) + sl C
(Bn) <+ 509,41C
(Cn) 8y, C
(D,) ¢ s509,C

It turns out these Lie algebras can be better understood using root systems.
Before defining root systems, we first need to discuss reflection groups. That
background material comes from Humphreys’ text Reflection Groups and Cox-
eter Groups [12, pgs. 5-11, 39].

3.2 Reflection Groups and Root Systems

Given a real Euclidean Vector space V' with a positive definite symmetric bilinear
form ( , ), a reflection is a linear map s, on V that sends a nonzero vector «
to its negative while fixing the hyperplane H, orthogonal to a. We may write
a reflection as the formula

20,8)

(o, @)

sa(B) =B —

A finite group generated by such maps is a finite reflection group. Such a group
is in fact a subgroup of the orthogonal group O(V') since reflections preserve
the length of elements. It is customary to denote a reflection group by W.
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We define a root system ® as a set of vectors that satisfy the conditions
N Ra = {a,—a}, YVa € P,
54(®) =@, Va € .

The reflection group W associated to a root system is the group generated by
the s, for a € ®. Consequently the set of vectors ® are fixed under the action
of W.

A root system @ is called ecrystallographic if 2{«,3)/(8,8) € Z for all
a,f € &. We will actually need such a condition for the group generated
by the reflections s, (a € ®) to be a Weyl group so that the root system will be
associated to a semisimple Lie algebra.

So far, it is unclear which root systems are more natural than others. To
define specific types of root systems that are more canonical, we need a total
ordering on the vectors of V. A total ordering on a real vector space V is a
transitive relation < such that the following additional conditions hold:

for every distinct pair a # b € V, either a < b or b < a but not both;

a<b=>a+c<b+g
a<beRceR-0=ca<chif c>0andch<caif ¢c<O.

One can construct a total ordering on V' in many ways, the easiest example is
lexicographical ordering: suppose vy, ... v, is a basis for V then ajvy +- - - a,v, <
bivy + - -byv, if and only if a; = by,ay = ba,...,a; = bg, and ap11 < bpy
where k can be zero and a;,b; € Rfor alli € {1,...,n}.

We can call a vector \ positive if it is larger than the zero vector under the
chosen total ordering of V. A positive system is a subset II of a root system
® where all of the constituent vectors are positive. A reflection of « is also a
reflection of —a so one can also construct a negative system —II where all of the
roots are negative. ® is the disjoint union of IT and —II.

Definition 6 A subset A of ® is a simple system with simple roots as elements
if A is a basis for the R-span of ® in V', and each a € ® can be written as a
R>o- or R<p-linear combination of elements of A.

Proposition 2 For every root system ®, there is a unique positive system I1
that contains a unique simple system A
For a proof, see [12, pgs. 8-9].

Definition 7 The rank of a reflection group W is the cardinality of the simple
system contained in a root system associated with W. Note that even though
the choice of the root system is not unique, the cardinality of A is invariant of
the choice.

Simple root systems are so fundamental because W is actually generated by
the reflections s, for a € A for any simple system A. These reflections are
called simple reflections.
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Definition 8 A reduced word for w € W is a product of simple reflections equal
to w so that the number of constituent reflections is minimal.

3.2.1 Simple Root Systems for Simple Lie Algebras

The following is from [12, pgs. 41-42] and outlines part of the classification of
semisimple Lie algebras according to their root system.

(An,n > 1) Let V be the hyperplane in R"™! where all the coordinates add
up to 0. Let ® be the set of vectors v € VN Zey + Zey + - - - + Zep 41 such that
lv| = V2. Here Ze; + Ze + -+ + Zepy is the standard unit integer lattice of
R More explicitly, ® = {¢; —¢; : 1 < i # j <n+1}. The associated simple
system is

A={e —€q1:1<i<n}.

The associated reflection group W is the symmetric group on n+ 1 letters, S, 1
that permutes the ¢;.

(Bp,n >2) Let V =R", ® be the set of vectors v € Zey + Zey + -+ - + Zey,
such that [v| = 1 or 2. & = {£e;} U{%e;£¢; : 1 <i# j < n}. The associated
simple system is

A={e—¢€41:1<i<n-—1}U{e,}.

The associated reflection group W is the semidirect product of S,, with (Z /2Z)™.
(Cn,n > 2)is By,’s dual and its simple system is

A={e—€y1:1<i<n—1}U{2¢,}.

(Dp,n > 4) Let V =R", ® be the set of vectors v € Ze, + Zey + - - - + Zey,
such that |v] = V2. ® = {£e; £ ¢; : 1 <i # j < n}. The associated simple
system is

A={e—€41:1<i<n—1}U{ep1 + €}

n—1

The associated reflection group W is the semidirect product of S,, with (Z /27Z)

(G3) Let V be the hyperplane in R® where the coordinates sum to 0. Let
® be the set of vectors v € V NZe, + Zey + - -+ + Ze, such that |v| = V2 or
V6. & = {£(e; —€;) : 1 <i# 5 <3YU{£(2 —¢; — ex)} where (i,j,k) is a
permutation of (1,2,3). The associated simple system is

A= {61 — €2, —261 + €3 + 63}.4

Letting the simple roots associated with a given simple Lie algebra as {«;},
to each of these simple Lie algebras we can associate a Cartan matrix [14, pg.
111].

4Since they are not relevant to our later discussion of cluster algebras, I will omit a de-
scription of the simple root systems for the other simple Lie algebras.
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Definition 9 A Cartan Matriz is a matrix where the (¢, j)th entry is (o, o).

One can show that (a,3) = 2% cos b, 5 where 6, 5 is the angle between «
and 8. Thus all of the diagonal entries of a Cartan matrix will be 2 [14, pg.
114]. Furthermore, the off-diagonal entries will be less than or equal to zero [21,
pg. 34]. Since semisimple Lie algebras are reducible, one can also associate a
Cartan matrix to them. If a semisimple Lie algebra S is the direct product of
Sy X --- x S, where S; is a simple Lie algebra with associated Cartan matrix

M;, then the Cartan matrix associated to S is the direct sum M; & --- & M,.

3.3 Cluster Algebras and Root Systems

This section, as well as the next (3.4) comes from [7]. Root systems can be used
to analyze Cluster Algebras. Specifically, let the exchange binomial associated
to edge j between vertices ¢ and t' be M;(t) + M;(t'). Then we let b;; be the

exponent of x; in the expression ]{\/[4?((;)). It follows that
2

M) = ] e (11)

ithij (t)>0

Mty = [ =" (12)

i:bi]‘ (t)<0

and B(t) = (b;;(t) will be a n x n integer matrix associated to vertex t. We will
call such a matrix an exchange matriz associated to vertex t of cluster algebra
A.

In other words, B(t) encodes the exponents of the exchange binomials for all
of the edges stemming from vertex ¢. All of the exchange binomials have positive
exponents but in an effort to differentiate between the binomials z?zy + 7314
and 2223 + maz4, the encoding of the exponents which appear in the second
monomial are given a negative sign. Note, by axiom (5), z; cannot divide both
monomials. Axiom (6) implies that B is forced to be sign-skew symmetric, i.e.
bi; = bj; = 0 or b;; and b;; have opposite signs.

Fomin and Zelevinsky also define a family of matriz mutation functions {u;},
so that uy(B) = B' = (b};), where

b;j: —bij ifi:kOT‘j:k
= bij if bikbk]‘ <0
= bij + bikbkj if by, bkj >0

= bij — bikbkj if by, bkj < 0.
Proposition 3 A family of n x n integer matrices (B(t))ier, corresponds to
an exchange pattern if and only if

e B(t) is sign-skew-symmetric for all t € Ty,.
o If there is an edge labeled k connecting vertices t and t', then B(t') = ug(B(t)).
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Proof. First, let us assume that the family of matrices (B(t)) corresponds to
an exchange pattern. Then by axiom (4), bj; = 0 otherwise x;|M;(t). Likewise,
axiom (6) implies that B(t) will be sign-skew symmetric.

The equality b;;, = b}, stems from definitions (11) and (12) which is a formal
way of saying that the ordering of the monomials in the exchange binomial
depends on whether you are traveling from ¢ to ¢’ or ' to t.

If j # k, applying axiom (7) to the edge labeled k between vertices ¢ and ¢'
along with the two edges emanating from ¢ and t' labeled with j, we see that

b, . bis
ij ij
i i

for M = Hiibikbjk<0 xl»b““l. Considering the exponents on the left-hand-side and
right-hand-side of xj, in (17), we see that b;cj = —by;. Comparing the exponents
on the left-hand-side and right-hand-side of z; in (17) for arbitrary ¢ completes
the proof.

Assuming that we have a family of sign-skew-symmetric matrices subject to
matrix mutation as above, it is clear that the corresponding exchange binomials
will obey the axioms of an exchange pattern, axioms (2-7). O

Once an exchange matrix B is defined for a given vertex (cluster) of the
exchange graph, axiom (7) will uniquely define matrix mutation p and all the
exchange matrices associated to each vertex of the exchange graph.> To each
of these exchange matrices we can associate a (generalized) Cartan matrix A =
A(B) = (ay;) of the same size where

a”:21fz:]and
—[bi;| if @ # J.

These generalized Cartan matrices appear in the theory of Kac-Moody algebras.
Fomin and Zelevinsky note that there seems to be a relation between cluster
algebra with exchange matrix M and a Kac-Moody algebra with generalized
Cartan matrix M’ when M and M' are associated as in (18) [7, pgs. 15-16]. In
general it is hard to prove that a given choice of B will force the whole family of
B(t) to be sign-skew-symmetric. However, the following condition implies that
the whole family will in fact be sign-skew-symmetric. For more details on the
proof, see [7, pg. 15].

(18)

Definition 10 A matrix B is called skew-symmetrizable if there exists a diag-
onal matrix D s.t. DB is skew-wymmetric.

There are other kinds of matrices that will work, but for the purposes of this
exposition, we will restrict our attention to exchange matrices that are skew-
symmetrizable. In fact, many of the following examples will only require the
matrices to be skew-symmetric.

5The exchanges are uniquely defined since we have assumed all of the monomial coefficients
are 1.
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3.3.1 The Rank 2 Case

Let T,, be a 2-regular tree whose vertices are labeled ¢, for m € Z where an edge
labeled m mod 2 joins vertices t,, and t,,4+1. Let the cluster associated with
vertex t,, be {Zm,Tmy1}. By theorem 1, all of the succeeding cluster variables
can be rewritten in terms of a Laurent polynomial of two initial cluster vari-
ables (z1,z2) after completing a series of exchanges according to the exchange

binomials. Let
Pm (1:1 ) 1'2)

Tm = m) ds(m)’
() 20

a:llil
where P, is a polynomial with coefficients in Z not divisible by z; or z5 and
dl, dy € 7.

Corollary 1 The only possible exchange patterns for a rank 2 cluster algebra
correspond to a family of matrices with the form

Bm) = -0m | ) 0]

for integers b and c of like sign.

Furthermore, these exchange matrices will correspond to an exchange pattern
that alternates between the two binomials z° +1 and 1 + x°.

Proof. This is a corollary of Proposition 3 restricted to the rank 2 case.
The corresponding generalized Cartan matrix is

A(B(t)) = [ 2 _3].

—C

A root system with basis of simple roots {aq, a2} corresponds to this Cartan
matrix. Let W(A) be the reflection group generated by the two simple roots

-1 710
T 01|27 e -1
52 = s2 = 1 so the possible reduced words w € W are

w1 (m) = 515281 - " S(m mod 2) OT wa(m) = 52518+ -+ S(m+1 mod 2)-

After perusing our list of rank 2 semisimple Lie algebras and their corresponding
root systems, we see that W finite < bc < 3. Further study reveals that the
rank 2 cluster algebras of finite type can be summarized in the following table.
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Lie Algebra Cartan Matrix Representative Exchange Matrix = # Clusters

w32 (28] 4
e 5
GO Ex :
e 6
R 8
@ [45] X 8

3.4 The Formalism Behind Exchange Graphs

Fomin and Zelevinsky define two clusters ¢ and ¢ to be M-equivalent if there
is a permutation o € S, such that z;(t') = z,(;(t) for all i € {1,....n} and
if Ea(j) (t,tl) along with Ej(tl,tll) implies M]’(t,) = Mo(j)(t) and Mj(tll) =
M, (;)(t1). In other words, the two clusters are composed of a permutation of
the same variables.

Let one follow a path on the tree T,, associated with a particular exchange
pattern where the edges alternate 7,7,4,7,.... If t =5 t' after a sequence of
such steps, then we see that T, has a cycle. By the analysis of the rank 2 case,
the only cycles will be of length 4, 5,6 or 8. All other paths of alternating edges
will be infinite.

The type Az case where the exchange graph is a pentagon is exceptional
since the number of clusters is odd. Starting at cluster {z1,y; }, the polynomial
exchanges z;x;+1 = y; + 1, ¥i¥i+1 = T;+1 + 1 leads to the clusters

y1+1 y}—){y1+1 $1+y1+1}_>{$1+1 ZL'1+y1+1
1 )

) )
T T T1Y1 Y1 T1Y1

—{

Each edge will not have a precise edge label since zg = y; and yg = x; implies
that changing the 2nd variable of the cluster {zg,ys} is equivalent to changing
the 1st variable of {x1,y1} even though these two clusters are M-equivalent to
each other.

}

{z, 0} = H{

1 +1

o1} = {y, 21}
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Considering the example from section 2, {g, }, one can append the caterpillar
to get the full exchange graph for this cluster algebra. It turns out not to be an
infinite tree, but instead two infinite rows of pentagons. We will call this graph
Gs,2. From earlier analysis, we know that the edges emanating from a vertex on
the spine is associated with a cyclic transformation of the exchange polynomials
1+ x22x3, 1 + 23, and 122 + 1. We encode these exchanges as the exchange
matrix

0 1 1
Blto)=| -1 0 1
-1 -1 0

Applying the matrix mutation functions {y;} to this starting matrix, we obtain

0 -1 -1
m(B(to)) = r 0 1 (19)
1 -1 0
[0 -1 2
B(t1) = p2(B(to)) = L0 _1] (20)
EXEEl
[0 1 -1
By = | -1 0 1 1)
11 o]
[0 -2 1
B(t2) = pspa (B(to)) = 2 0 _1] (22)
EEEE

Notice that py(B(to)) and us(B(to)) are just cyclic transformations of B(tp).
This symmetry arises since the exchange polynomials associated with every ver-
tex on the spine are cyclic transformations of each other. Edge 2, on the other
hand, will lead one to a vertex off the spine, B(#1). One notices that B(tz), the
result of traveling along edge 1 on the spine, followed by edge 3 leads one to
another vertex off the spine, one whose exchange polynomials are cyclic trans-
formations of B(t;)’s exchange polynomials. Since B(t)’s three principal 2 x 2
submatrices are the exchange graph for a cluster algebra of type As, this im-
plies that a walk along a sequence of adjoining edges alternatively labeled (either
1,2,1,2,...0r1,3,1,3,... or 2,3,2,3,...) will be a cycle of length 5. Thus the
associated exchange graph will have three adjoining pentagons at each vertex.
Furthermore B(t;) and B(t2) contain exactly one principal 2 x 2 submatrix of

the form [ thus the vertices ¢ and ¢, sit on infinite lines disjoint from

0 2
-2 0
the original spine. Based on the cyclic symmetry between B(t;) and B(ts),
we are able to deduce that the pentagons must interlock in such a pattern to
allow travel in both directions to be cyclically symmetric. Thus we find that
the exchange graph consists of three spines, where the original spine associated
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with g, is the middle spine. We use axiom (7) and the exchange matrices to
compute the exchange binomials associated with the additional edges.

g(1) g3 =R(g1 W) w g1 g5=R(@3,W)

000 Wwg0-=0Q((1).01) ¢ W g4 = Q(g3, g5)

Wg2=Qg1, 03) g3

91 g4 = P(@2, g3)

92 g5 = P(g3 g4)

9(-1) 92 = P(g0, g1) 90 g3 = P(g1, 92)

g2
Zg91=0Q(g0, g2) Zg3=0Q(g2, g4)
00 g4 =R(g2, 2

z
Exchange graph G5 » for the sequence g, with a close-up.

Each vertex is bordered by three bounded (or unbounded) regions. The cluster
variables of each vertex are represented by these three regions. P(z,y) = zy+1,
Q(z,y) =z +y and R(z,y) = ¥? +y. The edge labels assume one is starting
from vertex to and traveling outward. Since subgraphs are pentagons, each edge
does not have a precise edge label.

3.5 New Recurrences for Old Sequences

Notice that if we start with the recurrence g,gn—3 = gn—19n—2+1, and build the
exchange graph which has the corresponding exchange binomials on it spine, we
get an exchange graph with two additional spines which satisfy the recurrences
G2nt+292n—2 = Gan + 2 and gani192n—3 = ga,_1 + w respectively. If go = g1 =
g2 = 1, then z = 2 and w = 3. Our combinatorial interpretation of g, as the
number of perfect matchings for a family of graphs had previously revealed the
extra recurrence gs,+292n-—2 = g3, + 2.
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Based on numerical evidence and these exchange graphs, the author conjec-
tures that there is a one-to-many surjective map between perfect matchings in
2x2(n—1) grid graphs and perfect matchings in mutilated 3x2(n—1) grid graphs
where a matching with m pairs of horizontal edges map to 3™ perfect matchings
of a mutilated 3 x 2(n — 1) grid graph. Thus, the sequence g,, can be split into
two alternating subsequences where the terms go, = 1,3,11,41,... satisfy the
recurrence gongon 4 = gs,_» + 2 and the terms g2, 11 = 1,2,7,26,97, ... satisfy
the recurrence gan+192n—3 = g3, 1 + 3. The cluster algebra method has given
an alternate way to uncover and prove these recurrences without presupposing
knowledge of the combinatorial objects the integer sequence counts, and with-
out explicit bijections. Thus the exchange graph method for discovering new
recurrences provides a method for discovering new recurrences for a sequence
even where the combinatorial interpretation is unknown.

3.6 Three-dimensional Exchange Graphs

We noticed for cluster algebras of rank 2 that the only possible exchange graphs
are an infinite line, a square, a pentagon, a hexagon, or an octagon. Likewise,
cluster algebras of rank 3 will either be of infinite type or finite type. The graph
Us,2 is a nice example of an exchange graph for a cluster algebra of infinite type.
A 3-degree tree is another possibility for a rank 3 cluster algebra of infinite type.

As illustrated in section 3.3, Fomin and Zelevinsky [7] illustrate that it ap-
pears possible to classify cluster algebras in terms of corresponding semisim-
ple Lie algebras. However, it is unclear whether or not all cluster algebras of
finite-type correspond to semisimple Lie algebras. If they do not correspond to
semisimple Lie algebras, perhaps they correspond to Kac-Moody algebras [7,
pg. 16]. For the case of rank 2 cluster algebras of finite type, the classification
can be completed only using semisimple Lie algebras, as explained in section
3.3.1 and explained more thoroughly in [7]. In the following pages, some cluster
algebras of higher ranks will be classified, though this exposition will only hint
at some patterns since a complete classification is still an open problem. We
will refer to a cluster algebra as type S if one of the clusters (vertices) has an
exchange matrix associated to the Cartan matrix for the semisimple Lie alge-
bra S. The cluster algebras of infinite type are hard to classify, but for rank 3
cluster algebras of finite type, some possible exchange graphs will correspond to
the Lie algebras A1 X A1 X Al, A2 X Al, B2 X Al, G2 X Al, A3 or B3.

The one-dimensional exchange graph corresponding to A; is a line between
two points (Z/27), the one for A; x Ay is a square, and A; x A; x A; has a
cube as its exchange graph. Such evidence motivates the following result which
seems not to have appeared in the literature before.

Proposition 4 In general, the cluster algebra of type A} has an n-cube as its
exchange graph.

Proof. The semisimple Lie algebra A} has the diagonal matrix 21, as its
Cartan matrix. Consequently, the associated exchange matrix is NV, the matrix
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of all zeros. So the cluster algebra of type A} (which will be of rank n) contains

at least one cluster X = {z,...,z,} with the binomial exchange relations:
Ty =1
T2y =1
TnYn =1

which means all the adjacent clusters must look like

1
Y = {wla"'ami—la ;awi+17"-7mn}-
i

Furthermore, p;(N) = N for all i so each cluster of A will look be of the form

€1 €
{zi', ..., 2"

where ¢; = 1, and each exchange changes the sign of exactly one ¢;. The
corresponding exchange graph is an n-cube. O

Proposition 5 We can generalize this result. Let Gx be the exchange graph
for a cluster algebra of type X. Then a cluster algebra of type X X Ai has
Gx X Z[2Z as its exchange graph. This is a graph consisting of two copies of
G x where vertex (v,0) is connected to vertex (v',1) if and only if v ="v'.

Proof. The proof is analogous. The exchange matrix associated with X x A;
will be Mx, the exchange matrix associated with X, with an extra row and
column of zeros. This corresponds to adding an edge corresponding to the
exchange xy = 1 to one of the vertices of Gx. Let Mx &0 be the corresponding
exchange matrix for a cluster algebra of type X x A;. For i #n, u;(Mx ®0) =
wi(Mx) ® 0 and p,(Mx ® 0) = Mx @® 0 which means we have added an nth
variable to each cluster, and an edge at every vertex which sends z, to its
reciprocal. This addition will force the exchange graph to be Gx x Z /27 where
each vertex of Gx has been replaced by two vertices {(v, ), (v, i)} connected
by an edge. O

Similarly, we conjecture that the rank 4 cluster algebra A, x Ay would have
an exchange graph Z /57 x 7 /5Z, a pentagonal graph for each vertex is blown
up to a pentagon.
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The conjectured exchange graph for the rank 4 cluster algebra of type As x As.

Getting back to the low rank cases, the following are all of the exchange graphs
for rank 1 or rank 2 cluster algebras of finite type. Several rank 3 cluster algebras
have also been included.

1xA

AXALXA AxBy
Ale2
Alx G2

Exchange graphs for some low rank cluster algebras of finite type.

Representative exchange matrices associated with each of these exchange graphs
are:
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A1 <« [0]
[0 0
A1XA1 g _0 0
T 0 1]
A2 Rd 1 0-
0 1]
B2 Rd _9 0-
0 1]
G2 e | 3 0
[0 0 0
A x Ap x A & 0 0 O
00 0
[0 1 0]
AQXAl <« -1 0 0
- 0 0_
- 10
BQXAl <« -2 0 0
- 0 0_
- 10
Gy x A « -3 0 0
00 0

A cluster algebra of type Az is the simplest rank 3 cluster algebra of fi-
nite type whose exchange graph cannot be described as the direct product of
lower rank graphs. To construct its exchange graph we complete the following
procedure.

3.7 Aj3’s Exchange Graph

First we note that A3 has the associated Cartan matrix

2 -1 -1
-1 2 -1
-1 -1 2

We will consider the cluster algebra where one of the clusters has

0 1 -1
M= -1 0 1
1 -1 0

as its exchange matrix. Mutating M as defined in section 3.3, we find
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0 -1 1

| -1 0 0|

[0 -1 0]

M2:,LL2(M) = 1 0 -1
0 1 0|
[0 0 1]

M3:,LL3(M) = 0 0 -1
-1 1 0|

My, My and Mj each are cyclic transformations of each other, and they each
have two principal submatrices that are exchange graphs of type As and one
principal submatrix that is of type A; x A;. Furthermore, all of M’s principal
submatrices were of type As. From this, we deduce that the vertex associated
with M lies at the junction of three pentagons, and the vertices associated with
My, M> and M3 each are at the junction of two pentagons and a rectangle. We
continue to apply the matrix mutation functions 1, us and ug to My, Ms, My
and beyond, and at the same time apply the corresponding exchange relations
to the initial cluster {x,z2, x5} (which is associated with exchange matrix M).
We find that the following graph characterizes all of the clusters of this cluster
algebra where S = x; + z2 + z3.

(S /x2x3,/8 / X1x3-S / X1x2}

{(x2 + x3)/x1, 8/ x1x2, x3}

{2 +x3)/x1, S/ x1x3, S/ x1x2 )@= Q- .——————1‘. {S / x2x3, (41 +x3)/x2, S/ x1x2}
| DS/ x1x2, (x1i+x3) /X2, X3} i
X2 +x3)/x1, x2, S/ x1x3) ‘ """ L] O @ XL (xL+x3)/x2, S/x2x3)
{2 +x3/x1, x2, 3P KL (XEXI/X2, X3} |
o
{x1, >:(2, x3}
[S/X1x3, X2, (X1 +x2)/x3) @~ R — @ L S/56, (L +xA/3)

{x1, x2, (x1 + x2)/x3}

{S/x2x3, S/ x1x3, (X1 +x2)/x3}
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Unbounded

Two representations of the exchange graph for the cluster algebra of type As.

This exchange graph can be pictured in three dimensions as two tetrahedra
glued together where all of the corners at the adjoining faces have been rubbed
down to make square faces. An easy way to see this is that if one shrinks the faces
of size 4 in the planar version of the graph (left-hand side) down to points, one
is left with six faces of size 3 which forms two adjoined tetrahedra. I am grateful
to Curtis T. McMullen for noticing this three dimensional characterization of
this graph.

This graph also turns out to be the three dimensional associahedron [3].
Notice it has 14 vertices, the A, graph had 5 vertices, and the A; graph had
2 vertices. These are the Catalan numbers C5, C3, C4 where C,, = #(27?)
and this is not a coincidence. In fact, each of these vertices correspond to a
triangulation of a hexagon and there are Cy = 14 ways of doing this (there
are Cp, triangulations of the (n + 2)-gon). Another interpretation is that the
polytope’s vertices correspond to the ways you can associatively write a product,
thus the name associahedron [18].

Fomin and Zelevinsky have a more general result that all exchange graphs for
an A,-type cluster algebra are n-dimensional associahedra. Similarly they have
a result that all exchange graphs for a B,-type (Cy,-type) cluster algebra are
n-dimensional cyclohedra. See [2] or [24] for details about the cyclohedron. In
fact, they define the families of exchange graphs for cluster algebras of finite type
associated with simple Lie algebras to be polytopes that they call generalized
associahedra [3]. Tt appears that this would extend to a classification of many
cluster algebras of finite type, namely a cluster algebra is determined by its
exchange graph, and some possible exchange graphs would be direct products
(as graphs) of the generalized associahedra.’

6 As mentioned earlier, it is unclear if all cluster algebras would correspond to semisimple
Lie algebras. Furthermore, we have restricted the definition of cluster algebra in this exposition
by not allowing coefficients other than 1. If one allows coefficients from P, an abelian group
without torsion, the classification would be even more complicated. Additionally, we have not
mentioned anything about the classification of cluster algebras of infinite type, such as the
cluster algebra defined by the sequence g, with G5 2 as its exchagne graph.
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4 Open Problems

The caterpillar lemma is great for proving that certain sequences are Laurent
sequences. However, the converse does not hold, and it cannot prove definitively
that a sequence z,, is not Laurent. Is there a way to refine the condition to make
this lemma an exact criterion? Or is there at least a way to determine for what
kinds of sequences the caterpillar method will fail [4]?

The caterpillar lemma can prove that a sequence is Laurent, which in turn
proves that the sequence is an integer sequence given that the first several terms
are 1. However, this cannot determine whether the coefficients of the resulting
Laurent polynomials are all nonnegative. It appears they are (Remark 1) and
this would allow one to conclude the more powerful result that the sequence
would be a sequence of nonnegative integers. Hence it could count combina-
torial objects. Finding an explicit combinatorial interpretation for a sequence
proves that sequence indeed consists of nonnegative integers. Is there a more
universal way to assign such interpretations? The nonnegativity condition is
also important because it appears that the dual canonical basis, the original
motivation for the development of cluster algebras, should only involve nonneg-
ative coefficients. This will be discussed briefly in the appendix.

Type A, exchange graphs were identified as associahedra, and B, (C,)
exchange graphs as cyclohedra in [3]. In this same article, Fomin and Zelevinsky
ask about the structure of D,, exchange graphs. It would also be significant to
classify exchange graphs of infinite type. Perhaps this can be done for rank 3 or
at least for rank 3 cluster algebras which have exchange graphs that Zelevinsky
refers to as tame, i.e. they are highly symmetrical like Gs ».

In particular, Fomin and Zelevinsky are pursuing a more complete classifi-
cation of all cluster algebras (or at least tame ones) which would be analogous
to the classification of semisimple Lie algebras or Kac-Moody algebras. Zelevin-
sky explained (personal communication) that seeing patterns and connections
to Laurent sequences and associahedra help them develop insight as to patterns
in the classification.

After a more explicit classification of cluster algebras has been formulated,
one could explore the theory of Laurent polynomials and recurrence relations in
more depth. In particular, we saw how the exchange graph Gs o helped reveal
secondary recurrences that the sequence {g,} satisfies. In practice one should be
able to do this for other sequences, and the classification of cluster algebras and
exchange patterns would correspond to a classification of families of recurrences
where two recurrences R; and R> would be in the same family if any sequence
that satisfies R; must also satisfy recurrence Rs.
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5 Appendix: Fomin and Zelevinsky’s Motiva-
tion for the Development of Cluster Algebras

The inspiration for the development of cluster algebras came from Fomin and
Zelevinsky’s study of the dual canonical basis of Quantum groups. In the follow-
ing paragraphs, we will summarize the results and conjectures that led Fomin
and Zelevinsky to create a new algebraic structure. First, we will recall some
notation and results from [25]. We let UT = U,(n) C U,(g) be the subalgebra
of the quantized universal enveloping algebra generated by elements E; and let
R(wyp) be the set of reduced words for the permutation wg = (nn—1---321).
We will not give a more precise definition of E;. For such a definition, see [25,

pg. 8.

Remark 4 Foreveryi € R(wp) and t € L', there is a unique element b = ()

of U™ such that b and b — pzst) is a linear combination of the elements of B3,
a basis with coefficients in ¢~ 'Z[g™']. It turns out B; is not dependent on the
choice of i thus we let B be the canonical basis.

We will not define the elements pzst), see [25, pg. 8] for a defintion. The
importance of Remark 4 and the related notation is that it allows a definition of
a canonical basis to make sense. Prior to their formulation of cluster algebras,
the canonical basis, which is due to G. Lusztig [13], had been a main object of
study for Fomin and Zelevinsky.

For example, Fomin and Zelevinsky describe a more explicit parameteriza-
tion of the canonical basis B in [1] and [5]. Then to study more of the algebraic
structure of B, they investigated the dual canonical basis B™ in the ring of
regular functions C[N] where N is the maximal unipotent subgroup of the group
under investigation. After many examples, a pattern hinting at an underlying
algebraic structure emerged [25]. The properties of these algebraic structures
were axiomatized as the theory of cluster algebras. Zelevinsky explains

The dual canonical basis B was constructed explicitly in several
small rank cases. ... In all of these cases, B4 consists of certain
monomials in a distinguished family of generators. ... The mono-
mials that constitute B are defined by not allowing certain pairs
of generators to appear together. In each case, the product of every
two “incompatible” generators can be expressed as the sum of two
allowed monomials [25, pg. 12].

In addition to the theory of dual canonical bases, Lusztig generalized the concept
of totally positive” matrices to total positivity in any reductive group G.
Lusztig related the theory of total positivity back to the dual canonical basis.
He showed that the elements of the dual canonical basis in C[G] take positive val-
ues. It is this connection that motivated remark 1, i.e. Fomin and Zelevinsky’s

7A matrix is considered totally positive if all of its minors are positive. Such matrices are
important in the study of differential equations and Polya frequency sequences [15].
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conjecture that not only are the cluster variables Laurent polynomials in any
other cluster but are Laurent polynomials with nonnegative coefficients. If such
a conjecture was true, a more explicit correspondence between the dual canon-
ical basis and cluster algebras might be possible. In fact Fomin and Zelevinsky
conjecture that any coordinate ring C[G] or C[G/N] can be characterized as a
cluster algebra assuming one is free to use coefficients in P other than 1 [7].
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