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Abstract. A real-valued function f defined on a topological space is called absolutely
polynomial if its absolute value can be written as a polynomial in f with continuous
coefficients. One motivation for studying such functions comes from the theory of rings of
continuous functions. While many real functions are absolutely polynomial, we provide a
number of interesting explicit examples which are not. The absolutely polynomial criterion
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absolutely polynomial functions is then widened to more general topological spaces. Our
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1. Motivation.

The original purpose of this paper was to provide a negative answer to the following
question.

Problem: Can the function | sin £ | be written as a polynomial in sin 1 with continuous
functions as coefficients?

On the surface, this may seem to be merely a technical issue in real analysis. How-
ever, the motivation is much deeper, since a negative answer has important ring-theoretic
consequences. A function that satisfies the condition stated in the Problem will be called
absolutely polynomial, and we begin by showing that sin% is not absolutely polynomial.
However, many standard functions, including all rational functions and all piecewise con-
tinuous functions, are absolutely polynomial. This distinction served to motivate a detailed
investigation into the properties of real functions that distinguish those that are absolutely

polynomial.

The familiar functions which are absolutely polynomial are of degree one or two. We
begin by producing an example of a (“generalized”) piecewise linear function of bounded
variation that is not absolutely polynomial, even though small nearby perturbations are
absolutely polynomial. The key to understanding the concept lies in the notion of the first
(and subsequent) jump ratio functions, as defined in section 3. One is led naturally to study,
in turn, monotone functions, functions of bounded variation, and regulated functions,
which are natural generalizations of piecewise continuous functions. A general criterion,
formulated in terms of the jump ratio functions, is provided for a regulated function (that
is continuous everywhere it is defined) to be absolutely polynomial of degree n. Monotone
functions are seen to be absolutely polynomial of degree at most 4. This section concludes
with an explicit family of regulated functions that are absolutely polynomial of arbitrarily
high degree, as well as a regulated function that is locally (but not globally) absolutely
polynomial. Usually, one tries to avoid discontinuities and pathology. We need them (to
be bad enough) in order to get valid interesting examples.

Following our discussion of real-valued functions, we expand our investigations to a
wide class of topological spaces. A topological space will be called absolutely closed if
every function on it is absolutely polynomial. The only examples known, though, are
discrete spaces. More interesting is the question of whether a point in a topological space
is absolutely isolated, meaning that every continuous function which is defined everywhere
except at the point is absolutely polynomial. In particular, we discuss generalizations of
our results concerning real rational functions to other topological spaces.

Finally, we present some nontrivial algebraic consequences of our results. An impor-
tant motivation for the original problem was the question of how the category of ®-algebras
behaves under the formation of rings of quotients. Given a topological space X, we let
C(X) denote the algebra of continuous functions defined on all of X. If a given function
f: X — R with dense open domain is not absolutely polynomial, then the polynomial ring
C(X)[ f]is not a ®—algebra, even though it is a quotient ring of the ®-algebra C(X). Con-
sequently, any topological space with a non-absolutely isolated point has such a property
— that one can construct a ring of quotients of the ®-algebra of continuous functions
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C(X) which is not a ®—algebra. We conclude with some open problems and directions for
further study.

2. The Key Result.

We begin by presenting the basic result in real analysis that answers the original
question. The proof of this result forms the foundation of our generalizations.

Proposition 2.1. There do not exist any real-valued functions g,(x),...,g,(z)
which are continuous and defined for all x € R such that
1 n 1\*
in— | = in — for all 0. 2.1
smm‘ I;)gk(m)(smm) or a x # (2.1)

Proof: Suppose we can find g, (x) satisfying (2.1). Set
¢ = 95(0)
and define
(2.2)

T(Z)=‘|Z\—Z e

Since | z | does not coincide with any polynomial on any interval containing 0, there exist
e >0 and —1 < 2z, <1 such that

(%) > €. (2.3)
Choose § > 0 such that
| 9,(z) — ¢, | < nLH for  |z| <. (2.4)
Then
n 1 k
ngx)—ck (sin;) < e, x| <.
Therefore, if (2.1) holds,
n k
‘ sm— Zc (sm—) <g, |z | <. (2.5)
k=0
However, if we choose N sufficiently large so that
1
< 0,

- 2N +sin ! 2

then sin 1 = z;, and hence (2.5) becomes

n
|29 | = Z Clcz(’)c
k=0

But this contradicts (2.3). Q.E.D.

<E.

T(zp) =




Clearly, the basic method of proof is not particular to the function sin %, or to the
choice of absolute value. In fact, the same proof can be used to establish a general result,
of which Proposition 2.1 is merely one special case.

Theorem 2.2. Let f(x) be defined on the set dom f C R. Let Iy = (zy — d,x,+ 0)
denote the open subinterval of width 20 > 0 centered at a point z,, and define f(I5) =
{z=f(x) |z €lyn domf}. Assume that the set J = N5y f(I;) contains an open
subinterval J,,, which implies that f is discontinuous at x,. Let ¢(z) be a continuous
function which is not identically equal to a polynomial on J,. Then there do not exist
continuous functions g,(x), ..., g,(z) € C(R) such that

n

Y(f(z)) = Z 9, (z) f(2)F forall  z € dom f. (2.6)

k=0

In particular, if J contains an open subinterval (—e,€), then there do not exist continuous
functions gy(x), ..., g,(x) such that

n

[ f(z) | = Z 9. (z)f(z)F for all z € dom f.

k=0
3. Absolutely Polynomial Functions.

Let us now concentrate on the general question of whether the absolute value' of a
given function f:R — R can be written as a polynomial in f with continuous coeflicients.
Note that the domain of the function dom f C R need not be the entire real line. We
propose the following definition to study this phenomenon. Let C(R) denote the ring of all
continuous real-valued functions defined on all of R, so g € C(R) requires domg = R.

Definition 3.1. A function f:R — R will be called absolutely polynomial if there
exist continuous functions g, ..., g, € C(R) such that

| f(z)| = Z 91, (z) f(x)" for all x € dom f. (3.1)
k=0

The degree of an absolutely polynomial function is the minimal n for which an identity of
the form (3.1) holds.

For example, if | f| € C(R) is continuous on all of R = dom f, then f is automat-
ically absolutely polynomial of degree 0, since we can take g, = | f|. More generally,
the absolutely polynomial functions of degree 0 are those whose absolute value | f | can
be continuously extended to all of R. (The characterization of functions which can be
continuously extended to R is discussed in more detail below.)

T This is the most interesting case, and so we shall concentrate on it in this section. Most
results can be extended to other functions 1, as described in Theorem 2.2, without difficulty. The
appropriate modifications of our results and constructions are left to the reader.



Proposition 3.2. A function f is absolutely polynomial of degree 0 if and only if
there exists g, € C(R) such that | f | = g, | dom f.

If f(z) > 0 for all z € dom f and f is not continuously extendable to R, then f
is linearly (degree one) absolutely polynomial, since | f | = f; a similar result holds any
non-positive function f < 0. Thus, only functions of variable sign are candidates for not
being absolutely polynomial. Moreover, every function is the sum of two linearly absolutely
polynomial functions — being the difference of its positive and negative parts.

Proposition 2.1 shows that sin% is not absolutely polynomial. More generally, The-

orem 2.2 implies that functions with certain “essential” discontinuities are not absolutely
polynomial. However, milder discontinuities are permitted. For example, the function é

is quadratically (but not linearly) absolutely polynomial. One has

=|x|-(§)2,

and hence (3.1) holds with n = 2, g,(z) = ¢g,(z) = 0, and g,(z) = | z |. Clearly, a function
f is absolutely polynomial of degree < 2 if and only if 1/f is absolutely polynomial of
degree < 2.

Note that the sum of two absolutely polynomial functions (when defined) need not be
absolutely polynomial; for example, sin % is the sum of the non-negative function 2 + sin %
and the nonpositive function —2. Similarly, the product of two absolutely polynomial
functions, or even a continuous function with an absolutely polynomial function, need
not be absolutely polynomial. An example is given by multiplying the function % by the
continuous function

o1

Tsin = z # 0,

ey ={ Tme 7 (3.2
0 z=0.

Indeed, % -p(x) = sin% is our original non-absolutely polynomial example. On the other

hand, the product of an absolutely polynomial function and a nonvanishing continuous

function remains absolutely polynomial.

A more interesting question is whether the (odd) powers of an absolutely polynomial
function are absolutely polynomial. Of course, even powers of a function are non-negative,
and so trivially linearly absolutely polynomial. The only result we have been able to
establish is in the linear case:

Proposition 3.3. If f is linearly absolutely polynomial, then every power f" is also
linearly absolutely polynomial.

Proof: We only need consider odd powers f2™*1. By assumption, we have | f | =
a+bf for a,b € C(R). We rewrite this as | f | — bf = a and take powers of both sides:

2m—+1

2 <2mk+ 1)bk [FPETE R = (= bp)P = e, (3:3)

k=0



Note that | f [*™+'=F gk = f2m+1 when k is even, while | f [>T 7% fk = | £ ™! when
k is odd. Therefore, we can rewrite (3.3) as

YL = a4 g, (3.4)

“ <2m + 1) 2
: 2 '
=0

(2

Since v > 0 everywhere, (3.4) implies that | f [T = (a/y) + (8/7)f2™+1, so f2m+1
is linearly absolutely polynomial. Note finally that an odd power of a function is con-
tinuously extendable if and only if the function itself is continuously extendable, and so

Proposition 3.2 shows that the absolutely polynomial degree of the odd powers of f is the
same as that of f. Q.E.D.

where

2m+1
— 2m+1 27,—|—1 —
o=at = z(%“) o

We do not know whether the odd powers of a quadratically absolutely polynomial
function are necessarily absolutely polynomial.

Definition 3.4. Define the support of a function ¢:R — R to be the set suppg =
{z|q(x) # 0} C domq. The zero set of q is the set Z(q) = {z |q(x) = 0} = dom g\ supp q.

Quotients of absolutely polynomial functions, even when both numerator and denom-
inator are continuous but have overlapping zero sets, need not be absolutely polynomial.
For example, if we divide (3.2) by g(z) =  we again recover p(z)/q(z) = sin £, which is
not absolutely polynomial. However, certain types of quotients of continuous functions,
including rational functions, are always absolutely polynomial.

Theorem 3.5. Suppose p, q € C(R) are continuous functions and suppose there exist
continuous functions u,v € C(R) such that

up+vg=1 forall zeR (3.5)

Then the quotient p/q, which is defined on suppgq, is at most quadratically absolutely
polynomial.

Proof: We have

p|_Ipllq] up +vq\” p ?
~|=—5—=Iprllq] Yy =|pllq] utv) (3.6)

The latter expression is clearly a polynomial of degree 2 in p/q with continuous coeffi-
cients. Q.E.D.

For example, the function tanz = sinz/ cos z is quadratically absolutely polynomial,
because sin? z+cos? z = 1. Incidentally, it is easy to see that tan z is not linearly absolutely
polynomial.

Theorem 3.6. Suppose p, q € C(R) are continuous functions, with disjoint zero sets
Z(p) N Z(q) = @. Then the quotient p/q is absolutely polynomial.
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Proof: The function h = p? + ¢? is always positive, and so 1/h € C(R) is continuous.
Moreover, one has (p/h)p + (¢/h)g = 1, and so one can use Theorem 3.5 with u = p/h,
v =q/h. Q.E.D.

Remark: When the above holds, not only is p/q absolutely polynomial, but so are its
powers. Indeed, we raise (3.5) to the 2nth power, which makes 1 a linear combination p™
and ¢"™ with continuous coefficients.

Corollary 3.7. Any rational function over the real field is absolutely polynomial.

Proof: Any rational function can be written as a quotient p/q of relatively prime
polynomials, which implies that p and ¢ have disjoint zero sets. Alternatively, one can use
the Euclidean algorithm to construct real polynomials v and v such that up +wvg =1 and
appeal to Theorem 3.5. Q.E.D.

In order to investigate more general singularities, we first require some basic defini-
tions. Given a set S C R, we let ST denote the set of right-hand accumulation points,
so that x € ST if and only if there exists a decreasing sequence of points z; € S with
T; = T converging to x from the right. Similarly, S~ will denote the set of all left-hand

accumulation points. Note that STUS~US = S equals the closure of S, while S\ (STUS™)
are the isolated points of S. Let S* = ST NS~ denote the set of two-sided accumulation
points, and S® = S N S those that belong to S.

The following terminology has been adapted from that in Bourbaki, [1; §11.1.3], and
Dieudonné, [2; §VIL.6], who considered the particular case of functions whose domain is
an interval.

Definition 3.8. A function f:R — R will be called requlated if, for every z €
(dom f)T, the right hand limit f(z™) exists, and for every z € (dom f)~, the left hand
limit f(z~) exists.

Every monotone function is regulated, as is every function of bounded variation, being
the difference of two monotone functions, [11; p. 86]. According to a remark in Bourbaki,
[1; p. I1.6], the regulated functions defined on an interval form an algebra — indeed, they
form what we will later call a ®-algebra, cf. Definition 5.1, that is uniformly closed, [1; p.
I1.5]. The following basic characterization of regulated functions can be found in [1, 2].

Theorem 3.9. A function f whose domain is a compact interval is regulated if and
only if it is the uniform limit of step functions.

Classically, the condition that a real function f be “continuous at a point z” requires
that z € (dom f)? is a two-sided accumulation point in its domain, and f(zT) = f(z~) =
f(x). We wish to extend this usual notion of continuity to other types of points, and the
following definition provides a natural generalization.

Definition 3.10. Let f:R — R be regulated. A point z, € R will be called a point
of generalized continuity of f if either f is continuous at z, or f is not defined at z,, but
has a limit as z — z.



Note that points of generalized continuity all belong to the closure dom f of the
domain of f. In particular, all isolated points in the domain of f are included as points of
generalized continuity.

Definition 3.11. The continuity set C(f) C R of a regulated function f:R — R is
the set of all points of generalized continuity x € dom f. The discontinuity set is defined
as D(f) = dom f\ C(f). The set of two-sided discontinuities of f is

D(f)* = {z € (dom f)* | f(«T)# f(z7)}. (3.7)
Note that f may or may not be defined at points on its discontinuity set. For us,
the most important (and easiest to analyze) case is when D(f) Ndom f = @, so that f is

not actually defined at any discontinuity point. This implies that every discontinuity is a
two-sided discontinuity, so D(f) = D(f)*, cf. (3.7).

Remark: If f is not regulated, then one enlarges its discontinuity set D(f) to include
all right hand accumulation points z € (dom f)* where the right hand limit f(z%) does
not exist, and, similarly, all left hand accumulation points = € (dom f)~ where f(z~) does
not exist.

Definition 3.12. A function f is called generalized continuous if D(f) = @, so that
every point in dom f is a point of generalized continuity.

Remark: In particular, every generalized continuous function is regulated. In Bour-
baki, [1; Théoréme I1.3], it is proved that the discontinuity set of a regulated function
whose domain is an interval is a countable set.

The generalized continuous functions are those that can be continuously interpolated
— meaning continuously extended to all of R.

Definition 3.13. A continuous extension of a function f:R — R is a function
h € C(R) such that h | dom f = f.

Proposition 3.14. A function f admits a continuous extension if and only if f is
generalized continuous.

Proof: The direct statement is easy. To prove the converse, let a = inf{dom f},
b =sup{dom f}, so that dom f C [a,b]. Given a < x < b, define

m, =sup {y €edom f | z >y}, M, =inf{y edom f | z < y}.
Note that m, = M, if and only if either € dom f U (dom f)* is either in the domain of

X
f or is a two-sided accumulation point thereof. The function

( f(a+)a T S a,
f(b_)7 T 2 b,
h(.ﬁL‘): 4 f(x)a $€d0mf7
f@h) = fa), z € (dom f)*,
defines a continuous extension togcf. ’ Q.E.D.



Proposition 3.14 generalizes the classical interpolation result that any function whose
domain is a discrete subset of R has a continuous extension. Combining Propositions 3.2
and 3.14, we deduce the following characterization of absolutely polynomial functions of
degree 0.

Corollary 3.15. A function f is absolutely polynomial of degree 0 if and only if | f |
is generalized continuous.

We next recall the standard definition of piecewise continuity, which is usually stated
just in the case that the domain of f is an interval, or, more generally, a set of the form
dom f =1\ D, where I C R is an interval, and D C I a discrete subset.

Definition 3.16. A function f:R — R is called piecewise continuous if it is regulated
and its discontinuity set D(f) is a discrete set which has no accumulation point in R.

Theorem 3.17. A piecewise continuous function on R is absolutely polynomial of
degree at most 2. The degree is equal to

(a) 0 if| f| is generalized continuous,
(b) 1 if a) fails, and at each z € D(f) N (dom f)° either
i) f(z), f(zT), and f(x™) all have the same sign (including 0), or
i1) exactly two of the three values f(x), f(z*), f(z™) are equal,
(c) 2 if there exist one or more points in x € D(f)N (dom f)° where f(z), f(z™),
f(x™), are different, not all having the same sign.

Proof: Assume that case (a) does not hold. We then begin by assuming that all the
discontinuities in f are two-sided, D(f) = D(f)*, and, moreover, f is not defined at any
discontinuity point, D(f)Ndom f = @. This means that the only discontinuities z; € D(f)

are where f(z; N#f (z;) and f(z;) is not defined. We shall prove that in this case f is
linearly absolutely polynomial. Let

o; = fa]) = flz7) #0,  B;=|f=))| - |f=7)], (3.8)

denote the jumps in f and | f | at the point z; € D(f), respectively. Define the jump ratio
at z; to be

p‘:&_\f(w)\—lf(x |
Ty T T~ S

(3.9)

Note that if both f(z;) and f(z; +) are positive, then o, = fB;, 50 p; = 1, while if f(z}) and

J

zT) are both negatlve o = —ﬂ-, so p, = —1. Choose g; € C(R) to be any contlnuous
L J J J 1
function that interpolates the jump ratios:
9:(z;) = p;. (3.10)

Note that g, exists because D(f) is discrete, so the f have no accumulation points. The
claim is that the function

go(z) = f(@) [ - 9:(2)f(z),  z€domf, (3.11)
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is generalized copntinuous, and so has a continuous extension to all of R, which we call
9o € C(R). This implies that | f | = gy + g, f is (linearly) absolutely polynomial. Indeed,
the only points where g, is not continuously defined are the x; € D(f); at such points we
have

do(@}) = go(;) = [ faF) | = | f(27) | = g1() [f(z]) = flz})] = B; = pje; =0,

so that g, can be continuously extended to z;, which completes the proof in this case.
Adapting the construction of the functions g, g; for one-sided discontinuities, e.g., where
f(z) # f(z*), while f(z7) is not defined, is straightforward. Therefore, we have proven
that f is linearly absolutely polynomial provided D(f) N (dom f)° =

Now suppose that there exist one or more points z; € D(f) N (dom £)°, so that

f(as;r),f(x;),f(a:j) are all defined, but not all equal. In order that | f| = g, + 9,f

be linearly absolutely polynomial, we must be able to simultaneously satisfy all three

conditions
| £(x;) | = g0(;) + 01 (x;) f (=),
| £( +)|_90 )+ g1 (2;) f(2)), (3.12)
| F@5) | = go(x;) + g1(2;) f (z7),

at the discontinuity point ;. The possibilities listed in case (b) are necessary and sufficient
for the solvability of the linear system (3.12) for gy(z;), g,(x;). If this holds at every
z; € D(f) N (dom f)°, then the preceding proof — where we interpolate the values of
g, at the discontinuities and then use (3.11) to determine g, — works, thereby proving
that f is linearly absolutely polynomial. On the other hand, if there exists z; € D(f) N
(dom f)° where (3.12) cannot be simultaneously satisfied, then f is not linearly absolutely
polynomial. However, we can represent | f | = g, + g,.f + gof? as a quadratic polynomial
in f. Indeed, the corresponding quadratic conditions

i 9o(z; +91($J)f(33j)+92($j)f(37j)2,
if ) | = g0(x;) + 91(z;) f (] ) + g9 () f (=), (3.13)
) =90(z;) + 91 () f(@]) + go(2)) £ (25)?,

do have a solution g,(x ) 91( ;)s92(;), since the (Vandermonde) determinant of the coef-
ficient matrix is nonzero When f (:c;r), f(z}), f(z;) are all different. We then continuously
interpolate the values of g, (xj) and gQ(xj) to produce g;,9, € C(R). The final function
gy is defined so as to continuously interpolate g, = | f | — g, f — gof2, which is defined on
dom f. The generalized continuity of g, relies on the fact that gy(z;) = ﬁo(xj') = go(z;)
as a consequence of (3.13). This completes the proof of the Theorem. Q.E.D.

Remark: Note that even though the discontinuities of tan x are discrete, it is quadrat-
ically, and not linearly absolutely polynomial, because it has infinite one-sided limits and
so Theorem 3.17 does not apply.

An alternative approach to study the discontinuities of absolutely polynomial functions
is to work locally, in a neighborhood of each individual singularity. We first prove that a
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function with a single jump discontinuity is absolutely polynomial and then appeal to the
following local version of our basic definition, which we generalize to arbitrary topological
spaces in the obvious manner.

Definition 3.18. A function is locally absolutely polynomial of degree n on a topo-
logical space X if for each point x € X there is a neighborhood x € U C X such that either
f is not defined on U, U Ndom f = &, or the restriction f|U is absolutely polynomial of
degree n on U, meaning that we can find continuous functions g, ..., g, € C(U) such that
(3.1) holds for all z € U Ndom f.

The next result says that, for reasonable topological spaces, we only need understand
the local behavior of absolutely polynomial functions.

Theorem 3.19. If X is a paracompact topological space, then every locally abso-
lutely polynomial function of degree < n is absolutely polynomial of degree < n.

Proof: The hypothesis means that the collection & = {U_} of open subsets where f
is locally absolutely polynomial forms an open cover of X. Given U, € U, let f, = f|U,.
We can then write

| fo ()| = Z 9o () f,(x)k, 2 €domf, =U, Ndom f,
k=0

where g, ; € C(U,). The one requirement is that the maximal degree n of the sum does
not depend on U,. According to Dugundji, [3; p. 170], there exists a locally finite partition
of unity subordinate to this cover, so we can find functions k., € C(X) such that > x, =1
where supp k., C U, contained in one of the neighborhoods. We can then write

n

F1=D 6 1P 1= bl fa =)0 ook (f)F

k:O (6

Since supp £, C U,, the function g, =", K, g, j is well defined and continuous on all of
X, and hence | f | =Y 1_, g5 [*, proving the result. Q.E.D.

Theorem 3.19 does not hold if one removes the bound on the local absolutely poly-
nomial degree — an example appears at the end of this section. One can now reprove
Theorem 3.17 utilizing Theorem 3.19 by first showing that any function with a single
jump discontinuity is absolutely polynomial, which gives the local result since we are as-
suming that the discontinuities have no accumulation point. Another application is that a
function which has a fixed sign in a neighborhood of any of its discontinuities is automat-
ically absolutely polynomial. This result explains why the jump ratio limit trivially exists
when the limiting value is nonzero.

Theorem 3.20. Suppose that a function f has the property that, for every point of
discontinuity x € D(f), there exists a neighborhood x € U C R such that either f |U > 0
or f|U < 0. Then f is absolutely polynomial of degree at most 1.
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If we allow the discontinuities of a regulated function to have an accumulation point,
then things become more interesting, and we may actually step outside the class of abso-
lutely polynomial functions.

Example 3.21. Counsider the function

2 1 1
F@) = " T HGr1 241 S (3.14)
0, otherwise,
where ¢ = 1,2,3,.... Thus f has discontinuities at z; = %, 7=12,3,..., and

_ 1 _ -1

Therefore the jumps (3.8) and ratios (3.9) are

-1 —1
Qi = Py = m; Po; =1, Qg = —Poiys = 2+ 1)(4i+ 1) P2iy1 = —L.

Note that the ratios p; do not have a limit as z; — 0 and so one cannot construct a
continuous extension satisfying (3.10).

To actually prove that (3.14) is not absolutely polynomial, suppose on the contrary
that we can find continuous functions g, ..., g,, satisfying (3.1). Evaluating the right and
left hand limits at the discontinuities z; leads to the following. At z;; and z3;, we find

n

m = 2:;) gk(%) : (ﬁ)k 0= go<%> . (3.15)

k

At z3;,, and z3;_,, we find

’ Zg"(ﬁ)  ETOETT =k§: g’“(2z‘1+1) | <(2i+1;(14i+1))k' (3:16)
)

Conditions (3.15), (3.16) imply, respectively,

=a(3) £ a(d) (i)
= _gl<2i1+1) _é gk(?iirl) ' ((2i+1;(14i+1))k_1'

Now we let ¢ — oo. In view of the continuity of g;, both summations in (3.17) go to 0.
This leads to the final contradiction: g,(0) =1 = —g,(0).

The function (3.14) is continuous at the accumulation point = 0, and even has
bounded variation, since

(3.17)

/0 |f’(az)|dazzzm<1.

1=0
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We have therefore shown that not every function of bounded variation is absolutely poly-
nomial. Interestingly, if we move the function (3.14) slightly, replacing f by f + k where k
is any nonzero constant, or more generally any nonzero continuous function with k(0) # 0,
then the resulting function is absolutely polynomial because it will have a fixed sign in
some small neighborhood of 0, piecewise continuous everywhere else, and so our local
Theorem 3.19 applies. In other words, unlike sin %, any slight perturbation of this non-
absolutely polynomial function is absolutely polynomial.

Remark: The product of two piecewise continuous functions is also piecewise contin-
uous, and hence by Theorem 3.17 absolutely polynomial. On the other hand, we already
saw that the product of a continuous and an absolutely polynomial function need not be
absolutely polynomial. The function in Example 3.21 provides a counterexample to the
conjecture that the product of a continuous and a regulated absolutely polynomial function
must be absolutely polynomial. Indeed, consider the function

1 2 s 1 cp< 1 ” 2
- ————— ) sec—, . r< =, T —,
(4i+ 1)z x 2i4+1 24 4i+1

h(z) =< 4i+1 2 (3.18)
r=-—
2 4i+1°
0, otherwise,
where 1 = 1,2,3,... . A straightforward application of I’Hospital’s Rule proves that A
is a regulated function; in fact, h is continuous at the points 0 and 2=, i = 1,2,... .

Tt
Moreover, h(x) > 0 for all z, and hence h is trivially absolutely polynomial (only a single
point of accumulation prevents it from being piecewise continuous). Let

xcos T, x # 0,
o) ={ (3.19)
0, z = 0.

Then g is continuous, but the product g-h = f is our non-absolutely polynomial regulated
function (3.14).

Let us now return to a more detailed discussion of general regulated functions, which
will eventually lead us to the complete characterization of those that are absolutely poly-
nomial (at least in the case D(f) Ndom f = @&). While (3.14) provides an example of
how things can go wrong, the proof of Theorem 3.17 can be adapted to certain types of
regulated functions.

Theorem 3.22. A regulated function is absolutely polynomial of degree < 1 pro-
vided every accumulation point z, = limz; € D( f)* of its discontinuity set is a point of
continuity of f, and the jump ratios p;, as defined in (3.8), have a limit as T; =T,

The fact that the jump ratios have a limit at each accumulation point allows us to
construct the continuous interpolating function g, as before; the rest of the proof is similar.
If f(z,) > 0, then, as remarked above, p; = +1 for j sufficiently large, while if flz,) <0,
then p; =—1 for j sufficiently large. Therefore, the jump ratios Pj will certainly have a
limit except, possibly, when f(z,) = 0, as was the case in Example 3.21. This is a reflection
of the “misbehavior” of the absolute function at the origin.
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Remark: One can easily construct a function whose (left and right) jump ratios have
any limit —1 < p, < 1. The cases p, = *1 are trivial; otherwise, set o = (1+p,)/(1—p,),
so p, = (0 —1)/(c +1) and o > 0. Let the right and left hand limits of f at a point of
discontinuity z; be

fa;)=—¢;  fla))=oc;
where the c; > 0 are arbitrary. Then p; = p, for all j. If z; — xf, say, and f(z}) exists,
then, necessarily, f(z]) = 0 unless p, = +1, so that we must let c¢; — 0 in order to keep f
regulated. Furthermore, one can use different sequences on the right and left of the limit
point z, so as to make the jump ratio itself have any prescribed right and left hand limits
p, and pj at x,, as long as they are both between —1 and 1. However, if f is regulated,
and both —1 < p., pf < +1, then, by the preceding remark, f(z]) = 0 = f(x,), and so
f can be continuously extended to z, by setting f(x,) = 0.

On the other hand, if f is not continuous at an accumulation point of its discontinuity
set D(f), then the argument in Theorem 3.17 does not work, and we cannot in general
write | f| as a linear polynomial in f. However, it may be possible to write | f | as a
quadratic or higher degree polynomial. For example, suppose z; — z,” and the jump
ratios (3.9) have a limit p; — p; at z,, while f(z]) # f(z,). If the limiting jump ratio
p, equals the jump ratio p, at z,, so

o eh = en ] ] FaD) | =] faD)|
woar f) = flag) g TP TR T G )

then the argument used in Theorem 3.17 demonstrates that f is still linearly absolutely
polynomial. For instance, this will automatically hold if f(z])f(z]) > 0, so that the right
and left hand limits have the same sign at z,, although this case is trivially covered by
Theorem 3.20. However, if the limiting jump ratio does not agree with the jump ratio at
x,, then it is not possible to write | f | as a linear polynomial g,+g, f with g,, g, continuous
at z,. In this case, let us try to represent | f | = g, +9g,f +9,f? as a quadratic polynomial.
Evaluating at ZE;_ and z; and subtracting the resulting equations, we find

p; = 91(x)) + 95 (x;) [f (2) + f(=7)]. (3.20)
On the other hand, at z, itself,

| (@) | = g0(@,) + 01 (@) F (7)) + ga(w,) f (27)%,

(3.21)
| f(@3) | = go(.) + 91 (2. ) F (@) + ga () f (@)
Letting z; — z, in (3.20) and subtracting the equations in (3.21), we find
Py = 91(2,) + 295(2,) f (), (3.22)

p. = g1(z,) + go(x,) [ f(z7) + f(=])].

If f(z7) # f(z]), then we can uniquely solve (3.22) for g,(z,), g5(z,). We can now specify
9>(z) = g,(w,) to be constant, and use (3.20) to define interpolation values for g, (); these
will have the proper limit g, (z;) — g,(z,) because of (3.22), and hence allow us to define
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g, as a continuous function. The final step is to verify that g, = | f| — g.f — gof? is
generalized continuous and hence can be extended to a continuous function g, € C(R).

If z, is also an accumulation point from the right, then one also needs to follow
through the limiting procedure in that direction. The result will be another equation of
the form

P = g1(x,) + 295(2,) f (&), (3-23)
which must be satisfied along with (3.22). As long as f(z]) # f(z]), the full system
(3.22), (3.23) has a solution if and only if

pe=35[p +0of ] (3.24)

Note that, according to an earlier remark, we must have either p, = +1 or p;” = +£1, since
otherwise f(z}) = 0 = f(z,). If (3.24) does not hold, then f will not be quadratically
absolutely polynomial, and one must then look at representing | f | = gy +9,f + 95>+ 93 f>
as a cubic in f, which requires

| f(z \ = go ) + 01 (@) f(27) + 95(2.) f () + g3, ) F(2)°,

Performing the same limiting procedure in this case, we find the conditions

(3.25)

py = g1(2,) +295(2,) f(27) + 3g5(z,) f (z7)?,
=g1(z,) + 92 (@) [F(27) + F&D)] + gs(2,) [f (@) + Fle) f (D) + f(=])?], (3.26)
= 91( e 292(37*)f($:) + 393($*)f($:)2-

Treating (3.26) as a system of three linear equations for g,(z,), g5(,), g3(x,), we note
that its coefficient matrix has determinant (f(z]) — f(z;))3, and hence, when z, is a
two-sided point of discontinuity, there is a unique solution. A similar argument as above
allows us to conclude that in such cases f is cubically absolutely polynomial.

So far, we have not allowed f to be defined at its limiting discontinuity. If f(x,)
exists, then there is another condition that must be satisfied, which, in the cubic case
under consideration, is

| f(z,) | = g0(2,) + g1(2)f(2,) + g92(2,) f(2,)" + g3(,) f (2,)°. (3.27)

It may not be possible to simultaneously satisfy the complete system of conditions (3.25),
(3.26), (3.27), which would mean that f cannot be absolutely polynomial of degree < 3.
Indeed, if we treat! (3.25), (3.26), (3.27) as a linear system for the 4 unknowns g,(z,),
91(x,), g5(,), g5(z,), then, by basic linear algebra, we can find a solution if and only if
the vector formed by the left hand sides lies in the column space of the resulting coefficient
matrix. With the aid of MATHEMATICA, the following conclusion was reached: such a
function f is cubically absolutely polynomial if and only if either

t Actually, there are only 5 independent equations, since the middle equation for ps« in (3.26)
is a consequence of (3.25).

15



(a) any two of the three values f(z,), f(zT), f(z]) are equal, or
(b) the limiting jump ratios satisfy the complicated condition

(f(@.) = F@@0)) o + (f(@,) — F(&)) oy
_ () = f=,)2f () + fz7) —

N
(f@) = fE)(F D) - f(a;* )) Dt |+
(f(zy) — f(a))? N
T @) - @) @) — @) | f(z,) [+
n (fzh) = f(z)2f () + f(z}) = 3f(z | o
(f(@x) = f(@)(f (@) — f(2F))
(3.28)

If neither condition holds, then the function f is not cubically absolutely polyno-
mial. However, a further analysis proves that it will, in such cases, always be absolutely
polynomial of degree 4. Indeed, the required conditions,

| f(@7) | = g0(,) + g1 () f(27) + g9 (2,) f(27)? + g5(2,) f(27)° + gal2,) f(27)*,
| &) | = g90(2,) + 91(z) (@) + go(x,) f(&1)? + g5(2,) f (1) + g4(2,) f (=),
| f(2) | = g0(x,) + 91(2,) f () + 95(2,) F(2,)? + g3(2,) [ (2,)* + g4(2,) f (2,)*,
Py =g1(2,) +295(2,) f(2,) + 3g5(z,) f(2,)? + 4g,(2,) f (7)),
ot =g1(z,) +295(z,) f(x]) + 3g3(x,) f (&) + 4g,4(=,) f (z])?, (3.29)

form a linear system of 5 equations for the 5 unknowns g,(z,), 9,(z,), 92(2,), 95(z,),
94(z,). The determinant of the coefficient matrix is

(f(z7) = fD)* (f(@T) = f(2.)* (f(=]) - f(2.))%,

which does not vanish when all three values f(z,), f(z]), f(z;) are distinct.

The complete generalization of the method indicated by this discussion will be pre-
sented shortly, but it is worth stating a particularly important case here. If f is monotone,
then the right and left hand jump ratio limits always exist, since they are just £1, and
hence the preceding argument proves the following:

Proposition 3.23. Any monotone function is absolutely polynomial of degree at
most 4.

Most monotone functions are absolutely polynomial of degree < 2. The only disconti-
nuity that can cause the degree to be higher is a point =, € D(f)* where the right and left
hand limits have opposite signs, f(z,)f(z}) < 0. Note that by monotonicity, there can
be at most one such point that is both a right and left hand accumulation point for the
discontinuity set D(f). Let us assume for definiteness that f is increasing. Since f(z) < 0
forx <z, and f(z) > 0 for x > z*, we have p/ =1, p, = —1. Therefore, condition (3.24)
implies that a monotone function that has such a discontinuity is quadratically absolutely
polynomial if and only if p, = 0, which requires f(z]) = —f(z7) # 0. Otherwise, the
function f is cubically absolutely polynomial if and only if one of the following holds:
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(a) f(x,) is not defined,

(b) flz,) = f(z)),

(c) [flx,)=f(=z),

(d) f(z,)>0and f(z;)?* = 5f(z,)[f(z) + f(z])], or
(e) f(z,) <0and f(z})*=3f(z,)[f(z *)+f($i)]-

The latter two conditions follow from (3.28). If none of these conditions is satisfied, then
f is absolutely polynomial of degree 4.

Remark: Proposition 3.23 implies that any function of bounded variation, although
not necessarily absolutely polynomial itself, is always the sum of two absolutely polynomial
functions of degree at most 4. Thus Example 3.21 shows that the sum of two absolutely
polynomial functions of bounded variation can fail to be absolutely polynomial. Multi-
plying each of the functions g and h in (3.18), (3.19) by an appropriate function, e.g.,
k(z) = e~'/I#1, results in an example of two absolutely polynomial functions of bounded
variation whose product is not absolutely polynomial — this is because the first jump
ratios of f, cf. (3.14) and f - k? are the same. It is also interesting to note just how
quickly things can go askew: the function (3.14), while not absolutely polynomial, can
be written as f = (f + a) — a, where f + a is monotone increasing, and a is monotone
increasing and continuous — simply let a be any such function that interpolates the values
[1/(2i +2)] + [1/(2¢ + 1)(44 + 1)] at the points zo;_ ;.

Example 3.24. We construct examples of monotone functions that are cubically
and quartically absolutely polynomial. The points
1 n 1 1 1 1
x = - ) = - - ’ Z, 7
o n (m+1n(n+1) Ymn n+1 (m+2)n(n+1) " n

defined for all positive integers m, n, satisfy

Topm < Ymi s forall m,m/, .=zt oy, =2, a8 m—oo.
Define
1 ! + ! + ! <z <

—1-= , T <z :

n 3n(n+1) 12mn(n+1) m,n m+ln
g9(z) = 1 1

—1 - — : <z< :
n+1 12mn(n+1) Ymn S TS Ymtin

Oa z > 0.

The jump ratios at z,, ,,, Yy, n, 7, are all equal to —1, and have a limit at 0~ equal to the
jump ratio of g at 0, so that ¢ is linearly absolutely polynomial.

Now set f(z) = g(x) — g(—x) where defined, so that f is monotone increasing, and
the discontinuities of f lie on both sides of the origin. The jump ratios are still —1 at
the negative discontinuities and +1 at positive discontinuities. If f(0) is not defined, or
f(0) = £1, then f is cubically, but not quadratically, absolutely polynomial. On the other
hand, if we define the value of f at 0 so that | f(0) | < 1, then (3.28) does not hold, and
the resulting function is quartically absolutely polynomial.
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Remark: One can build more complicated absolutely polynomial functions of degree
3 and 4 by putting monotone increasing ones on certain intervals and monotone decreasing
ones on others.

Let us now formalize the preceding discussions to cover yet more general situations.
Given the discontinuity set D) (f) = D(f) of a regulated function, we define the set of
“kth order discontinuities” D®)(f), inductively, so that D*+1(f) equals the intersection
of the accumulation points of D) (f) with D(f). One can construct functions (of bounded
variation) which have discontinuities up to some finite order k, but with D¢+ (f) = @,
as well as examples with infinite order discontinuities.

Example 3.25. Take the rationals Q; = QN [0, 1] between 0 and 1, and put them
in bijective correspondence with the natural numbers. For the nth rational z,, define the

step function
() 0, r<uzx,,
s (x) =
n 27", x>z,

Let f = )_s,. The function f is well-defined and monotone increasing because, at each
point z, the series Y_ s, (z) is a sub-series of the convergent geometric series Y. 27% = 1.
Since f is discontinuous at each rational, its higher derived sets are all the same, D™ (f) =
Q,. Note that this particular function is linearly absolutely polynomial since it is always
positive. Subtracting a small constant, e.g., %, from it will change it to a higher degree
absolutely polynomial function.

Definition 3.26. Let f be a regulated function. The average nt® power of f is the
function

— 1 flt)™tt — f(z)nt! 1 <« i e \nei N
n — — 7 n—i d )
=iy (M) =it S e @omp
(3.30)
Note that if f is defined and continuous at z, then f*(x) = f(x)™. Note also that
fr@t) =f@Eh)", frlem)=fE) (3.31)
for every point z € (dom f)*. Consequently, f™ is regulated.
Definition 3.27. The f—jump ratio function of a regulated function A is
h(z*) — h(z~) x +
) = , xr € domp, =D(f)" N (domh)=. 3.32
@) = o = D()* 1 (dom ) (3.52)

If h =] f |, then (3.32) recovers our original jump ratio function (3.9).

Definition 3.28. Let f be a regulated function. We define P(™)(f) to be the set
of regulated functions h such that domh C (dom f)* and there exist continuous function
9o+ -+ 9n € C(R) such that

h(z) = igk (z) f*(z), for all x € dom h. (3.33)
k=0
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Each P(™(f) is a real vector space, and their union P*(f) = [ JP™(f) is an algebra.

Now, h € PO (f) if and only if h is generalized continuous, as in Proposition 3.14. More
generally, if h € P (f), then D(h) C D(f). If dom h N D(f) = @, then (3.33) reduces to
our usual polynomial condition

x) = Zn: 95 () f(z)F, forall  x € domh. (3.34)

In particular, suppose f is a regulated function which is not defined at its points of dis-
continuity: D(f) Ndom f = @. Then f is absolutely polynomial of degree n if and only if

| f1 € PO\ PO=D(f).

Lemma 3.29. Let f be a regulated function with D(f) Ndom f = @. A regulated
function h € P (f), n > 1, if and only if its f—jump ratio function p, is regulated and
e Pr=U ().

Proof: Suppose h € P (f). Consider a point z € D(h) C D(f) = D(f)*. We are
able to compute the right and left hand limits of (3.33) at x using (3.31). Subtracting the
resulting formulae, we find that

Wat) —h(z™) =) gi(x) [f(ah)* — fla)*].
k=1

Dividing by f(z™) — f(z~) produces the formula for the jump ratio function:

Zkgk ) [F1@),  zeD()). (3-35)

Clearly p,, is regulated, and therefore p, € PE=1(f).

To prove the converse, suppose that (3.35) holds, so that g,,...,g, are known. We
can then use (3.33) to define g,(x) for z € dom h. Comparing its right and left hand limits,
it is not hard to see that g, can be continuously interpolated to define g, € C(R). Q.E.D.

Since the case n = 0 is trivial, Lemma 3.29 provides an inductive mechanism for deter-
mining when a given regulated function belongs to P (f). One merely checks whether the
successive f—jump ratio functions are regulated, up until the nth order one, which must
be generalized continuous. In particular, this solves the problem of determining which
regulated functions, that are not defined on their domain of discontinuity, are absolutely
polynomial.

Theorem 3.30. Let f be regulated with D(f) Ndom f = &. Set hy = | f|. Then f
is absolutely polynomial of degree n if and only if for each k = 1,...,n — 1, the kt® order
f—jump ratio function hy, = p;, _, defined on D(f)*, is regulated, and D(h;,) # &, while
h,, = py,,_, Is generalized continuous.
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Remark: The ktt order jump function h; has the property that D(h;,) C D(k)( f)
for each k. In particular, if D(”)( f) = @ and the jump ratios are all regulated, then f
is absolutely polynomial of degree < n. Example 3.21 illustrates the fact that the jump
ratios for a regulated function need not be regulated. Indeed, for (3.14), DM (f) is empty,
and f is not absolutely polynomial.

Example 3.31. For the function f in Example 3.24, the discontinuity set is D(f) =
{0, £2,, s Yy s T2, ). Leaving f not defined on D(f), the points +z,, ., and +y,, ,
are isolated discontinuities, while the points £z, are in the first order discontinuity set
DW(f). The first jump ratio function has values

hl(mm,n) = h’l(ym,n) = h’l(zn) =-1 hl(_xm,'n,) = h’l(_ym,n) = h’l(_zn) =1,

and is discontinuous at 0, which is the only point in D(Q)( f). The second order jump ratio
then has h,(+z,) = 0, and thus h,(0") = 0 = hy(07), while h,(0) = 1, and so h, is not
continuous at 0. The third jump ratio has h4(0) = 0, reconfirming our earlier conclusion
that f is cubically absolutely polynomial. On the other hand, Theorem 3.30 does not apply
to the cases (both cubic and quartic) when f(0) is defined. A general theorem covering
regulated functions that are defined at their points of discontinuity is more technical, and
we shall not attempt to state it here.

Example 3.32. In this example, we construct regulated functions which are ab-
solutely polynomial of arbitrarily high degree. We begin with a variant of the function
considered in Example 3.21. Let 0 <e <1, 0 < r < 1, and define

(4—er+4j)r —4e € _po°f
9)(z) = 4—er S ik (3.36)
0, r<0, or z>c¢,
where 7 =1,2,3,.... Note that
supp {1} C (0,¢), ‘g,f-,lr) <e. (3.37)

The function (3.36) has discontinuities at T; = e/j,7=1,2,3,..., and

—&2r

W) =5, j>1 WgH=—--—-7-, j>2
ge,r(‘/ﬂj) j’ ] - Y gs,r(mg) j(4—€7')’ ]_
Therefore, ignoring x,, the jump ratios for (3.36) are all the same:
hy(z;) =p;=1—3er,  j>2. (3.38)

Since the ratios p; have a limit as z; — 0T, and gé’lr) is continuous at 0, we conclude that
(3.36) is linearly absolutely polynomial.
Now define
() = g8 (=) + 3 [98) (@) + k. (2) ]. (339)
where

ke(z) =

€E—, O<z<e,
{ (3.40)

0, r<0, or z>e.
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In view of (3.37),
supp /2 © (~ee), | 1D

Note that the discontinuity set of fe(zr) equals {0, *+e, j:%e, i%e, .. .}; in particular
Q0N =3, 107 =0

Since f(2)(:c) agrees with g(l)( x) when x < 0, its jump ratios at the points —e/j are
the same as those of gélr) at z; = €/j, as given in (3.38). Therefore, the first jump ratio

function for f€(2r) satisfies

hy <—§> =1- ;, j>2, hence  h(07)=1- % (3.41)

On the other hand, since f€(2r) (x) > 0 for all 0 < z < ¢, the first jump ratios at the positive
discontinuity points ¢/j are all equal to +1, and hence

hy (5) =1, j>1, hence h,(0%) =1 (3.42)
J

Since h; is not continuous at 0, the function f.7 ) is not, linearly absolutely polynomial. But
h, is regulated, and the first order dlscontlnulty set D) ( fe(?r)) = {0} has no accumulation

points, so by Theorem 3.30 f.% () is quadratically absolutely polynomial. The second order
jump ratio at 0 is

h —h
hy(0) = 1(07) 1(07) =r. (3.43)
FR0%) = f&(07)
Using the functions fg° ) as our building blocks, we now proceed to inductively con-

struct a sequence of regulated functions fe(f;) which are absolutely polynomial of degrees
n = 3,4,..., and satisfy

supp [ © (~e,e), | f (3.44)

The key idea is to build up f;; (n) by adjoining suitably “compressed” copies of the preceding
function f.'; ("=1) on intervals that converge to the origin. We therefore first define

€
o0 =3 il (- 5) .

Note that, according to (3.44), the supports of the summands are all mutually disjoint,
and so there are no convergence issues to discuss. The inductive hypothesis (3.44) (with
n replaced by n — 1) implies that
_ €
supp gé’; D (0, 1%8) , ‘gen 1) ‘ < 16 (3.46)
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Moreover, g(” ) is continuous at 0 with g(" D(0) = 0. We then define

12(@) = 9 (=) + 3oV (@) + k()] (3.47)

The inductive verification of (3.44) is immediate from (3.46). Moreover, (3.46) and (3.40)
imply that f (")( ) > 0 for all 0 < x < & where defined, and

fE07) =0, 50 =3 (3.48)

We claim that for n > 2, all the relevant jump ratio functions hy, for f;'; (") are regulated,
and, moreover, the nth order one satisfies

h, (0) = (—1)"r. (3.49)

Because the supports of the summands in (3.45) are disjoint, the only new limit point of
concern is at 0. It can be approached in a variety of ways, i.e., through discontinuities of
varying orders. Positivity of f (") for0<z <e implies that the jump ratios at the positive
discontinuity points are trivial:

1, k=1,
hi(z) = { 0. k>L forany 0 <z € DR (fM). (3.50)

Therefore, h,(0%) = 1, while A, (0") =0 for k& > 2.

To understand the proof of the claims, the case of f;7 G) is instructive. Its first jump
ratio function h, is defined at all discontinuities and A, (0 ) = 1, either because by (3.50)
its value is actually 1, or because by (3.41) its value has the form 1—¢&?r /452 which tends to
1 as the points converge to 0. Therefore, the jump ratio function h, for f(_g,?’r) is continuous
at 0. At the next order, f.° “4) jg (essentially) built from repeated compressed copies of f;7 (3)
on intervals that approach 0 from the left. From the definition of limit, the fact that h
approaches 1 in f_7/ (3) means that for ey (4) the function h, can be made arbitrarily close to 1
on all but a finite number of 1ntervals and hence for all but finitely many discontinuities
in any sequence approaching 0 from the left. In short, the first jump ratio function h,

for f5(4r), and indeed, inductively for all higher fe(?), is continuous at 0 and takes the value

h,(0) =1 there.

Now consider the second order jump ratio function h,. For the function fg7 (3) , We can
only approach 0 through points in D(l)(féf’?;)) = {0, %, ﬂ:ia, ...}. From the rlght we get
hy(0T) = 0 and from the left, using (3.43), hy(07) = 1er. Thus h, is regulated, though
not continuous at 0, and hs(0) = —r, in accordance with (3.49). Proceeding to the second
order jump ratio hy for f.°, (4) , the preceding discussion implies that the limit from the right
at —e/j is €2r /452, while from the left it is 0. As the points converge to 0~ both values
tend to 0, and hence h,(0~) = 0, while h,(07) = 0 by (3.50). Again the same will hold
for h, for all higher fgﬁ). For f.° (4) the jump function hs will be discontinuous at 0, with
hy(07) = —er/2, hy(0T) =0, and thus, using (3.50), h,(0) = 7.
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By a similar procedure, we prove that all jump ratio functions A, ..., h,, for f:'; (”) are
regulated. Moreover, hq,...,h,_, are all continuous at zero. But, using our mductlve
hypothesis (3.49),

h, ,(07) = lim h,_, (—f_) — (1) ler,  h,_,(0F)=0.

J—00 J

The second equality (which holds for all j) is because the value of the order n — 1 jump

ratio function for f_7 (") at the point = —e/j is, according to the definitions (3.45), (3.47),

the same as the value of the (n — 1)st jump ratio function for f (n—1) at z = 0, which,
e/432,er/2

by the inductive hypothesis (3.49) equals (—1)"~'er/2. Therefore, by (3.48),

h'n, 1(0+) _h’n 1(0_)
f(n) (0+) — (n)( -)
which completes the inductive proof of (3.49).
Theorem 3.30 implies that f.") (") is absolutely polynomial of degree n, and not abso-
lutely polynomial of any degree less than n. In this way, we have explicitly constructed a

regulated function of any desired absolutely polynomial degree. Its higher order disconti-
nuity sets have the form

DID(f0)) = {0, +¢,%3e 43, ), DOV = {0}, D) =

hn(o) = (_1)n,,,’

Finally, an adaptation of the Cantor diagonal argument produces a regulated function
which is not absolutely polynomial even though all of its jump ratio functions are also
regulated. We set

géoq?)(ﬂf) 22 5(72712 er/2 ( - %) ) (3.51)

and
@) = gl (—2) + 5[99 (@) + k(=) . (3.52)

Since ¢/n € D=2 (gg’f)), and the jump ratio h,,_, is discontinuous there, the functions
gé‘,’f) and fe(:’ro) cannot satisfy the final condition of Theorem 3.30 and are not absolutely
polynomial of any degree. Note that 0 is a point of continuity of g§°;3), but is an “infinite

order discontinuity point” of fz_gf’f). A related example is the function

789 (x) (72) (z—n) (3.53)

Note that g(°°) is locally absolutely polynomial at each point of R, of degree n at x = n,
but is not globally absolutely polynomial.

Remark: One can straightforwardly modify these examples (without altering their
validity) so that the functions are of bounded variation. For instance, this can be accom-
plished by multiplying the original function (3.36) by any sufficiently rapidly decreasing
function, e.g., e~ /% for z > 0.
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4. Topological Spaces.

In this section, we investigate how far the theory of absolutely polynomial functions
defined on the reals can be generalized to other types of topological spaces. We let C(X)
denote the ring of all continuous real-valued functions defined on all of X, so g € C(X)
requires domg = X. Replacing the domain space R by X in Definition 3.1 leads to the
general concept of a absolutely polynomial function on a topological space.

Definition 4.1. A topological space X will be called absolutely closed if every con-
tinuous function defined on a subset of X is absolutely polynomial.

Theorem 4.2. A real topological manifold is not absolutely closed.

Proof: Locally we can identify X with an open subset of R™ for some n. The basic
argument given in Proposition 2.1 can be used to prove that the function sin(1/p(z)), where
p(x) = ||z || is the usual Euclidean metric on R", is not absolutely polynomial.  Q.E.D.

The question now is to determine which topological spaces are absolutely closed. A
discrete space is immediately seen to be absolutely closed. However, as the next result
shows, spaces containing accumulation points of sequences are not absolutely closed.

Lemma 4.3. The space X = {1,%,%,...,0} C R, which is the one point compacti-

1
3¢
fication of the dense subspace N = {1, %, %, ... } = X \ {0}, is not absolutely closed.

Proof: The set N is discrete and countable, hence any function f: N — R will be
continuous. Let Q; = Q N [—1, 1] denote the set of rational numbers that lie between —1
and +1. We can construct a function f: N — @Q; so that every w € @Q; has an infinite
preimage. This can be done (in many ways) because N and Q; have the same cardinality.

Now follow the idea of the proof of Proposition 2.1. Again assume that the g, exist,
defined on X and let ¢;, = g;,(0). The function r(z), which was independent of the function
sin %, is defined as in equation (2.2). Note also that z, can be chosen to be in Q, i.e.,
it is rational. This is possible because r(z) is continuous — were it zero on the rationals
it would be zero everywhere. We then find § > 0 to satisfy (2.4). Since | f(z)| < 1, we

conclude that
n

[F@) =) ef@*|<e  |z[<d. (4.1)

k=0
Finally, note that there are only finitely many elements of the set N that lie outside
any delta neighborhood of 0, but there are infinitely many elements in z € N such that
f(z) = z;. Therefore one of them lies inside the § neighborhood of 0 giving the same
conclusion. Q.E.D.

Theorem 4.4. Any first countable topological space with an accumulation point
is not absolutely closed. Consequently, every absolutely closed first countable topological
space is necessarily discrete.

Proof: This follows immediately from Lemma 4.3 and the fact, [3; Theorem X.6.2],
that any accumulation point of a first countable space has a sequence that converges to
it. Q.E.D.
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An interesting open question is whether every absolutely closed topological space is
necessarily discrete.

Definition 4.5. A point a € X in a topological space X will be called absolutely
isolated if every continuous function defined on X \ {a} is absolutely polynomial.

Clearly, an isolated point is absolutely isolated. On the other hand, no point of a
topological manifold (of dimension 1 or more) is absolutely isolated. Another important
example is provided by the Cantor space.

Proposition 4.6. No point in the Cantor space C C [0, 1] is absolutely isolated.

Proof: We only need to show that 0 € C' is not absolutely isolated. We use the fact
that each open set in the Cantor set is the disjoint union of clopen (closed and open) sets,
and that the number of sets used in the union must be countable. In particular, the set
U = C\ {0} is the disjoint union of clopen sets D,,, indexed by n € N. The sets D,, are
closed in the reals. Let a, = inf D, be the smallest number that belongs to D,,, in other
words, the “left-hand beginning point” of D,,. Suppose that 6 > 0 is a positive number,
and consider a § neighborhood N C C of 0. Since C \ N is closed in C, it is compact.
Since the subsets D,, cover C'\ N, we can choose a finite subcover. This implies that only
a finite number of the endpoints a,, lie in C'\ N. In other words any ¢ neighborhood of
0 € C contains all but finitely many a,,.

This idea can be used to define a continuous function f:U — Q; = Q N [—1,1] just
as was done in the case of the discrete set N in the proof of Lemma 4.3. Let f be defined
by making it constant on each of the D, , and picking the values from Q; as before —
making sure that every element of Q; occurs as the image of infinitely many different D,,.
That ensures that an arbitrary ¢ neighborhood of 0 will contain a point of C' assuming the
value z,. Thus f is defined on C'\ {0}, and its absolute value is not a polynomial in f with
coefficients g, defined on the Cantor space C. Q.E.D.

Theorem 4.7. Let k be an infinite cardinal. Suppose that X is a topological space
that has a point a with the properties:
(i) X \{a} is the disjoint union of k clopen subsets D,,,
(i9) for every neighborhood N of a, the number of D, from which N is disjoint has
cardinality less than k.
Then a is not absolutely isolated.

Proof: Define the function f: D, — Q; as before, keeping its value constant on each
D,,, so that f is continuous. Use a to replace 0 when defining the constants ¢;, as in (4.1).
Given the ¢ of the proof, replace the 6 with a neighborhood N of a. Q.E.D.

The argument for the Cantor space will hold for any space X that contains, as a
subspace, a copy of C that is also a retract of X. That is to say, a space X for which
there is a continuous function g: X — C' such that g restricts to the identity on C. The
argument is similar — write C'\ {0} = UD,, as a disjoint union of clopen sets. The union
of their preimages U = UV, = Ug~*(D,,), is an open set. If U is not dense we replace it
by the dense set V = U U (X \ U). We obtain a continuous function f:V — Q, as follows:
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make f = 0 on X \ U. On the countably many V,, assign constant values in Q, as before,
i.e., make sure that every non-zero number in Q; is assigned to infinitely many V,,. Now
use as the “kicking off point” for the definition of the ¢, the copy of 0 inside the copy of
C in X. Each neighborhood of 0 meets all but finitely many V,, because it meets all but
finitely many D,, in the Cantor set.

According to [12; p. 42], every compact totally disconnected metrizable space has the
property that its closed subsets are retracts of itself. A space which is totally disconnected,
compact, and Hausdorff is called Boolean. The moment that a Boolean space X contains
a copy of the Cantor space C, then C is a retract of X. The reason for this is that the
Cantor space is injective in the category of Boolean spaces, cf. [8].

Theorem 4.8. If X is a Boolean space that contains a copy of the Cantor space,
then there is a dense open set U C X, excluding 0, and a continuous function f:U — R
which is not absolutely polynomial.

The same result holds for any space X containing C' with the property that its Stone—
Cech compactification is totally disconnected and metrizable, or for that matter, any space
X containing C that lies inside a compact totally disconnected metrizable space.

We further note that our discussion of real rational functions in Theorem 3.5 admits
the following generalization.

Proposition 4.9. Let p,q € C(X), and suppose that there exist e, u,v, with 2 = e,
such that

lpg|=|pgle, e=up+vg.

Then the ratio p/q is absolutely polynomial.

Proof: We adapt the proof of Theorem 3.5 as follows:

2
p| Ipa| |pale |pgle* p
| = 2 2 - 2 —|pCI| u|=)+v s
q q q q q

which is a quadratic polynomial in p/q. Q.E.D.

Remark: The function e = e? forms an idempotent in C(X), which means that it only
assumes the values 0 or 1. Its support satisfies

(suppp) N (suppgq) C suppe C (suppp) U (supp q).

Example 4.10. Let C be the Cantor space. Consider the following disjoint clopen
subsets:

G=0n(.d).  G=Cn(Zi). G=0nGE),
C=Cn(5d).  G=Cn(E)

N
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Define p, q,u,v € C(C) by

p(z) =z +1, xz € suppp = C; UC, U Cj,

q(z) = 22, xz € suppq = C3UC, Uy,
= —, € =C, Uy,
u(x) 1 x € supp u , Uy
1
v(z) = 2 x € suppv = Cy,

where we have only indicated the nonzero values. Thus e = up + vq is an idempotent
with suppe = C, U C3 U Cy, and hence p/q = z + (1/z) for x € suppg = C; UC, Uy is
absolutely polynomial with respect to the Cantor space.

Recall that a topological space is called a P—space, cf. [5], if every finitely generated
ideal in C(X) is principal and generated by an idempotent. If e is the idempotent generating
the ideal pC(X) + ¢C(X), then the hypotheses of Proposition 4.9 are easily seen to hold.

Corollary 4.11. Let X be a P-space. If p,q € C(X), then p/q is absolutely poly-
nomial.

This result can be further generalized to the class of F—spaces, [5]. For example, any
basically disconnected space is an F—space, [5; 14N4].

Theorem 4.12. Let X be a F-space. If p,q € C(X), then p/q is absolutely polyno-
mial.

Proof: According to Gillman and Jerison, [5; Theorem 14.25 (6), p. 208], in an F-—
space, any cozero set is C* embedded. We write

h_|pHQI

p =, where = m,

‘ p ‘ h(* + ¢%)
q2

which holds over the set (suppp) U (supp ¢) = supp(|p|+|¢|). Furthermore, 0 < h <
is a bounded function. Since X is an F-space, h lifts to a continuous function g € C(X

Clearly, the identity
2
p p
HEIORE
q q

holds on all of X because both sides are zero on the set

;

Z(|pl+1lql)=X\supp(|p|+]q]).
This completes the proof Q.E.D.

5. Applications to the Theory of ®—Algebras.

Finally, we discuss some interesting implications of our theory of absolutely polynomial
functions for the general theory of rings of continuous functions and ®-algebras. Suppose
that R is a commutative ring with identity that has no non-zero nilpotent elements. An

27



over ring S of R is called a ring of quotients of R if for every s € S, s # 0, there exist
a,b € R, b+# 0, so that sa = b. There exists a largest ring of quotients that is unique up
to isomorphism over R, called the complete ring of quotients of R, [9]. For example, the
complete ring of quotients of Z, the ring of integers, is the field of rational numbers Q.

Now consider the case when R = C(X), the ring of all continuous real-valued functions
on a completely regular space. This ring was the subject of the classic work by Gillman
and Jerison, [5]. The later book by Fine, Gillman and Lambek, [4], was devoted to the
study of its rings of quotients. The complete ring of quotients of C(X), denoted Q(X),
[4], is the limit of rings of continuous functions C(V'), where V ranges over all dense open
subspaces of X, and two functions defined on dense open subspaces are identified if they
agree on the intersection of their domains.

An important generalization of C(X) exists in the literature, and this is the notion of
a ®-algebra, [6]. These structures abstract the key properties of C(X) as an algebra, and
as a partially ordered set.

Definition 5.1. A ®-algebra is an Archimedean lattice-ordered algebra over the
field of real numbers which has an identity element that is a weak order unit.

Although any C(X) is a ®-algebra, many ®-algebras are not isomorphic to any ring
of the form C(X), cf. [6]. For example, the complete ring of quotients of C(X) is easily
seen to always be a ®-algebra, but is almost never of the form C(X), [7]. A similar result
holds for the epimorphic hull of C(X), [10], which is a particular ring of quotients of C(X).

In this context, the significance of our examples is as follows. Let f be any non-
absolutely polynomial function whose domain is a dense open subset of R, e.g., f(z) =
sin 1. Then the polynomial ring C(R)[f] is not a ®-algebra because it is not closed under
the formation of absolute values. (A ®-algebra is easily seen to be closed under this
operation, [6].) But it is a ring of quotients of C(R) because f is defined on a dense open
subset dom f, cf. [4]. Thus the result shows that a ring of quotients of a ring of functions
need not be a ®-algebra. On the other hand, this condition does hold trivially for discrete
spaces. By the same argument, one has:

Theorem 5.2. Suppose that X is a topological space with a non-absolutely isolated
point a, and a function f defined on X \ {a} that is not absolutely polynomial. Then the
polynomial ring C(X)[f] is not a ®-algebra.

Remark: The condition that a real function f is absolutely polynomial is necessary,
but not sufficient, to make the ring C(R)[f] a ®-algebra. The function f = 2+ sin = is
absolutely polynomial, but the ring C(R)[f] is not a $—algebra — it contains sin i, but not
its absolute value, since the latter is not a polynomial in f with continuous coefficients.
However, oddly, it is easy to check that if p and ¢ satisfy condition (3.5) of Theorem 3.5,

then C(R)[p/q] is indeed a ®-algebra. Thus there are many such functions.

6. Open Questions.

In this paper, we have established the basic theory of absolutely polynomial functions
and their topological ramifications. As our examples make clear, this theory is nontrivial,
and leads to a number of interesting developments.
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We shall conclude this paper with a list of open questions that arose during our
investigations. Let X be a topological space.

(1) If a point a € X is absolutely isolated, is a isolated in X7

(2) If X is absolutely closed is it discrete?

(3) If X is not absolutely closed, does it have a continuous function on a dense open
subset U C X that is not absolutely polynomial? If not, then an elementary
argument shows that X admits a function f that is not absolutely polynomial,
whose domain is not contained in the closure of its interior.

(4) Which subsets S of a topological space X have the property that a continuous func-
tion f: S — R with dom f = § is algebraically expressible as a sum of products of
functions on S that are absolutely polynomial with respect to X? For example,
this holds for compact subspaces because any continuous function whose domain
is a compact subset is bounded, and hence the sum of two absolutely polynomial
functions.

(5) A related question is whether the absolutely polynomial functions on S could be
dense (in the usual metric) in the algebra of continuous functions on S.

(6) Does Proposition 3.3 have a generalization to absolutely polynomial functions of
degree greater than 17 (See also the Remark following Theorem 3.6.) Must f”
even be absolutely polynomial when f is absolutely polynomial and n is odd? Note
that by Proposition 3.23 a monotone function that is quadratically absolutely
polynomial has all of its odd powers also quadratically absolutely polynomial.
But a monotone function can be cubically absolutely polynomial and have a cube
that is only quartically so. For example, this will occur if, in condition (d) of
Proposition 3.23, we let f(z,) = 2, f(z7) = [1 — V13)]/2, and f(z}) = 3. In
fact, all higher odd powers of such a function are also only quartically absolutely
polynomial.
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