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Abstract

We introduce a differential operator invariant under the special linear group SL(2n, C),
and, as a consequence, the symplectic group Sp(2n, C). Connections with generalized
Rankin–Cohen brackets for Siegel modular forms of genus n are sketched.
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1 Introduction

An important differential operator in the context of modular forms is the Rankin–Cohen
bracket [6, 14]. An analogy with the transvectant of classical invariant theory was noted in
[15]. An explanation of this analogy is given in [5, 10, 11, 12]. The fundamental idea is to
compare the transformation law for modular forms under a fixed group Γ ⊂ PSL(2, R) with
the action of Γ on homogeneous polynomials written in projective coordinates. We adopt a
geometric viewpoint. It transpires that the Rankin–Cohen bracket is exactly a transvectant
operator acting on homogeneous functions of negative degree in one projective coordinate.

Recently generalizations of this bracket to Siegel modular forms have been introduced
in [3, 4, 8, 7]. The present work is an attempt to enlarge the philosophy of [5, 11, 12]
to that wider context. In section 2.2, we will compare the transformation law of Siegel
modular forms of genus n under a fixed group Γ ⊂ Sp(2n, R) with the diagonal action of
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Γ on homogeneous functions of two matrix variables of gl(n, C). In section 3, we generalize
the classical transvectant operator to complex functions of matrix domain (Theorem 1),
providing thereby a Rankin–Cohen bracket for Siegel modular forms (Corollary 1). Explicit
examples of vectorial/symplectic transvectants appear in Section 4, while Section 5 develops
an infinitesimal calculus for use in more general contexts.

2 Definitions and Notations

2.1 Projective representative of homogeneous functions:

Let gl(n, C) denote the C-algebra of complex n by n matrices. For any k ∈ Z, we will say
that a meromorphic function

F : gl(n, C) × gl(n, C) −→ C

is homogeneous of degree k if and only if it transforms as

F (XΛ, Y Λ) = (det Λ)k F (X,Y ), X, Y ∈ gl(n, C) for all Λ ∈ GL(n, C). (1)

For instance det(X + Y ) is homogeneous of degree 1.

Let P denote the field of complex meromorphic functions with domain gl(n, C). Consider
the graded ring

H• :=
⊕

k∈Z

Hk,

where Hk denotes the vector space of homogeneous complex functions of degree k. The
projective representative f ∈ P of a function F ∈ Hk is defined by the formula

f(Z) := F (Z, In), Z ∈ gl(n, C), (2)

where In denotes the identity matrix, and satisfies, by the homogeneity of F , the relation

F (X,Y ) = (det Y )k f(XY −1), X, Y ∈ gl(n, C). (3)

Formulae (2) and (3) establish a bijective correspondence

πk : Hk −→ P where πk(F ) = f. (4)

The right action of the group GL(2n, C) on the space Hk is defined by pull-back on letting :

(F ◦γ)(X,Y ) := F (AX + BY,CX + DY ) (5)

where A,B,C,D ∈ gl(n, C) and γ =

(
A B
C D

)

∈ GL(2n, C).

To each k ∈ Z, we attach the (anti)representation

ρk : GL(2n, C) −→ EndP . (6)
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by letting ρk(γ)f := πk(F ◦γ). A direct computation whose result will be used later yields:

ρk(γ)f(Z) = det(CZ + D)kf((AZ + B)(CZ + D)−1) . (7)

Since GL(2n, C) acts on the right on P , we obtain

ρk(γ1γ2) = ρk(γ2) ρk(γ1) for all k ∈ Z and γ1, γ2 ∈ GL(2n, C). (8)

A function f ∈ P is said to be γ-invariant by the representation ρk when

f((AZ + B)(CZ + D)−1) = det(CZ + D)−k f(Z). (9)

2.2 Siegel modular forms

The symplectic group Sp(2n, R) is usually defined in geometry as the set of matrices M ∈
GL(2n, R) that preserve the canonical symplectic form ω =

∑n

i=1 dxi ∧ dxn+i. Thus, M ∈
Sp(2n, R) if and only if

M tJnM = Jn, (10)

where M t denotes its transpose, and Jn is the 2n × 2n matrix given by

Jn =

(
0 In

−In 0

)

,

In number theory it is customary to write M ∈ Sp(2n, R) in block form as

M =

(
A B
C D

)

,

where the 4 matrices A,B,C,D satisfy three relations

AtC = CtA, BtD = DtB, AtD − CtB = In. (11)

or, equivalently, that the inverse of M is given by a block version of the formula for the
inverse of a matrix in SL(2):

M−1 =

(
Dt −Bt

−Ct At

)

.

Conversely it is straightforward to check that every such M belongs to Sp(2n, R). Note that
Sp(2n, R) ⊂ SL(2n, R), since every matrix that preserves the canonical symplectic form also
clearly preserves the volume form

dx1 ∧ · · · ∧ dx2n =
1

n!
ω ∧ · · · ∧ ω.

The space of all n by n complex symmetric matrices with positive definite imaginary part
is usually called the Siegel upper half-space Hn, the analogue of the Poincaré upper half-plane
for n = 1. The symplectic group Sp(2n, R) acts on the Siegel upper half-space by the rule

Z 7→ (AZ + B)(CZ + D)−1.

A proof of the basic fact that Sp(2n, R) preserves Hn can be found, for instance, in [1].

Let Γ ⊂ Sp(2n, R) be a discrete subgroup of finite co–volume, meaning that the volume
of Sp(2n, R)/Γ is finite.

3



Definition 1 A Siegel modular form of weight k ≥ 0 and genus n on Γ is any holomorphic
function f(Z) of Z ∈ Hn which transforms under all γ ∈ Γ as

f((AZ + B)(CZ + D)−1) = det(CZ + D)k f(Z) where γ =

(
A B
C D

)

. (12)

We denote the space of all Siegel modular forms on Γ by M•Γ. This space is equipped
with the structure of a graded ring, the grading being provided by the weight k:

M•Γ = M0Γ ⊕M1Γ ⊕M2Γ ⊕ · · ·

In the case n = 1, condition (11) demonstrates that Sp(2, R) = SL(2, R), and M•Γ coincides
with the space of classical modular forms.

Comparing the invariance conditions (9) and (12) suggests the fundamental observation :

A Siegel modular form of weight k transforms as the projective repre-

sentative of a homogeneous function of degree −k.

3 Generalized transvectants

3.1 Computation in the affine case

Let Γ denote a fixed subgroup of SL(2n, C). Let HΓ
k denote the subspace of Γ-invariant

elements of Hk. By (5), these functions F ∈ HΓ
k satisfy

F (AX + BY,CX + DY ) = F (X,Y ), for all γ =

(
A B
C D

)

∈ Γ. (13)

The product of two Γ-invariant functions of degree k and l is also a Γ-invariant function

of degree k + l. Hence HΓ
• :=

⊕

k∈Z

HΓ
k is a graded ring. The purpose of this section is

to construct explicit SL(2n, C)–covariant operators from HΓ
k ⊗ HΓ

l → HΓ
m, which will then

restrict to Rankin–Cohen brackets on the spaces of Siegel modular forms.

We define the omega operator by the formula

Ω := det

(
∂X1 ∂X2

∂Y 1 ∂Y 2

)

where X1, Y 1, X2, Y 2 ∈ gl(n, C). (14)

where ∂X means the matrix of operators (∂Xi,j
), where i (resp. j) is a row (resp. column)

index. This operator acts on functions from gl(2n, C) to C.

Example: In the case of genus n = 2, we have matrix variables X i =

(
x

(i)
11 x

(i)
12

x
(i)
21 x

(i)
22

)

,
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Y i =

(
y

(i)
11 y

(i)
12

y
(i)
21 y

(i)
22

)

, for i = 1, 2, and so

Ω = det










∂
(1)
x11 ∂

(1)
x12 ∂

(2)
x11 ∂

(2)
x12

∂
(1)
x21 ∂

(1)
x22 ∂

(2)
x21 ∂

(2)
x22

∂
(1)
y11 ∂

(1)
y12 ∂

(2)
y11 ∂

(2)
y12

∂
(1)
y21 ∂

(1)
y22 ∂

(2)
y21 ∂

(2)
y22










. (15)

¤

Definition 2 Let Ωr := Ω ◦Ω ◦ · · · ◦Ω denote the rth power of the operator Ω. The transvec-
tant [F,G]r of order r of two homogeneous functions F,G is then defined for all r ∈ N

as

[F,G]r(X,Y ) = Ωr(F (X1, Y 1) G(X2, Y 2))|X1=X2=X, Y 1=Y 2=Y (16)

We can now state our main result.

Theorem 1 Let Γ denote a subgroup of SL(2n, C). Then, for all functions F ∈ HΓ
k and

G ∈ HΓ
l , we have [F,G]r ∈ HΓ

k+l−2r.

Corollary 1 For all r ∈ N, the r-th transvectant (24) restricts to a Rankin–Cohen bracket
on the space of Siegel modular forms.

To begin the proof, we first establish the invariance of the omega operator.

Proposition 1 The omega operator is invariant under SL(2n, C).

Proof: Let

M =

(
A B
C D

)

,

a typical element of SL(2n, C). Assume

(
X̄
Ȳ

)

:= M

(
X
Y

)

Differentiating we obtain (
dX̄
dȲ

)

= M

(
dX
dY

)

.

By duality, (
∂X

∂Y

)

= M t

(
∂X̄

∂Ȳ

)
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which yields
(

∂X1 ∂X2

∂Y 1 ∂X2

)

= M t

(
∂X̄1 ∂X̄2

∂Ȳ 1 ∂Ȳ 2

)

and hence Ω = det(M) Ω̄. Since we are assuming det(M) = 1, we conclude that Ω̄ = Ω.
q.e.d.

In what follows, all the tensor products are computed over C. The C-algebra H• ⊗H• is
equipped with the product

(F ⊗G)(F ′
⊗G′) = (FF ′) ⊗(GG′).

This algebra is graded by the degree deg by letting deg(F ⊗G) = deg F +deg G. The operator
Ω is regarded here as the C-linear map

Ω : H• ⊗H• −→ H• ⊗H•.

(The fact that Ω preserves H• ⊗H• will follow from Corollary 2 below.)

The Laplace formula is a well-known expansion of the determinant of a block matrix. The
operator Ω acts on the n × n blocks of a 2n × 2n matrix according to

Ω =
∑

σ

(−1)sgn(σ)Di1,i2,...,in
⊗Dj1,j2,...,jn

(17)

where the summation range is over all shuffles of type (n, n), that is, all permutations σ ∈ S2n

of the form

σ = (i1, i2, . . . , in, j1, j2, . . . , jn) with i1 < i2 < . . . < in j1 < j2 < . . . < jn.

The determinant Di1,i2,...,in is obtained from the matrices of operators

(
∂X

∂Y

)

by selecting

the n distinct rows i1, i2, . . . , in.

Example: For instance in the case of (15) we obtain

Ω = (D12 ⊗D34 + D34 ⊗D12) − (D13 ⊗D24 + D24 ⊗D13) + (D14 ⊗D23 + D23 ⊗D14) (18)

with D12 = ∂x11
∂x22

− ∂x12
∂x21

, D13 = ∂x11
∂y12

− ∂x12
∂y11

and so on. ¤

Lemma 1 Keeping the notation of (17), Di1,i2,...,in is a homogeneous differential operator of
degree −1, viz.

Di1,i2,...,in : Hk −→ Hk−1.

for all k ∈ Z.

Proof: We first give a proof in the case n = 1. We need to verify that the functions Fx

(resp. Fy) are homogeneous of degree k − 1 whenever F is homogeneous of degree k. We
claim that

Fx(λx, λy) = λk−1Fx(x, y). (19)
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Indeed by the relation F (λx, λy) = λkF (x, y) and the chain rule

∂x(F (λx, λy)) = λ Fx(λx, λy). (20)

the result follows. The relation (20) can be reworded as

(
x̄
ȳ

)

=

(
x
y

)

λ ⇐⇒

(
∂x

∂y

)

=

(
∂x̄

∂ȳ

)

λ. (21)

We generalize this relation (21) to the situation of genus n by replacing the complex
variables x and y by matrices X,Y ∈ gl(n, C) as well as λ ∈ C by a matrix Λ ∈ GL(n, C).
We obtain

(
X̄
Ȳ

)

=

(
X
Y

)

Λ ⇐⇒

(
∂X

∂Y

)

=

(
∂X̄

∂Ȳ

)

Λt. (22)

For a subdeterminant D := Di1,i2,...,in of

(
∂X

∂Y

)

, we derive

D = det(Λ) D̄. (23)

Thus, for F ∈ Hk, we generalize(19) in the form

DF (XΛ, Y Λ) = (det Λ)k−1 DF (X,Y ).

q.e.d.

Corollary 2 For all k, l ∈ Z, the operator Ω maps Hk ⊗Hl onto Hk−1 ⊗Hl−1

Proof: This follows from the Laplace formula (17) for the determinant Ω and lemma 1.
q.e.d.

The product µ(F ⊗G) = FG of two homogeneous functions F,G of degree k, l is regarded
as a linear map

µ : Hk ⊗Hl −→ Hk+l

Hence, the order r transvectant of two homogeneous functions F and G can be written as

[F,G]r = µ ◦Ωr(F ⊗G). (24)

Proof of Theorem 1: As Ω is Γ-invariant, then, for all r ∈ N, Ωr is Γ-invariant and, by
Proposition 1 maps Hk ⊗Hl into Hk−r ⊗Hl−r. We conclude by noticing that µ (Hk−r ⊗Hl−r)

Γ ⊂
HΓ

k+l−2r. q.e.d.
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3.2 Transvectants in the projective representation

Let P denote the set of smooth functions from gl(n, C) into C. The homogeneous component
PΓ

k consists – see (7) – of functions that are invariant under the representation ρk:

PΓ
k := {f ∈ P | ρk(γ)f = f for all γ ∈ Γ}. (25)

The direct sum PΓ
• :=

⊕

k∈Z

PΓ
k is a graded ring.

The differential operator ωk,l : P ⊗P −→ P ⊗P is defined as the conjugate of the operator
Ω :

Hk ⊗Hl
Ω

−−−→ Hk−1 ⊗Hl−1

πk ⊗πl



y



yπk−1

⊗πl−1

P ⊗P
ωk,l

−−−→ P ⊗P

(26)

The formula (24) becomes for all f ∈ PΓ
k and g ∈ PΓ

l

[f, g]r = µ ◦ ωk−r+1, l−r+1 ◦ · · · ◦ωk−1, l−1 ◦ωk, l
︸ ︷︷ ︸

r

(f ⊗g). (27)

Proposition 2 Let Γ denote a subgroup of SL(2n, C). Then for all functions f ∈ PΓ
k and

g ∈ PΓ
l , we have that [f, g]r ∈ PΓ

k+l−2r.

4 Explicit computations of transvectants

4.1 Transvectants for genus n = 1

When n = 1, the formula (14) reduces to the classical Cayley omega process Ω = ∂x1∂y2 −
∂y1∂x2 , [11] . Using tensorial formalism, we have,

Ω = ∂x ⊗∂y − ∂y ⊗∂x. (28)

For instance the transvectant of order r = 1 coincides with the Poisson bracket :

[F,G]1 = FxGy − FyGx.

Since the operators ∂x ⊗∂y and ∂y ⊗∂x commute, we can apply Newton’s binomial formula
to obtain for all r ∈ N

(∂x ⊗∂y − ∂y ⊗∂x)
r =

∑

i+j=r

(−1)j

(
r
i

)

∂i
x ∂j

y
⊗∂j

x ∂i
y

[F,G]r =
∑

i+j=r

(−1)j

(
r
i

)
∂rF

∂xi∂yj

∂rG

∂xj∂yi
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We proceed to compute the order r transvectant on PΓ, that is for functions of the variable
z = x/y. This yields for F (x, y) = yk f(x/y) the formulas

{
Fx(x, y) = yk−1fz(z),
Fy(x, y) = kyk−1f(z) − zyk−1fz(z).

(29)

If F ∈ Hk then Fx, Fy ∈ Hk−1. The derivations ∂x and ∂y commute. By (29) and (3), they
correspond to the differential operators

{
∂z = πk−1 ◦∂x ◦π−1

k

k − z∂z = πk−1 ◦∂y ◦π−1
k .

(30)

These differential operators do not commute :

∂z (k − z∂z) = (k − 1 − z∂z) ∂z and so [∂z, k − z∂z] = −∂z (31)

Therefore, from (28) and (30)

ωk,l = ∂z ⊗(l − z∂z) − (k − z∂z) ⊗∂z

= ∂z ⊗ l − k ⊗∂z + z∂z ⊗∂z − ∂z ⊗z∂z

The order 1 transvectant evaluates as

[f, g]1 = lfzg − kfgz

since the term z∂z ⊗∂z − ∂z ⊗z∂z is annihilated by the multiplication operator µ:

µ ◦ (z∂z ⊗∂z − ∂z ⊗z∂z)(f ⊗g) = µ(zfz ⊗gz − fz ⊗zgz)

= zfzgz − fzzgz = 0.

We shall require the falling factorial notation

nk := n(n − 1) . . . (n − k + 1).

Combining Newton binomial formula with the said commutation rules (31) yields, for the
order r transvectant, the expression

[f, g]r =
∑

i+j=r

(−1)j

(
r
j

)

(k − i)j(l − j)if (i)g(j) (32)

which coincides with equation (2.12) in [12], namely

[f, g]r = r!
∑

i+j=r

(−1)j

(
k − i

j

)(
l − j

i

)

f (i)g(j) (33)

on identifying
(

k − i
j

)

=
(k − i)j

j!
,

(
l − j

i

)

=
(l − j)i

i!
,

(
r
j

)

=
r!

i! j!
.
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4.2 Transvectants for genus n = 2

4.2.1 Coproduct of a differential operator

The coproduct ∆ of a constant coefficient differential operator D is defined as







∆(D) = D ⊗1 + 1 ⊗D for D a derivation
∆(λ1D1 + λ2D2) = λ1∆(D1) + λ2∆(D2), for all λ1, λ2 ∈ C

∆(D1D2) = ∆(D1) ∆(D2)
(34)

By the Leibniz rule, we have
µ ◦∆(D) = D ◦µ.

Thus, the coproduct can be decomposed into its homogeneous constituents of order i, j ∈ N:

∆(D) =
⊕

i,j∈N

∆i,j(D) (35)

For example, given D = ∂z11
∂z22

− ∂z12
∂z21

, we obtain







∆2,0D = D ⊗1
∆1,1D = ∂z11

⊗∂z22
+ ∂z22

⊗∂z11
− ∂z12

⊗∂z21
− ∂z21

⊗∂z12

∆0,2D = 1 ⊗D
(36)

4.2.2 The computation of ωk,l

Let
di,j(k) = πk−1 ◦Di,j ◦π−1

k .

Then the determinantal Laplace formula (18) becomes

ωk,l =
(

d12(k) ⊗d34(l) + d34(k) ⊗d12(l)
)

−
(

d13(k) ⊗d24(l) + d24(k) ⊗d13(l)
)

(37)

+
(

d14(k) ⊗d23(l) + d23(k) ⊗d14(l)
)

.

For a degree k function, computer algebra calculations yield







d12(k) = D where D := ∂z11
∂z22

− ∂z12
∂z21

d34(k) = (z11z22 − z12z21)D − (k + 1)E + k(k + 1)
d13(k) = −(k + 1)∂z12

− z21D
d24(k) = (k + 1)∂z21

+ z12D
d14(k) = (k + 1)∂z11

− z22D
d23(k) = −(k + 1)∂z22

+ z11D

(38)

where E denotes the scaling operator

E = z11∂z11
+ z12∂z12

+ z21∂z21
+ z22∂z22

.
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Combining (37) and (38) we obtain

ωk,l = D ⊗

(

(z11z22 − z12z21)D − (l + 1)E + l(l + 1)
)

(39)

+
(

(z11z22 − z12z21)D − (k + 1)E + k(k + 1)
)

⊗D

+
(

(k + 1)∂z12
+ z21D

)

⊗

(

(l + 1)∂z21
+ z12D

)

+
(

(k + 1)∂z21
+ z12D

)

⊗

(

(l + 1)∂z12
+ z21D

)

−
(

(k + 1)∂z11
− z22D

)

⊗

(

(l + 1)∂z22
− z11D

)

−
(

(k + 1)∂z22
− z11D

)

⊗

(

(l + 1)∂z11
− z22D

)

4.2.3 Transvectant of order r = 1 — generalized Jacobian

For all f ∈ PΓ
k and g ∈ PΓ

l we obtain

[f, g]1 = µ ◦ω
(1)
k,l (f ⊗g), (40)

the operator ω
(1)
k,l being obtained from ωk,l, by removing the part annihilated by µ. We find

ω
(1)
k,l = l(l + 1) ∆2,0(D) − (k + 1)(l + 1) ∆1,1(D) + k(k + 1) ∆0,2(D) (41)

4.2.4 Transvectant of order r = 2 — generalized Hessian

For all f ∈ PΓ
k and g ∈ PΓ

l we obtain

[f, g]2 = µ ◦ω
(2)
k,l (f ⊗g), (42)

the operator ω
(2)
k,l being obtained from ωk−1,l−1 ◦ωk,l, by removing the part annihilated by µ.

We find

ω
(2)
k,l = l2(l − 1)(l + 1) ∆4,0(D

2) − kl(l − 1)(l + 1) ∆3,1(D
2) (43)

+ kl(k + 1)(l + 1) ∆2,2(D
2) − kl(k − 1)(k + 1) ∆1,3(D

2)

+ k2(k − 1)(k + 1) ∆0,4(D
2) − 6kl(k + l) ∆2,0(D) ∆0,2(D)

5 Towards new transvectant operators

The aim of this section is to derive an infinitesimal criterion to compute new differential
operators playing the role of the operator ωk,l in the preceding section.
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5.0.5 Infinitesimal generators

Consider the morphism of Lie algebras induced by the group morphism ρk defined by (6) :

dρk : sl(2n, C) −→ endP (44)

This morphism dρk is none other than the differential of ρk at the identity.

Following Sophus Lie, we shall use the language of infinitesimal transforms. Let J ∈
sl(2n, C) and let

γ = exp(εJ) = I + εJ + O(ε2)

denote an element of SL(2n, C) expanded near the identity. The infinitesimal generator
Vk := dρk(J) attached to J can be obtained by computing a first order expansion of ρk(γ):

ρk(γ)f = f + ε Vkf + O(ε2) (45)

Example: Let {J−, J0, J+} a basis of the Lie algebra sl(2, C). For instance:

J− =

(
0 1
0 0

)

, J0 =

(
1/2 0
0 −1/2

)

, J+ =

(
0 0
1 0

)

. (46)

In genus n = 1, the computation of

ρk(γ)f(z) = f

(
az + b

cz + d

)

(cz + d)k for γ =

(
a b
c d

)

:= I + εJ + O(ε2),

where J ∈ {J−, J0, J+}, yields

V −
k = ∂z, V 0

k = −
k

2
+ z∂z, V +

k = kz − z2∂z. (47)

¤

More generally the computation of ρk(γ)f(Z) for an infinitesimal transform

γ :=

(
A B
C D

)

:= I + ε

(
Ȧ Ḃ
Ċ Ḋ

)

+ O(ε2) (48)

yields

ρk(γ)f(Z) = f
(

(AZ + B)(CZ + D)−1
)

× det(CZ + D)k (49)

= f(Z + εP ) ×
(

1 + ε k tr(ĊZ + Ḋ)
)

+ O(ε2). (50)

upon letting P := ȦZ + Ḃ − Z(ĊZ + Ḋ). We thus obtain the infinitesimal generator :

Vk =
∑

1≤i,j≤n

Pij∂zij
+ k tr(ĊZ + Ḋ) (51)
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Example: Let us compute the infinitesimal generators attached to the group Sp(2n, R) for
n = 2. The conditions (11) become by applying the transform (48)

Ḃ = Ḃt, Ċ = Ċt, Ḋ = −Ȧt (52)

Thus Sp(4, R) is a 10 parameter Lie group. A matrix J ∈ sp(4, R) is thus of the shape :

J =







a1 a2 a5 a6

a3 a4 a6 a7

a8 a9 −a1 −a3

a9 a10 −a2 −a4







where the ai’s denote arbitrary real numbers. The 10 matrices J 1, . . . , J10 obtained by letting
one the ai = 1 and the others = 0, constitute a basis of sp(4, R). The formula (51) yields the
10 infinitesimal generators V i

k := dρk(J
i) for 1 ≤ i ≤ 10 :







V 1
k = 2z11∂z11

+ z12∂z12
+ z21∂z21

− k
V 2

k = (z21 + z12)∂z11
+ z22∂z12

+ z22∂z21

V 3
k = z11∂z12

+ z11∂z21
+ (z21 + z12)∂z22

V 4
k = z12∂z12

+ z21∂z21
+ 2∂z22

z22 − k
V 5

k = ∂z11

V 6
k = ∂z12

+ ∂z21

V 7
k = ∂z22

V 8
k = −z11(z11∂z11

+ z12∂z12
+ z21∂z21

− k) − z12z21∂z22

V 9
k = −(z21 + z12)z11∂z11

− (z11z22 + z2
12)∂z12

−(z11z22 + z2
21)∂z21

− (z21 + z12)z22∂z22
+ k(z21 + z12)

V 10
k = −z22(z12∂z12

+ z21∂z21
+ z22∂z22

+ k) − z12z21∂z11

(53)

¤

5.0.6 Infinitesimal criterion for invariance

Consider two representations of GL(2n, C) as per (6). By definition , (ρk ⊗ρl)γ := ρk(γ) ⊗ρl(γ).

We have seen that the operator Ω : Hk ⊗Hl → Hk−1 ⊗Hl−1 is a SL(2n, C)-invariant
differential operator, homogeneous of (bi)degree (−1,−1). This property suffices to show
that the transvectant of two invariant functions is also invariant (Prop. 1).

From there we infer that the operator ωk,l is SL(2n, C)-invariant, that is to say that the
following diagram commutes for all γ ∈ SL(2n, C) :

P ⊗P
ωk,l

−−−→ P ⊗P

ρk(γ) ⊗ρl(γ)



y



yρk−1(γ) ⊗ρl−1(γ)

P ⊗P
ωk,l

−−−→ P ⊗P

(54)

We proceed to generalize this property for homogeneous operators of arbitrary bi-degree.
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Definition 3 Let (k0, l0) ∈ Z
2 denote a bi-index and Γ a Lie subgroup of GL(2n, C). An

operator θkl : P ⊗P → P ⊗P is said to be Γ-invariant of (bi)degree (k0, l0) if and only if the
following diagram commutes for all γ ∈ Γ :

P ⊗P
θk,l

−−−→ P ⊗P

ρk(γ) ⊗ρl(γ)



y



yρk+k0

(γ) ⊗ρl+l0
(γ)

P ⊗P
θk,l

−−−→ P ⊗P

(55)

We give below an infinitesimal version of this commutation relation.

Lemma 2 Let J ∈ gl(2n, C) and let k, l ∈ Z. Let us denote by Vk = dρk(J) and Vl =
dρl(J) the infinitesimal generators attached to J for the representations ρk and ρl. Then the
infinitesimal generator Vk,l attached to J for the representation ρk ⊗ρl is Vk,l = Vk ⊗1 + 1 ⊗Vl.

Proof:

(

(ρk ⊗ρl)(I + εJ)
)

(f ⊗g) = (f + εVk f) ⊗(g + εVl g)

= f ⊗g + ε (Vk ⊗1 + 1 ⊗Vl)(f ⊗g) + O(ε2)

q.e.d.

Proposition 3 Let Γ denote a Lie subgroup of GL(2n, C). An operator θk,l : P ⊗P −→ P ⊗P
is Γ-invariant of (bi)degree (k0, l0) – see diagram (55) – if and only if for all elements J of
the Lie algebra of the group Γ :

Vk+k0,l+l0
◦θk,l = θk,l ◦Vk,l (56)

where Vk,l is the infinitesimal generator attached to J for the representation ρk ⊗ρl.

Proof: The proof is classical and relies on the fact that a connected Lie group is generated
by its one parameter subgroups.

We compute the relation (55) in the case of γ = exp(εJ) = I + εJ + O(ε2). By lemma
2, we see that: ρk(γ) ⊗ρl(γ) = I + εVk,l + O(ε2). The relation (ρk+k0

(γ) ⊗ρl+l0(γ)) θk,l =
θk,l (ρk(γ) ⊗ρl(γ)) therefore becomes (1 + εVk+k0,l+l0) θk,l = θk,l (1 + εVk,l) + O(ε2). The
relation (56) is thus seen to be the infinitesimal version of the relation (55). q.e.d.

6 Conclusion and open problems

We have shown that the classical theory of transvectant operators acting on functions of
two complex variables can be extended to a transvectant acting on functions of two matrix
variables. We have stressed the central role played by the operators ωk,l, the invariance of
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which can characterized by the commutative diagram (54). These operators are obtained so
far by complex determinantal manipulations.

When the genus n > 2, the transvectants become very complicated, and one should try
to better understand their explicit formulae. We are currently experimenting with the rela-
tion (56) in the hope of obtaining new invariant operators and thereby new Rankin–Cohen
operators for Siegel modular forms. It would also be worth investigating possible connec-
tions between our results and the conformally–invariant transvectants recently introduced by
Ovsienko and Redou [13].

Finally, we remark that the symplectic transvectants appear in the higher dimensional
Moyal bracket, [2, 9] which arises in quantum mechanics as the essentially unique quantum
deformation of the classical Poisson bracket. Further developments of the connections with
quantization, along the lines outlined in [12] in the genus n = 1 case, are worth developing.
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