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A NONLINEAR DIFFERENTIAL OPERATOR SERIES THAT COMMUTES
WITH ANY FUNCTION*

PETER J. OLVERY}

Abstract. A natural differential operator series is one that commutes with every function. The only
linear examples are the formal series operators e**" representing translations. This paper discusses a
surprising natural nonlinear “normally ordered” differential operator series, arising from the Lagrange
inversion formula. The operator provides a wide range of new higher-order derivative identities and identities
among Bell polynomials. These identities specialize to a large variety of interesting identities among binomial
coefficients and classical orthogonal polynomials, a number of which are new.
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1. Introduction. An operator & is called natural if it commutes with arbitrary
functions, i.e.,

(1) Q(Du)=DP(u)

for all scalar functions ®. In this paper we will take u(t) to be a formal power series
in the variable ¢, and & to be a formal series of differential operators. A simple example
of a natural operator in this context is the exponential operator e”, where D =d/dt,
which, by Taylor’s theorem, coincides with the translation operator e*”u(t) = u(t+z).
The proof that e*” is natural is then elementary:

2 ®(e*Pu(t)) =d(u(t+z2)) = e d(u(t)).

In fact, it is not hard to show that the translation operators e*” are essentially the
only linear natural differential operator series. It is therefore rather surprising that
there exist nonlinear natural differential operator series! The main result of this paper
is that the series operator

3) D ':e”: D=1+ Y %D"_l'u"-D
n=1 .

is natural, i.e., for any analytic function ®(u), and any formal power series u(t),
(4) D7 :e"?*: D®(u)=d(D ' :e*”*: Du).

In (3) the colons mean that the operator is “normally ordered,” meaning that all the
multiplication terms appear after all the differentiations. This is reminiscent of the
Wick ordering in quantum mechanics [4], although not quite the same. I do not know
if the identity (4) has any bearing on this subject.

Two proofs of this identity will be discussed. The first is an application of the
classical Lagrange inversion theorem [3], [7]. In fact, it will follow that the operator
(3) formally represents the implicitly defined variable translation x = ¢t + zu(x), which
explains its naturality. The second proof uses techniques from the Frobenius theory
of partial differential equations, a method of independent interest, and appears in an
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appendix. By choosing different elementary functions ® in the identity (4), we are led
to a large class of interesting new identities involving higher-order derivatives of scalar
functions. Moreover, specializing the resulting derivative identities to various elemen-
tary types of functions u(x), leads to, among others, the Hagen-Rothe binomial
coefficient identity [5], the Abel identity [3], and a number of interesting identities
among classical orthogonal polynomials, including Hermite, Legendre, and Jacobi
polynomials, that I have not been able to find in the literature. In another direction,
using the standard connection between higher-order derivatives of compositions of
functions and the Bell polynomials [3], [10], these derivative identities are easily shown
to be equivalent to a large collection of apparently new identities for Bell polynomials.

This work arose from an ongoing investigation into the canonical forms for
bi-Hamiltonian systems [9], and applications of these results to the precise integrability
of canonical bi-Hamiltonian systems can be found there.

2. Differential operators and normal ordering. We will be concerned with formal
power series whose coefficients are differential operators. These in turn can be applied
to analytic functions or formal power series, leading in turn to further formal series.

Let ¢ be a scalar variable. We use D to denote the derivative operator d/dt. Let

(5) F(z)= Y c.z"
n=0
be a formal power series in the scalar variable z. We can form the operator series
F(zD)= Y c¢,z"D"
n=0

which, when applied to any analytic function f(¢) results in a formal power series
(6) F(zD)f(1) = 20 caz"f (1)

in the derivatives of f™ = D"f=d"f/dt" of f. For example, by Taylor’s theorem, the
exponential operator

9 eF(N) = T 0 = f(1+2)

coincides with the operator of translation in z. If
© .
f)y=1% fir'

i=0

is itself a formal power series, then (6) is a formal power series in both z and ¢ whose
coefficients depend on the coefficients f; of f. In particular, evaluating this identity at
t =0 leads to the formal series

® FGED)(0),-o= 3 nieafiz”

Note that, under the natural identification of the coefficients of f with the derivatives
of f at t=0, which is f, = (n!)"'f(0), we recover the original equality (6). In fact,
we can replace zero by any other value of ¢; hence we can use (8) to evaluate the
series (6). This remark will be of use later on.
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We now wish to extend our range of operators to certain types of nonlinear
operators. By ‘“‘nonlinear” we mean that the operator itself depends on an analytic
function or a formal power series u(t), so that the operator will, in general, be a
nonlinear function of u. However, it still acts linearly when applied to other power

series. The most elementary operators associated with a formal power series (5) are
the nonlinear operators

) F(zuD) = § ¢,z"(uD)" and F(zDu)= § c.z"(D- u)"

Note that since the operators of differentiation D and multiplication by u do not
commute, these two operators are not the same; their commutator

(10) [D,ul=D-u—u-D=u'

is the operator of multiplication by u’= u‘". For example,

zuD_ooZ_rl Dn
ev=Y% ’(u )"

n=0

1
=p+ zuv'+-2— 2Z2(uPv"+uu'v')

1
+EZ3(u3 u/+3u2 ’ "+uu’zv’+u u”v’)+- e
e n

ePy=Y E—'(D- u)"

n=0

1
=v+z(uv'+u'v) +5 2Z2(u?v"+3uu'v' + (uu"+ u'"*)v)

1
+gz3(u3 V" +6ulu'v"+ (4uu"+ Tuu)v'

+(uu" +4uu'u"+ u) o)+ -

A further type of operator is found by ordering the factors in the series in yet
another way.

DerFINITION 1. Given a formal power series (5), the normally ordered operator
series is defined to be

(11) :F(zDu):= Y, ¢,z"D"- u".
n=0
Thus the action of : F(zDu): on a function f(¢) is given by
:F(zDu): f= Y. ¢,z"D"{u"f}.
n=0

The colons in the notation (11) are to distinguish this operator from the more standard
operator series (9). For example

® 1
e =Y —z"D"(u"v)

n=0

1
=v+z(uv'+u'v) +§ 22(u?v"+ 3uu' v+ 2(uu"+ u'?)v)

1
+gz3(u3 m+9u2 1/+(9u2 ”+18uu’2)v

+(3u2um+18uu/ n+6u13)v)+
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The colon notation is borrowed from quantum mechanics. Indeed, these operators
remind us of the Wick ordering used in quantum field theory [4], in which all the
creation operators appear to the left of all the annihilation operators. (Indeed, the
commutation relations (10) are also reminiscent of the standard commutation relations,
but only coincide when u = t.) However, this is not really the ordering adopted here,
since in the harmonic oscillator, the creation and annihilation operators are certain
combinations of derivative and multiplication operators.

3. Natural operators. Certain formal series differential operators play a distin-
guished role, in that they commute with functional evaluation. We make the following
definition.

DEFINITION 2. A series differential operator & is called natural if it commutes
with all functions, i.e.,

(12) D(Du) = DP(u)

for all scalar functions ® and all formal series u.

A simple example is provided by the translation operator e*”, as shown in the
introduction. It is not hard to show that the following is essentially the only linear
example.

PROPOSITION 3. The operators e**°, a a constant, are the only natural formal series
linear differential operators of the form @ = F(zD).

Proof. Let

9 =F(zD)= Y c,z"D".
n=0

First set z=0 in (12), which gives ®(cyu) = c,®(u). For this to hold for all ®, the
leading term of & must be ¢, =1. Now, assume by induction that we have shown that
= a’/j!, for j=n—1, where a = ¢;, and n=2. Let ®(u) = u”. Then the coefficient of
z" in (9) is

2¢oc,uu'™ +2¢,c,_ ' u V4 - o= ¢, D" (u?).

This readily implies that ¢, = a"/n!, completing the induction. (Note that in fact we
only needed to check (12) for quadratic functions ® to prove this result.)

The main result of this paper is the following example of a nonlinear natural
differential operator.

THEOREM 4. Let u(t) be a formal power series and let D = d/dt. Then the series
differential operator

(13) D':eP*: D=1+ 7Y %D""-u’“D
n=11It:

is natural, i.e., for any analytic function ®(u),

(14) D7 ':e™: D®(u)=d(D ' :e*: Du).

Proof. This result follows as a direct consequence of the famous Lagrange inversion
formula: cf. [3, p.150] or [7, pp. 113, 114]. According to equation (5) of Melzak
[7, p. 113], if u(t) is any analytic function (or formal power series), and we define
x = &(z, t) implicitly by the formula

(15) x=t+zu(x),
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then, for any analytic function f(¢), we have the classical Lagrange inversion. formula
- Zn - n - zDu
(16) fx)=f()+ EIF{D” You(0)"- DYf(1)= D" :e*”": Df(s).

Now set f(t) =®(u(t)), so that (16) becomes
amn ®(u(x))=D"":e*”*: D®(u(t)).

On the other hand, according to the formula at the bottom of page 144 of [7],
for any analytic function g(x), evaluated at (15),

an
az"

g(&(z, 1)],—o= D" "(u(t)"Dg(1)), n=1.

Therefore, taking g = u, we find the expansion

aazn u(g(Z, t))'z=0

oo Z"
u(x)= ¥ —
n=0 N!

n

= u(t)+ ZO% D" (u(1)"Du(t))

=D7":e®”: Du(r).

Substituting this into (17) completes the proof of (13).

In view of the proof, then, it is no longer surprising that the operator series (13)
is natural, since it corresponds to the variable translation (15) via Lagrange inversion.
More generally, we can introduce the translation

(18) x=t+¥(zu(x), w'(x), -, u"(x)),

which has a corresponding differential operator series, which will also clearly be natural.
For example, the operators

D—l :ezD\If(u,u’,m): D,

where V¥ is any analytic function of u and its derivatives, are also natural. An interesting
problem that I have not tried to investigate is whether there exist other classes of
natural differential operators, although it seems reasonable to conjecture that only the
operators associated with such translations are natural.

4. Derivative identities. Just as generating function identities leads to com-
binatorial identities, so any natural differential operator leads to a large class of
derivative identities, obtained by considering different functions @ in the basic condition
(14). Here we present some of the more elementary derivative identities to be found
as a consequence of the main theorem. We first compute the basic formula

{uw)=D":e®™:Du=u+ Y Z—, D" Y{u"u'}

(19) n=1 )
— - z Dn(un+l)
n=0 (n+ 1)' )
More generally, we find that, for ®(u) = u*,
-1 zDu k - k Zn n n+k
(20) D e Dut= Y, — D"(u"").

noh+kn!
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As long as k is not a negative integer, (20) is valid as it stands. It also remains correct
when k= —j is a negative integer, provided we interpret the term corresponding to
n=j in the summation according to the general “rule”

1
(21) 1in});D”(u"‘)=1in})D”"1(u'" 'u") = D"(log u), nzl.

Note that if n = 0, the term (k/(n+k)) D" (u""*) = u* is not a problem. Now, according
to Theorem 4, the series (20) is the kth power of the series (19). This implies certain
unusual identities among higher-order derivatives of powers of u. For instance, taking
the case k =2, the series identity

- 2 " n n+2 Zn n n+1 2
nzon+2—-' W™= (nzo( +1)'D(u )>

implies the following derivative identities:

n n+2
Dn n+2 — ( )D i+1 Dn i n—i+1
W)= L G+ Dn—i+1) (™) - D ™.
More generally, if we apply the identities corresponding to ®(u) being u**', u* and
u', then the series identity

oo_!(_+_l‘_z_" n n+k+1 _( __k~____ n n+k>(°° l Z_ n n-H)
Zonrkaim 2= L e PO N L D)

implies the additional derivative identities

k+1

n n+k+1
n+k+1 ( )

(22)
z kl i+k n—i n—i+l
p) o(z+k>(n—z+l)< )D( ) DT,

These identities are valid for arbitrary (positive and negative) values of k, I, provided
we use the rule (21) if either n+k+1=0, or any of the summation terms i+k =0 or
n—i+1=0. For example, if we take k=—1, I=1, we find that the series

n(u) ‘%—Zu—+ §2(1—_—;)—'— D"(u"™)

is the series inverse for (19), i.e., n(u)=1/{(u), and hence we have the series identity

Rearranging the terms of degree n in z in this formula results in the derivative identity

no1 +1
(23) Dn(un+1)=(n+1)uIDn~l(un)+ z - 1(” l ) D (ux I)Dn x(un l+1)

i=21—
valid for n = 1. The identities (22), (23) appear to be related to, but interestingly not
the same as, some derivative identities appearing in Adams and Hippisley [1, § 7.37,

p. 160]. Many more examples can be deduced by choosing other types of elementary
functions for ®(u) in (14).
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5. Binomial and orthogonal polynomial identities. We now specialize the above
derivative identities for particular functions u(t), and find that they reduce to a wide
range of identities among binomial coefficients and orthogonal polynomials. Some are
known, but the orthogonal polynomial identities are apparently new. (However, I have
not attempted a completely exhaustive search of the literature.)

1. First consider the case

u(t)=1t% so 1 D"u™ = (ma) tmen,
n! n
Then (22) reduces to the identity
(24) k+1 ((n+k+l)a>_i ki ((i+k)a><(n—i+l)a)
ntk+l n Stk (n—i+]) i n—i )’

This is equivalent to the Hagen-Rothe identity [5], [6, Eqn. 3.142], which generalizes
the classical Vandermonde convolution identity for binomial coefficients,

()= 065)

which follows from (24) in the limit « >0, ka > r, la - 5. In (24), we use the definition

(ﬁ)zﬂ(ﬂ—l)-'-(ﬂ—nﬂ)

n n!

for the general binomial coefficients, so that
1(3) _(B=1)---(B=n+1)
B \n n!

is well defined even for B = 0. As another example, the formula (23) in this case reduces
to the identity

L((n+1)a)_ (na)_ﬁ_i 1 ((i—l)a)((n—i-l—l)a)
anti\ n ) \n-1) A G-DG-i+D\ i n—i )’

which is similar to the Van der Corput identity; cf. [6, Eqn. 3.147].
2. Let

u=e*, so D"u™=m"a" e
Then (22) reduces to the identity

(25) (n+k+D)""= EOE% (':) (i+k) ™ (n—i+D)"

If we set k=—x/z, I=—n—(y/z), we deduce

_ " x(y+nz)
+ n—1 — Ny =T
(26) (x y) i§0 X +y +nz

(n) (x—iz) Ny+iz)" "7,

i

which is very similar to the Abel identity [3, p. 128],

27 (x+y)"= En: (?) x(x—iz) Ny+iz)" "
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Indeed, they are essentially equivalent identities, since if we denote (27) by A, (x, y, z),
and (26) by B,_,(x, y, z), then we easily verify the relation

A, (x,y, z)+nzA,_(x, y, z) = B,(x, y, z).

Consequently, we can use Theorem 4 to give yet another proof of the Abel identity.
3. Let

u=e", so D"u™=(-1)"m"*H,(vmt) e ™",

where H, denotes the usual Hermite polynomial [2, § 10.13]. In this case, (22) reduces
to the identity

(n+k+D)"P7 H,(Vn+k+11)

(28) n kIl (n
h féo k+l(

) (+ k)P Y n—i+ D)2 (it k )H,_;,(Vn—i+1t),

1

which we can interpret as an Abel-type identity for Hermite polynomials. It is not the
same as the usual addition formula, since the arguments of the Hermite polynomials
appearing in the summation depend on the summation index i. If either n+k+1=0,
i+k=0,o0or n—i+1=0, then we view the corresponding term in (28) according to the
rule

-2, n=1,
lim (=1)"m"™P'H,(Vm t)={ -2, n=2,
0, n=3,

stemming from the rule (21).
4, Let

- 1 n -
u=t*e’, so n—D"u"’=t'”°‘ "e ™MLy "(mt),

where L; are the generalized Laguerre polynomials [2, § 10.12]. Again (22) reduces
to an Abel-type identity

k+1
S LD ((n+ k+1)1)

(29) y
= "_—“_—"""LE-H—k)a_i i+ k)t Lﬁlnn—ii+1)a*n+i —i+ Dt
Z i+l (n—it]) ((i+k)1) (n—i+D1)
for Laguerre polynomials. As in the previous example, we make the convention

a—t, n=1,
[(-1)"""/nla, n=z=2

stemming from the rule (21), for any exceptional terms in (29).
5. Finally, consider the case

1
lim — Ly "(mt) = {
m->0m

v

b

u=>0-6)*(1+1)".
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Then

1
; Dnum — (__2)n(1 — t)ma—n(l + t)mﬂ—nP(nma—n,mB-—n)(t),

where P{*#) are the Jacobi polynomials [2, § 10.8]. In this case (22) reduces to the
Hagen-Rothe type formula

k+1
n+k+1
(30) n ki
izo (i+k)(n—i+1])

which again does not appear in the standard literature on Jacobi polynomials. Again,
we need a rule

P((n+k+l)a—n,(n+k+I)[3—n)( t)

((1+k)a i,(i+k)B— 1)(t)P((n i+l)a—n+i(n—i+l)B— n+:)(t)

(ma—n,mB—n) _[a(t+1)n_ﬂ(t_1)n]
i P ="

for any exceptional terms in (30).

n=1,

6. Bell polynomial identities. The Bell polynomials arise in the formula for the
nth derivative of the composition of two functions [3], [10]. Specifically, we have

(31)

g= 3 (f"°8) - Bie),

where the B} are polynomials in the derivatives g* of g. Thus, the above derivative
identities can be rewritten as identities involving Bell polynomials. Surprisingly, these
identities have not appeared in the literature.
First, according to (31) (see [10, Ex. 22, p. 46]),
n min{mn} 1|

(32) o u™ = "él (m_'i)!u'"_‘B?(u).

Therefore, (19) can be rewritten as

n znun+1 i

G Cw=ut I 5 o

Furthermore, according to (14), (19), for k a positive integer,
© n k(n+k—1)!

(34) L(u) =ur+ Z] Zln!(n+k i)!

i (u).

nun+k—-iB;t(u)'

For example, if k=2, then

2 2,22 2n+tl)
g(u) - +nz=:1 .‘§1 (n+2_l)‘

If we compare this with the square of the series (33), we deduce that

2(n+1) 2 n 1
(n+2—i)zB"(")_(n+1—i)!B"(")+,,+§ n(p+1-r)l(g+1-

r+s=i

z"u"+k"iB§'(u).

B?(u)Bi(u),

which is equivalent to the identity

n+2-—

(9) 26-08i0 =5 (717

)B”(u)B"""(u)
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By way of contrast, consider the Bell polynomial identity coming from squaring the
standard exponential series

(36) =1+ Y Y

n=1i=1

z't"
B} (u).

n!

Equating e’™ = (e™)? and rearranging terms, we deduce

(37) 227 -1DBi(u) =% (:) BY(u)Bi=7 (u).

which is quite similar to (23), but, except in very special cases, a different identity.
More generally, the equation e*™?* = ¢ ¢>™ Jeads to the further standard identities

(38) ((a+b)'—a'-b")Bi(u)=Y% (:) a’b" "Bl (u)Bi=} (u),

valid for any a, b. On the other hand, the identity {(u)**®=¢(u)“¢(u)® leads to yet
more complicated identities

n+a+b—i
(a+b)(n+a+b—l)_(n+a_1)( b )
ab b(n+a+b—i)
b

(n+b—1)(n+a+b—i>

- (n+a+b—i)

a
a

n\(n+a+b—i
_ (p>( pta-r )

—Er n+a+b-2
( pta-—1 )
More identities can be constructed by using different functions ®(u) in the fundamental

theorem. The number of different identities satisfied by the Bell polynomials is
remarkable!

(39)

B} (u)

B?(u)BiZ! (u).

Appendix: Alternative proof of the main theorem. An alternative proof of Theorem
4 is based on the properties of certain first-order partial differential operators or vector
fields; cf. [8]. As such, this proof may be adapted to give an alternative proof of the
Lagrange inversion formula. The mathematical methods have not been used in the
subject before, and thus are of some interest, possibly being of use in other problems.
Let

o0
u=y u,t"
n=0
be a formal power series. We will also work with the associated formal series
o0
v=—=Y p,t"
u n=0

and

u [ee]
w=log—= Y w,t"
u() n=1
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We will regard the coefficients of u and v, i.e., uy, uy, u,, -+, and vy, vy, 05, - -, as
providing different local coordinates on the space of formal power series. They are
connected by formulae of the form

un=Rn(DO, Uy, 'avn)a vn=Rn(u09 Uy, " ‘aun)a

where the rational functions R, can be explicitly expressed using determinants; cf.
[10, Ex. 20, p. 45]. We can also use u,, wy, w,, * - -, as yet another set of coordinates,
connected by formulae of the form

(Al) un=u0Bn(W1’w2" ) "wn)a

where B, is a Bell polynomial coming from the relation u = u, e”. We now write out
the basic series

(A2) Y(u)=D""':e"”: D®(u)= OZO 2",

n=0

where, according to (13),
(A3) \If,,=LD"E,,(u) , E,,(u)=J u"®'(a) du.

n! t=0 0
Note that we are using the identification between series coefficients and derivatives
given in (8) in this formula. In particular, the coefficient ¥, depends on the first n
coefficients u,, u,, - - -, u, of u. We can also re-express ¥, in terms of the coefficients
Vg, Uy, *, U, of v=1/u, or, alternatively, in terms of u,, w,, w,, - - -, w, using (Al).
It will be very convenient to permit such changes of coordinates during the course of
the proof.

The elementary first-order partial differential operators

d 0 d

u=—, V,=—, W R

Yoo eyt T ow
will be regarded as vector fields acting on the functions of the coefficients of the formal
power series u, and its associated power series v =1/u, w =log (u/u,). As such, they
can all be re-expressed in any of our three coordinate systems. Note that

1 t/ .
(A4) vi(u)=~v, (Z) =-— =Tt =012,
(A5) wi(u)=w;(uo e”)=tug e” =t'n,  j=1,2,3,---.

Using these and similar formulae, it is not too difficult to verify the following change
of variables formulae for these vector fields:
(A6) Vi=— Y UplyT——=— ) U

n
m,n=0 aum+n+j n=0 awn+j

2 j=0’1’2’.'.‘

(In the second summation, we use (A1) to re-express the u’s in terms of the w’s.) Also

(A7) w=Y t——=—73 o,

n b j=1’2’3’...‘
n=0 OU,yj n=0 OUpny;j
Finally, we define the vector fields
(AS) yj=Wj+ZVj_1, j=1,2,3,"',

where z is a scalar parameter.
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LEMMA Al. The vector fields y; all mutually commute:
(A9) [yjayk]=0 for a”j’k=192a3,' Tt

The proof is simplest in the v coordinates. We just re-express w; using the second
formula in (A7), and do a simple direct computation.
LEMMa A2. Let ¥(u)= D" :e*”: D®(u). Then

(A10) yi{¥(u)]=0 forallj=1,2,3,---.

Proof. Note that since we are now working with formal power series, the vector
fields v;,w; commute with the derivative operator D =d/dt. Using (A3), (A4), we
compute

V¥ (u)]= z D"{a“"(“) v(u )}

t=0
=~ ¥ = D"{tu"0 (u)}],o,
n=0 n!
whereas, using (A3), (AS5), we find

RICIES z—!D {"“"(“) W, (u )}

=0

oo Z" .
= ¥ = D"{t/u""'®"(u)}},o.
n=0 n!
Note that
[D", t]=D"-t—t- D"=nD""";
hence, upon evaluation at t =0,
D" t|,=0= nD""'|,_o

Substituting this into the previous sum, we find (since j=1)

WV = § I D 0 ) g
— § Dn{tj—lun+2(p;(u)}lt=0'

- n=0 n’
Comparing with the previous summation, we deduce that
(A11) Wj[\l'(u)] =—zv; [V (u)], Jj=12,3,-"

which clearly implies the lemma.
If we write out the coefficient of z" in the previous formula (A11), we find that

(Alz) wj[q’n(u)] = _vj~1[\I,n—l(u)], j9 h= 1’ 25 3, e

Since ¥, only depends on ug, uy, - - -, u,, only the first n of the equations in (A12)
are nontrivial. We now regard (A12) as a system of first-order partial differential
equations for the coefficients ¥, of the series (A2). The commutativity Lemma A1 will
imply that the system is in involution in the sense of Frobenius [8], and hence can be
uniquely solved using suitable initial data. In fact, since the w coordinates straighten
out the vector fields w;, we can explicitly solve the system.
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LEmMMA A3. Let ¥,, n=0,1,2,- -, be functions depending on the coefficients w;
of the formal series w which satisfy

(i) ¥, (uy, wy, Wy, -+ +, w,) depends only on the first n coefficients of w.
(ii) ¥, (uy,0,0,--,0)=0 for n>0.

ov,

ow;

(iii) =V;_1[¥.il, j=1,--+,n
Then ¥, are uniquely determined by the function Vy(uy) = ®(u,).

Proof. According to Lemma Al, the integrability conditions for the elementary
system of partial differential equations (iii) are satisfied. Therefore, the value of ¥, is
uniquely determined by its noncharacteristic Cauchy data prescribed by condition (ii).
This completes the proof.

Now, to complete the proof of Theorem 4, it suffices to notice that {(u), as defined
by (A1), being a particular case of (A2), satisfies the three conditions of Lemma A3.
But then the series ®({(u)) also satisfies them since, for example,

y;®(L(u)) = D'({(u))y;({(w)) =0.

Also, the leading-order term of ®({(u)) is ®(u,), which agrees with that of ¥ (u) as
given by (A2). According to the uniqueness result in Lemma A3, the series must agree,
i.e., ®(¢(u)) =W¥(u). This completes the proof of the main theorem.
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one for observing how the main theorem easily follows from Lagrange inversion, and
the other for encouraging me to investigate the consequences of the new derivative
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