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DISSIPATIVE DECOMPOSITION OF
PARTIAL DIFFERENTIAL EQUATIONS

PETER J. OLVER AND CHEHRZAD SHAKIBAN

ABSTRACT. A general decomposition theorem that allows
one to express an arbitrary differential polynomial as a sum
of conservative, dissipative and higher order dissipative pieces
is proved. The decomposition generalizes the dissipative de-
composition of ordinary differential equations, but is no longer
unique. The proof relies on the properties of certain gener-
alizations of the standard symmetric polynomials known as
multi-symmetric polynomials. The nonuniqueness of the de-
composition is a consequence of the syzygies among the power
sum multi-symmetric polynomials.

1. Introduction. In a previous paper, [14], we proved that any
polynomial ordinary differential equation in one independent and one
dependent variable can be decomposed into a conservative part, a dis-
sipative part and higher order dissipative pieces. Subject to certain
homogeneity requirements, the decomposition is unique; in particular,
it determines a unique conservative component of such an equation.
The goal of this paper is to investigate to what extent the conserva-
tive/dissipative decomposition of nonlinear ordinary differential equa-
tions generalizes to partial differential equations. We will prove that
an analogous decomposition always exists for polynomial partial dif-
ferential equations in one dependent variable, but there is no longer a
corresponding uniqueness result. The present proof of the decompo-
sition theorem relies on a transform developed by Gel’fand and Dikii
[4], and the second author, [15], which, in analogy with the classical
Fourier transform, reduces problems in differential algebra to problems
in commutative algebra. In our case, the problem transforms to a re-
sult in the theory of “multi-symmetric polynomials,” which are certain
multi-variable generalizations of the standard symmetric polynomials
studied by, among others, Junker [6, 7, 8], and MacMahon [9] almost
a century ago. The proof of the general dissipative decomposition then
rests on some basic formulas relating the multi-symmetric analogs of
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power sum and elementary symmetric polynomials. The nonuniqueness
of the decomposition in the partial differential equation case is a conse-
quence of the fact that, in contrast to the usual elementary symmetric
polynomials, their multi-symmetric analogs no longer freely generate
the ring of multi-symmetric polynomials, and there exist nontrivial
syzygies among the generators. The general form of these syzygies is
poorly understood. A table of dissipative decompositions for some low
order and low degree polynomial partial differential equations in one
dependent variable and two independent variables is given.

Consider the differential algebra A™ = A{u, z} which consists of all
constant coefficient partial differential polynomials P[u] in one depen-
dent variable, u, and m independent variables, = (z!,z2,...,z™).
Thus, A™ consists of all polynomials P[u] depending on finitely many

of the derivative variables
uI:&-l@iz...&vu, (91:8/8331

Here we employ one of the standard multi-index notations for deriva-
tives, so I = (i1,i2,...,%,), 1 <4, < m, is a symmetric multi-index of
order |I| = v. We let A™ C A™, n > 0, denote the subspace consisting
of all homogeneous differential polynomials of degree n in the variables
uy.

The most important linear operators on A™ are the total derivatives
and the Euler operator or variational derivative. We let D denote
the total derivative with respect to ¥ and D! = D;, ... D;, denote
the corresponding higher order total derivative. The Euler operator or
variational derivative has the usual formula

(1.1) E = Z(—D)Iaiu[,

cf. [12]. Note that the total derivatives preserve homogeneity, whereas
the Euler operator reduces it by one:
Df AT — AT, E: A — AT .

A partial differential equation P[u] = 0 is called conservative if it is the
Euler-Lagrange equation for some variational principle, meaning P =
E(L) for some Lagrangian L[u]. Conservative differential polynomials
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are completely characterized by the Helmholtz conditions using the
well-known solution to the inverse problem to the calculus of variations,
cf. [12, Theorem 5.68].

The main result of this paper is the following decomposition theorem.

Theorem 1. Let P € A" be a homogeneous differential polynomial
of degree n in one dependent variable and m independent variables.
Then there exist conservative differential polynomials

Qr=E(Lr) € Ay, 0<|I|<m,

such that P can be decomposed as

(1.2) P= zn: DIQ; = zn: DIE(L;).

|1]=0 [1]=0

This theorem is the direct analog of the dissipative decomposition
for ordinary differential equations proved in [14]. In that case, m =
1, the differential polynomials ); were uniquely determined by P.
In the present case, m > 1, this is no longer true. In fact, the
nonuniqueness is related to some interesting combinatorial identities
among multivariable analogs of the elementary symmetric polynomials.

For example, according to Theorem 1, any quadratic partial differen-
tial equation P[u] = 0, depending on u = u(z,y), can always be written
in the form

P = Qo+ DyQ1+ DyQ2 + D;Qs + Dy DyQu + DyQs
(1.3) = E[Lo] + Dy E[L1] + Dy E[ L]
+ D2E[Ls] + D, Dy E[Ls] + D2E[Ls].

There are six Lagrangians, Lg, L1, Lo, L3, Ly, L5, each determined by
the corresponding @); up to a divergence. The first, Ly, can be identified
with the Lagrangian for the conservative component of the problem,
while L; and Lo determine the first order dissipation and L3, L4 and
L5 give second order dissipation.
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As a specific example, consider the differential polynomial P =
UyUggs — UzUzzy. One decomposition is given by

UyUzzz — UgUzaoy = (Uylgzz + 2UzUpgy + SUgyUss)
— (BugUgzy + 3UszyUss)
= Dy (uylUgs + 2UzUgy) + Dy(—3uztzs)

1 1
= DzE[— 5u§uy] + DyE[Eu‘z}
In this case, we interpret the differential polynomial P as purely first
order dissipative, and we can take the first order dissipation to be given
by the Lagrangians

1
Ly = —Euiuy and L, = Eui,

while the rest of the Lagrangians are trivial and can be set to zero.
However, the representation (1.3) is not unique since we also have

UyUpgr — UgUzgpy = Di(—2uuzy — UyUz) + Dy Dy (2uuze + u?)
= D2E[uuguy] + Dy Dy E[—uu?).

This gives P the interpretation of a second order dissipative equation.
The difference between these two interpretations, and how they are
related to Rayleigh-type dissipation laws [14], remains to be worked
out.

Finally, we remark that there is an analogous decomposition theorem
for the homogeneous subalgebras Anm of the larger differential algebra
Am consisting of all partial differential polynomials with smooth, z-
dependent coefficients. Indeed, the methods used in [14] to go from the
constant coeflicient ordinary differential polynomial case to the variable
coeflicient case work without change in the present context. We leave
it to the reader to fill in the details.

2. Multi-symmetric polynomials. We assume that the reader is
familiar with the elementary theory of symmetric polynomials, namely
polynomial functions f(z1, ..., z,) of a single set of variables which are
symmetric under permutations, cf. [10]. We will require the general-
ization of these concepts to “multi-symmetric polynomials,” which are,
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analogously, functions of several sets of variables which are symmetric
under simultaneous permutations of the variables in each set. In the
case of ordinary symmetric functions, the space of symmetric polynomi-
als is isomorphic to a polynomial ring, and the elementary symmetric
polynomials freely generate it. In other words, the elementary sym-
metric polynomials are algebraically independent, and every symmetric
polynomial can be expressed as a unique polynomial function of them.
In the case of multi-symmetric polynomials, it is easy to write down
the analogs of the elementary symmetric polynomials, and, again, these
generate the ring. However, the key difference is that the generators
are no longer algebraically independent, since the ring is no longer iso-
morphic to a polynomial ring. Thus, every multi-symmetric polynomial
can be written as a polynomial in the elementary multi-symmetric poly-
nomials, but this polynomial is no longer necessarily unique. For our
purposes, it is convenient to also introduce another generating set, the
power sum symmetric polynomials and their multi-symmetric analogs.
These are easily related to the elementary symmetric polynomials via
standard generating function techniques.

Consider the polynomial algebra C[Z], where Z = (2§), 1 <k < m,
1 < j < n,is an n X m matrix whose entries are m - n independent
unknowns. We use the notation z; = (zjl, ..+, 2]") to denote the 78 row
and zF = (2F,...,zF) to denote the k*" column of Z. The symmetric
group S, acts on the matrix Z by permuting its rows and, hence,
there is an induced action on C[Z]. We let P™ = C[Z]°» denote the
subspace of S,,-invariant polynomials. In the case m = 1, the ordinary
differential equation case, the polynomials in P! are the ordinary
symmetric polynomials in n scalar variables (z1,... ,2,). Whenm > 1,
the elements of P will be called multi-symmetric polynomials as they
are invariant under simultaneous permutation of the entries of the
columns of Z. Based on the transform, multi-symmetric polynomials
have been used effectively in the solution of a number of problems in
differential algebra, cf. [2, 4, 15]. They were first studied by several
mathematicians in the last century; see Junker [6, 7, 8] and Netto [11,
Sections 377-386], for connections with classical invariant theory, and
MacMahon [9] for connections with combinatorics. They have recently
been the subject of renewed interest among combinatorialists, in part
due to applications in the cohomology theory of the symmetric group
[1]; see the work of Gessel [5] and Edelman [3].
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Let 1
o= ZSW:C[Z]_)P’T
TES

be the symmetrizing map, which is a projection onto P;*. A simple
vector space basis of P;* is provided by the monomial symmetric
polynomials

mi(Z) = o(2Y) = (2 ... 2ln)

(2.1) _ 1 I I, m
= Z 2oy Znn) € P>

w(n
TES,

where I = (I1,I3,...,1I,) is a symmetric “multi-multi-index” whose
entries are symmetric multi-indices. Also, given z; = (2]1, . ,zj’-"), and
a symmetric multi-index I = (iy,... ,4,), we define zJI = z;:l .. z;"
There are two important “multiplicative” bases or generating sets
for P;*, being the analogs of the elementary symmetric polynomials
and the power sums in the one variable case. Using dummy variables
t = (t',¢%,... ,t™), the generating function for the elementary multi-

symmetric polynomials is
(2.2) S(t) = (1 + Ztiz;i> =14 ) e(2)t.
Jj=1 J

Note that e; coincides with the monomial symmetric polynomial mg
when I is the multi-multi-index with singleton entries I, = (i,) de-
termined by the entries of I. Define the power sum multi-symmetric
polynomials

(2.3) pi(Z) =mi(2) =)z

For simplicity, we denote the linear multi-symmetric polynomials
(which can be viewed as either monomial, elementary or power sum
multi-symmetric polynomials) by

(24) W(Z)=mp(Z)=ex(Z)=pr(2) =) 2§, k=1,...,m.
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For example, in the case m = n = 2, the polynomials in P2 will depend
on a 2 X 2 matrix Z of variables, for which we can use the simplified
notation

(2.5) 7= (2 Z;) .
The linear multi-symmetric functions are
(2.6) p1 =11 =21 + 29, p2 = [z = wy + ws.
There are three quadratic power sum symmetric functions:
(2.7)  pn= zf + zg, P12 = z1w1 + 2owe, P2z = w% + wg,
and three quadratic elementary symmetric functions:
€11 = 21Wi, €12 = Z1W2 + 22Wi, €22 = 22Wa3-

A generating function for the power sums is provided by the formal
power series

00 avk—1
(28)  P(t)=logS®H) = % 3 (’;) pr(2)t,

k=1 |T|=k

Substituting the formulas for P and S into the relation S(t) = ef'®,
we deduce that for |I| < n, e; is a polynomial in the power sums p;
for |J| < |I] of the form

er = ®1py]

(2.9) oy (k—1)! 1

where
(2.10) 1(2) =4, (2) ... 4, (Z), I = (iy,i2,...,0)-

On the other hand, for |I| > n, the corresponding coefficient of ¢/ in
S(t) is 0, and hence we deduce the syzygy

I
WQI[PJ]

(=",
(k—1)"

0= (-1
(2.11)

=pr+--+ | =k >n,
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for the higher order power sums. A simple induction shows that we can
ultimately re-express the higher order power sums in terms of those of
order < n.

Theorem 2. The elementary multi-symmetric polynomials {er :
|[I| < n} and the power sum multi-symmetric polynomials {py : |I| < n}
up to order m, form generating sets for the space of multi-symmetric
polynomzials P;*. Thus, any multi-symmetric polynomial can be written
as a polynomial in either the elementary multi-symmetric polynomials,
or the power sum multi-symmetric polynomials up to order n.

For a proof of this result, see [5, 11]. If m = 1, these generating
sets are algebraically independent, and the ring of ordinary symmetric
polynomials is isomorphic to a polynomial ring. However, for m > 1,
this is not the case, and there are nontrivial syzygies amongst the
elementary multi-symmetric polynomials and amongst the power sum
multi-symmetric polynomials. See Junker [6, 7, 8] for a detailed
investigation into the syzygies. The simplest such syzygy is in the
case n = 2, where, for the power sum multi-symmetric polynomials the
general syzygy takes the form

(2.12)  2(pijpkt — PikPjt) = PiPjPkt + PrPIDij — PiPkPjt — PiPDik-
Thus, in P2 there is one such syzygy,

(2.13) 2(p11p22 — Pla) = PiPe2 — 2p1pPapia + Papil,

and this is the only syzygy, which we verified using a Grobner basis
calculation in the computer algebra language MACAULAY [16]. For P3
there are six such syzygies, and again these exhaust the possibilities.
(Interestingly, the Grobner basis calculation gives 10 or 11 basic syzy-
gies (depending on which term ordering is used), but the extra 4 or 5
syzygies are all consequences of the first 6.) We conjecture that (2.12)
provides a complete list of syzygies for all m when n = 2. (Paul Edel-
man, [3], informs us that this conjecture is true.) The higher order
cases are considerably more complicated. A similar symbolic calcula-
tion in the case of P2 reveals 5 fundamental syzygies, of which the
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simplest are

P%Plzz — 2p1p2p112 + nglu = 3(p11P122 — 2p12P112 + P22P111)
(2.14) — 4p1 (p11p22 — Pio)
+ pipo2 — pIp2p12 + P1P3PIL,

and the analogous one obtained by interchanging the indices 1 and 2.
Each of these 5 syzygies appears to follow from two general syzygies,
like (2.12), valid for all m when n = 3. The complete investigation of
the syzygies will be the subject of future research.

3. The transform method. The proof of the main theo-
rem relies on a transform which takes differential polynomials into
multi-symmetric polynomials and, thereby, like the Fourier transform,
changes problems in the study of differential equations into problems
in commutative algebra. A special case of this transform was originally
introduced by Gel’fand and Dikii [4], and was further developed by
the second author [15]. It is closely related to the symbolic method of
classical invariant theory, cf. [13]. We adopt the simplified formulation
of the transform given in [2] and, especially, [13].

Definition 3. The transform is the unique linear isomorphism

~

Fi AT S P

between the space of homogeneous constant coefficient differential
polynomials of degree n in one dependent variable and m independent
variables, and the corresponding space of multi-symmetric polynomials
of an n X m matrix of variables Z, with the property that the transform
of a differential monomial

ur =unur, ... Uy, I:(Il,fg,... ,In),
of degree n is the monomial multi-symmetric polynomial
(3.1) Flug) = mi(2) = o(2") € P,

cf. (2.1). The elementary fact that F determines a linear isomorphism
is proved in [15].
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Example 4. For the differential polynomial P = uyuzey € A3, its
transform will be a polynomial in the 2 x 2 matrix of variables, for
which we use the simplified notation

Z = (zl “’1) :
Z9 W2
(Note that the z’s correspond to z derivatives and the w’s to y
derivatives.) According to (3.1), we find

1
F(P)= U(ZIZSUJZ) = 5(2125102 + Zfzzwl).

If P € A is any differential polynomial, then we shall denote its
transform by F[P] = P. Similarly, if ¢ : A} — AP is any linear map,
then its transform {b\ : Pyt — PF will be the unique linear map satisfying

$(P) = Fi(P)] for all P € A™. In particular, the transforms of the
total derivatives and Euler operator are well known [15, 13].

Lemma 5. Given P(Z) € A™, we have

(3.2)
i) DjP(Z) = (2} + 22+ +20)P(Z) = ;(Z)P(Z) € AT,
j=1,2,...,m,
(3.3)
) Eﬁ(Z) = n]3(z1, ey Pn1,—21— 22— —2Zp_ 1) EAT L.

(In the second formula (3.3), recall that the z;’s denote the rows of the
matrix Z.)

4. Proof of the decomposition theorem. We begin by presenting
a new proof of the decomposition theorem in the ordinary differential
equation case m = 1 using the standard theory of symmetric polyno-
mials. This will make the partial differential equation case, m > 1, and
the connections with the theory of multi-symmetric polynomials, more
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readily comprehensible. Furthermore, the uniqueness and nonunique-
ness of the decomposition in the two cases will have a clear counterpart
in the different algebraic properties of these two types of symmetric
polynomials. Here we concentrate on the case of constant coefficient
differential polynomials; the extension to variable coefficient differen-
tial polynomials is not hard and proceeds along the same lines as the
ordinary differential equation case discussed in [14].

Given a homogeneous ordinary differential polynomial P = P(u, u,,
Ugg, - - - ) Of degree n, we must prove that we can write P in the form

(4.1) P= iD;Qi = iD;E(Li),
=0 =0

for unique conservative differential polynomials Q; = E(L;), 0 <i < n,
where each L; has degree n + 1. Let us apply the transform to the
above decomposition. The transforms of P and the L; have the form

P = fi(zl,zz, e ,Zn+1),

N

P= ﬁ(z:[,ZQ, cee s 2Zn),

where the z;’s are scalar variables since m = 1. According to Lemma
5,

~ o~

ﬁ;E(Lz) =n(z1+2z22+ -+ zn)iii(zl, 29y ey Zpy—R1 — 22—t — Zp)-
Therefore (4.1) transforms into the following formula

(4.2) ﬁ(zl, cee s Zn) = nZ(zl—l—- . -—}-zn)lfi(zl, ey Zmy 21—t —2Zn)-
i=0

Since the transform is a linear isomorphism, it suffices to prove the
polynomial decomposition formula (4.2).

For the proof of (4.2), we introduce a slight modification of the
(usual) power sum symmetric polynomials. Using superscripts to
denote powers, let

n

Pk(zla---,Zn)Zsz:zf+z§+---+sz

Jj=1
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denote the k" power sum of the n variables z1, ... , z,, and let
n+1
Pr(21s- - s 2n41) = sz =2+t
j=1

be the corresponding power sum in n+ 1 variables. (The extra variable
Zn+1 18 introduced because the Euler operator drops the degree of
differential polynomials by one.) Using (3.3), we define the symmetric
polynomials

(4.3) ar(21, 22+ 2n) = E(Bi) = pi + (=1)*p}
Note in particular g; = 0. We use
— (D,
4.4 = N
(4.4) Q) =Y T g
k=2
as the generating function for the ¢’s. Comparing with (2.8), we find
Q(t) = P(t) — log(1 — p1t);

hence, Q(t) is related to the generating function (2.2) for the elementary
symmetric polynomials according to the formula

(4.5) S(t) = i -exp Q(t).
Let -
expQ(t) =1+ ZBk(qz, e ,qk)tk.
k=2

(The By’s are explicitly given in terms of the Bell polynomials, [10].)
Then, in analogy with (2.6), we deduce relationships of the form

er = Br(q2,.- ,qk) + P1Br-1(q2, .-+ s Q1) + -+

(4.6) -
+plf ZBZ(Q2) +p’f7 k S n,

relating the elementary symmetric polynomials to the polynomials
P1,42,- - - ,qk, and syzygies
0= Bk(q27 s 7qk) +plBk—1(q27 o 7Qk—1) + -

(4.7) _
+pllc 232(q2)+plf7 k>n7



DISSIPATIVE DECOMPOSITION OF P.D.E. 1495

among the higher order ¢’s. A simple induction using these latter
identities will give the key formulae for the higher order powers of
p1 in terms of the ¢’s and the powers of p; up to degree n:

P =CR(a2, - ar) + 210k (g2, - i) + -

(4.8) 2
+p10k(q2,---,q1<;), k>n,

for certain polynomials Cj, whose precise expressions can be deter-
mined, but are not essential for our proof.

Clearly, since the first n power sums generate the ring of symmetric
polynomials P!, the polynomials pi,qs,... ,q, also generate it. Fur-
thermore, if L € P}, is rewritten in terms of the power sums:

~

(49) L(Zl,ZQ,... ,Zn) :¢(ﬁ1,ﬁ2,... ,ﬁN),

(actually, we only need to take N = n+1, but the argument here works
in general) then, using (3.3),

(4.10) E(L) = n®(0, g, ... ,qn).

Conversely, if the differential polynomial P € Al is such that its
transform P € P! can be rewritten in terms of the ¢’s only:

(411) ﬁ - E(Q% O 7qN)7

then P = E(L) is conservative, where we can use the Lagrangian with
transform

~ 1_ . B
(4.12) L= E:(pg,... ,PN)-

To prove (4.2), we begin by re-expressing P in terms of the generators
P1,Q2,--- ,qn, SO that P = U(p1,q2,--- ,qn). We then use Taylor’s
theorem to expand WV in its first argument:

(4.13)
\I,(pla gz, .- 7Qn) = \IIO(an s 7Qn) +p1\111(q27 s aqn)

+p1Us(g2, - 1 @)+ + DY UN(G2, - 5 qn)-
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(The series terminates since ¥ is a polynomial.) We now substitute the
identities (4.8) into the Taylor expansion (4.13) to eliminate the higher
order powers of p;; the result will be an expression of the form

U(p1,q2,--- qn) = Zo(q2,--- ,qan) + P1E1(q2,--- ,qnN)

(4.14) e
+ -+ pPER(g2, - qN).

Now according to the above remarks, (4.9-12), each =;(g2,... ,qn) is
conservative, and we can write

- =~ =~ 1_ .
Zi(g2,...,qn) = E(L;) where L;= E:.j(pg,... ,DN)-

With this definition of the Ej, formula (4.14) coincides with the desired
algebraic decomposition (4.2). This completes the proof of Theorem 1
for constant coefficient ordinary differential polynomials.

The proof of uniqueness can also be effected in the transform space,
using the fact that the power sums pi,go,...,q, are independent. If
we rewrite (4.5) in the form

(4.15) (1= p1t)S(t) = exp Q(2),
this yields the formulae

ej*plej—lsz(qu"aqn)a j:2,...,7’L,
—Pi1€n = Bn+1(q27 s 7qn+1)7
O:Bn+k(q27"' 7qn+k)a k22

An easy induction based on the fact that the leading term of the Bell
polynomial By, is (—1)*qx/k proves that
(4.16)

Gni1 = Ao(g2, -+ 5 qn) + P1AL(G2, - 1 qn) + -+ (1) (n+ 1)p ™,

while
(417) dn+k :Hk(QZ: 7qn)7
for certain functions Ay,...,A,, Hy,H,,..., depending on ¢o, ... , qn,

whose explicit forms are not required for the proof.
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Now, if the decomposition were not unique, we would have an identity
of the form

(4.18) Eo(q2,---,qn)+P1E1(q2,--- ,an)+---+PTEn(g2, ... ,an) = 0.

A slight complication at this point is the fact that the =’s may be
nonzero since the ¢’s are not all algebraically independent. However,
replacing each gy for k > n + 2 by the function Hy, according to (4.17),
(which is essentially an “integration by parts” in the transform space)
we deduce a corresponding identity of the form

(4.19)

FO(q27-" 7Qn+1) +p1F1(Q2,--- 7Qn+1) + - +p?rn(q27 7qn+1) =0.

Uniqueness now amounts to proving that the I'’s must all vanish, since
g2, - ,qn+1 are independent. If this were not the case, using (4.16), we
would derive a nontrivial polynomial identity among the power sums
P1,92,--- ,qn, Since g,+1 gets replaced by a polynomial of degree n + 1
in p;. This contradiction implies that the identity (4.19) is trivial and
hence the decomposition is unique.

Example 6. Consider the quadratic monomial P = uu,,. Applying
the transform to P, we get

Inverting the transform, we find the known decomposition [14],
L, 2 L 3 2 2 L 3
Ulgy = F U Uza +D;E| — Eu = FE(—uuy)+ D;E|( — Eu .

The proof of Theorem 1 in the partial differential equation case,
m > 1, now proceeds along essentially identical lines. First we apply
the transform to the desired decomposition (1.2). We have

P=P(2)ePy, Li=Li(2)ePr,

where Z and Z are, respectively, n X m and (n + 1) X m matrices of
variables. According to Lemma 5,

D'E(L;) = nly(Z)L(Z, -2 — 20 — -+ — 2n),
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cf. (2.10), (3.2), (3.3). Therefore, the decomposition (1.2) transforms
into the following formula

(4.20) P(Z)=n i U(Z)Li(Z, =21 — 22 — -+ — 23).
|1]=0

As in the ordinary differential equation case, define the modified
power sums

(4.21) ar(Z) = Ewi(2)) = p1(Z) + (~)1'11(2).

In particular, ¢y = 0 if |I| = 1. Clearly, since the first n power sums
generate the ring of multi-symmetric polynomials P)"*, the collection
of polynomials [x(Z), 1 < k < m, ¢q;(Z), 2 < |I| < n, also serve
as generators. Furthermore, if L € Py is rewritten in terms of the
power sums:

L(Z) = ®(ps(2)),
then

(4.22) E(L) = n®(q,(2)),
and, conversely, cf. (3.3).

To prove (4.20), we begin by noting that, in analogy with (4.8), we
can write higher order powers of the linear symmetric polynomials in
terms of the powers up to degree n and the polynomials (4.21):

(4.23) k=Y UBk(ps) =Y uCklas), |K|>n
110 j11=0

Given P, we re-express its transform P in terms of the basis polyno-
mials:

ﬁ:\Il((k,qJ), where k = 1,... ,m, 1<|J| < n.

We use Taylor’s theorem to expand V¥ in its first m arguments and then
use (4.23) to substitute for the higher order powers of the [, leading
to an expression of the form

(4.24) ¥(lk,qr) = Z (1Zr(qs) = Z D'Z1(qs).

|1]=0 [1]=0
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‘We therefore define 1
Li(Z) = -E1(ps(2)),

3

so that, according to (4.22), E; = E(f;) This completes the demon-
stration of (4.20) and hence the proof of Theorem 1.

Example 7. Consider the Hessian quadratic differential polynomial
Plu] = tgptyy — uiy € A3,

of a function u(z,y). Applying the transform to P and using the
notation of Example 4, we find

~ 1
P= E(szg + Z3w?) — 21wy 20wy € Py

It is easy to see that P can be expressed most simply in terms of the

power sums as

1

~ 1
P = 5(10111022 —piy) = 6((1119722 —q3),

where

Q11 =pu + i =202 + 2122 + 23),
(4.25) g12 = D12 + p1p2 = 221w + 21W2 + 22w + 220w,
@22 = p2a + P35 = 2(wi + wiwa + w3),

cf. (2.6), (2.7). Then, using (4.9) and (4.10), we find

~ 1 ~_ . ~
P= I—SE(pnpzz — P1a),

where
- 2, .2, .2 - - 9, 92 9
P11 = 21+25+23, P12 = 21W1+22W2+23wWs, P22 = witwytws.

This latter identity is the transform of

(4.26) Uy Uyy — U

1
— E 2
Ty T § (uuzzuyy - uuwy)’
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which gives one of the dissipative decompositions of P.

A second decomposition is a consequence of the basic multi-symmetric
polynomial syzygy (2.13), which implies that we can write the trans-
form of P in the alternative form

1 1 1

18 _ .2 _ 1.2
4p1p22 2p1p2p12 + 4p2p11
1, 1 n 1,
= 4P1Q22 2p1p2<112 4102(111-
Thus,
P = L D2B(n) — 1D.D, B(rs) + ~ D2E(pn1)
BETRE D22 ikt D12 127y Db11)-
This is the transform of
(4.27)
1 1 1
UggUyy — uﬁy = ZD;E(uzuyy) - QDEDyE(quzy) + ZDZE(UQUM)

1 1
= §D§E(—uu§) + D, Dy E(uuguy) + §D§E(—uu§)
Therefore, we can find two distinct decompositions for the Hessian

Ugpplyy — uzy as a consequence of the fundamental syzygy (2.13).

Example 8. There is another type of nonuniqueness, which is
connected with a different type of syzygy among the higher order
power sums. This is related to the failure of the uniqueness proof,
cf. (4.18), which was implemented in the ordinary differential equation
case. Consider the quadratic differential polynomial

Plu] = UpUgyy — Uylyey € A3,
in two independent variables z and y. Applying the transform to P,

we find

~ 1
P = 5212’2(10% + wg) — 5’[1)111]2(2% + Z;) € P22

A simple calculation shows that P can be expressed in terms of the
power sums as

(Pip22 — P3p11) = = (Pige2 — Piqu1),

N
=] =
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cf. (4.25). Thus, using Lemma 5, we find

51 man D25~

P = E{DzE(pZZ) — Dy E(p11)}-
This identity is the transform of the decomposition

1
(4.28) 1
= i{DiE(—uuf}) + DJE(uul)}.

Although the basic syzygy (2.13) plays no role here, nevertheless a
second decomposition can be found. Note that we can also write the
transform of P in the form

1 1

P= 5(;01]3122 *p2p112) = §(p1<1122 *pz@hlz)a
where ) ) ) )
P112 = 21 W1 + 25 Wa, P122 = z1w7 + 22W3,
q112 = P112 — p%pz, q122 = P122 — p1p§-
Thus,
a1~ o~ ~ o~
P= E(DmE(pIZZ) — DyE(p112)),
where
Priz = ziwy + z3ws + 23ws, Pr2a = 210} + 20w3 + zzw3.

This is the transform of the identity

1
UgUgyy — UyUgey = _(DzE(uzuwy) - DyE(U2umy))
(4.29) .
= E(DEE(uwuZ) — DyE(uiuy))

The two distinct decompositions in this case appear as a consequence
of the identity

1

1
(4.30) bipi22 — p2p112 = 51?%1722 - §P§p11
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connecting the (n+1)%* order power sum multi-symmetric polynomials,
which we will call a “syzygy of the second type.” It follows from the
identities (2.11), which, for the particular polynomials p;i2, p1os, are

1 1,
P112 = P1P12 + 5P2P11 — 5P1P2,

2 2
1 1,
P122 = p2p12 + §P1p22 - Eplpz-

The key point is that the degree of this identity (4.30) in the linear
multi-symmetric polynomials p;,ps is 2, which is not greater than
n = 2. In the usual symmetric polynomial case, m = 1, such identities
must be of degree at least n + 1 in p;; see (4.19) and the subsequent
discussion.

5. An algorithm for finding the dissipative decomposition.
Given a symmetric multi-index J = (j1,j2,--- ,ju), where 1 < j. <m,
we define A7 to be the subspace of A™ spanned by all monomials ug
where I = (I4, ..., I,) is such that the symmetric multi-index obtained
by juxtaposition of all the I,’s is the same as J. In other words, the
multi-index J represents the collection of all derivatives appearing in
the entire monomial. For example, u2umuzyyy, uiuyuyy and Ul UgyUyy
are all elements of A7™YY C A3 since there are a total of two derivatives
with respect to x and three derivatives with respect to y in each quartic
monomial. We can find a decomposition for all the basis elements of
A simultaneously.

Note that the total derivative D! corresponding to the multi-index
I maps A7 to AJ! where J,I denotes the symmetric multi-index
obtained by juxtaposing I and J. Therefore, Theorem 1 can be further
refined to give the decomposition

(5.1) AL =" DIEALY),
|I|=0
IcJ

where J\I denotes the multi-index obtained by deleting each entry in
I from J. For example, (zxzyyz)\(zyy) = (zxz). In the ordinary
differential equation case, the sum in (5.1) is direct whereas, as we
have seen, in the partial differential equation case there can be nonzero
dependencies among the summands.
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We can find the dissipative decompositions of the standard monomial
basis elements of A’ by using the following algorithm. The first is to
find canonical basis elements for the spaces F (Ai\+11) Unfortunately,
the problem of determining an explicit basis for this space is not
so straightforward. A naive approach is just to take the monomial
basis for Ai\+11 and determine which of the associated Euler-Lagrange
expressions are linearly independent. Note that two Lagrangians give
the same FEuler-Lagrange expressions if and only if they differ by a
divergence. Using this fact, one can considerably pare down the set
of possible monomials in Ai}rll that need to be considered. However,
an explicit general form for a basis of E (Ai\fl) appears to be a rather
difficult open problem.

Lemma 9. A basis for the space of the conservative differential
polynomials in A} can be chosen from among the set of differential
polynomials {E(uz)}, where I = (Iy,... ,I,+1) ranges over all multi-
multi-indices satisfying |I;| < |I2| < -+- < |Int1l|, and either |I,,| =
[nt1l| or [In—1] = [In| = [In4+1] — 1.

The proof of this result rests on an integration by parts argument. In
other words, Lemma 9 states that to find a complete set of independent
Euler-Lagrange expressions, we need only look at Lagrangians in which
either the highest order derivative in each monomial occurs at least
quadratically or if it is linear then the next highest order derivatives
are at least quadratic. In the ordinary differential equation case, the
latter possibility never arises since these terms can always be reduced
further; however, the nontrivial Lagrangian uﬁuyy, which is not a
divergence, gives an example of this case in the partial differential
equation situation. For example, even though there are 19 elements
in the space {E(A3;""""Y)}, a basis for E(A3"""Y) C A;"*YYY can be
found from among the Euler-Lagrange expressions

However, we find that the linear combination

3
UlUgpzUyyy — UlgpyUgyy T Ugy UgyUyy — Ugy
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is a total divergence. Therefore, our basis will be provided by the three
differential polynomials

E(utzzoUyyy) = —UszoUyyy — 3Usalayyy — SUasUaayyy
— JUyyUzgry — SUyUzrryy — 2Ulzzoyyy
E(Ugotoylyy) = Uszalyyy + 2UszUeyyy + SayyUsay

3y
E(uzy) = BUpyyUzay + OUzyUzzyy-

In order to determine which of the D' E (Ai\+11) to use in the decompo-
sition, we use the existing syzygies among them. Once we have deter-
mined canonical basis elements for the relevant subspaces D! E (Ai\+11)
appearing in the decomposition formula (5.1), we can rewrite any con-
stant coefficient differential polynomial P in A; in terms of these basis
elements. Let M,,v =1,...,r, denote the monomial basis of Ai. Fur-
ther, let P,, p = 1,...,r, denote the basis elements formed from the
decomposition, i.e., the differential polynomials D! E(uk), where the
uk are the basis elements of Ai}fl given by the algorithm after Lemma
9. By inspection, we then determine the coefficient matrix C' = (cy0)
for the basis P, in terms of the monomial basis M,,, writing

P, = i CuvM,.
v=1

The inverse matrix B = C'~!, which exists because we assume that we
have a basis, will then provide the dissipative decomposition of all the
basis monomials in A

M, = XT: boy -
p=1

Example 10. Find the Euler decomposition for the basis elements
of A5¥Y: According to (5.1), we have

A = BE(A5™Y) + D,E(A3YY) + DyE(A3™)

5.2
(52) + DZE(AYY) + D, DyE(A5Y) + DIE(A5).
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The monomial basis for A5°YY is given by
— — 22 —
My = Ugzplyy, My, = Uz, M3 = Uugtzyy,
My = UyUggy, M5 = Ulggyy.

In order to determine which of the terms in the right hand side of (5.2)
could be used in the decomposition, we refer back to Examples 7 and
8. There we deduced the identities

2
E gu(umuyy—uzy) :DiE(—uuZ)—i—DszE@uuzuy)+DZE(—uu§),

and
D, E(uzu,) — DyE(ujuy) = —D}E(uu) + D E(uu),

cf. (4.26-29). These two identities tell us that we can omit the
summands D, D, E(A3¥), D}E(A}Y), corresponding to the terms
DDy E(uuzuy), D;E(uu2), in the decomposition (5.2). Therefore,
the relevant terms for the decomposition are

(5.3) E(A3™Y) + D,E(A3") + D,E(A3") + DZE(AY).

Canonical basis elements for the subspaces in (5.3) are

E(A3™Y) 1 P = E(uugptyy) = 3Ugpplyy + 2UzUsyy
+ 2Uy Uy + 2UlUggyy

P, = E(uuiy) = 3u§y + 2UgUgyy + 2UyUgay + 2UUgayy

D,E(A3YY): P3= DzE(uIUZ) =—2UzgpUyy f4uiy — 22Uy Ugyy — AUy Ug gy

DyE(A5™): Py = DyE(ujuy) = —2uzgtyy — 4ul,

— dUpUpyy — 2UyUzay

2 LAY — N2 2\ 2
DyE(A3Y) 1 Ps = DyE(uuy) = —2ugzzuyy — 2ug,
— AUy Uy — 2Uy Uy — 2Ulgayy

Therefore, the coefficient matrix is
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and T2 o1 2
9 9 3 73
4 5 1 _2
9 9 3 73
_ =1 _]15 4 1 1
B=C"= 9 "9 "6 3 -1
5 4 2 5 4
9 "9 "3 6
4 5 1 1 1
9 9 3 76 2

We thus find a dissipative decomposition for the basis monomials of
A3 to be

Uggpllyy = E(guumuyy + guuﬁy) + DzE(éuzuz)
+ DyE(—guiuy) + DiE(uuz)

uiy = E(guumuyy + guuiy) + DwE(%uwu?J)
+ DyE(—guiuy) + DzE(uuZ)

4 1
UgUgyy = E(—guumuyy — §uuiy) + DzE(—guzUZ)

1
+ DyE(guiuy) + DgE(fuuZ)

4 2
UyUgazy = E(——Ulgytyy — §uuiy) + DIE(f—uzuz)

9 3
)
+ DyE(Euiuy) + DgE(fuuZ)
4 5 1,
Ulgey = E(§uumuyy + §uuzy) + DzE(guzuy)
1 1
+ DyE(—Euiuy) + DiE(guuz)

Tables of constant coefficient dissipative decompositions for basis mono-
mials for m = 2, n = 2,3, and |J| < 4 appear below. We have omit-
ted the ordinary differential monomials (i.e., those that only involve z
derivatives or only involve y derivatives) since their decompositions can
be found in [14]. Also, to get the remaining terms, just interchange x
and y in the given decompositions; e.g., the zyy cases are found from
the given xzy cases. The computations were done using the symbolic
manipulation language MATHEMATICA. Programs and further tables
are available from the authors upon request.
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TABLE 1. Dissipative decompositions: m =2, n =2

Ullgy = B(—uuguy) + Dy Dy E(—gu®)
uguy = E(uuzuy) + Dy DyE(3u®)

Ulggy = E(1 2uy) + D, E(— uuzuy) +DyE
UyUze = E(— 1u?uy) + D, E'( Ulgly) + Dy E

T

6
Uy Uy —E(—% 2u,) + D, E(— 3uuzuy) + D, E(

gus)
suug)
1
3u

uz)

(_
(_

Wlgzry = E(Ulggtszy) + D E(4u uy) + D E(—ﬁ u3)
+D2E(uuguy)
Uylgze = B(—UlgzUqy) + DZE(f%uiuy) + DyE(g ul)
+D2E(—uuguy)
UgUgzy = B(—Ulpglay) + D E’(1 ud) + DQE(—uuzuy)
UgaUzy = E(UWllgeley) + Dy E(—3 1 u3) + D2E(uuguy)

UggUyy = E( Ul g Uy + guu )+ D E( )
+DyE(-2 uy) + D2E(uu3)
uiy:E(guumuyy—i— Suu? )+D E( )

+DyE(—2 uy) + D2E(uu)
UgUgyy = B (—Sutlgpuyy — guu )+D E(—tugu ul)

+D yE(3uZuy) + DZE(—uu?)
UyUgpy = B(-3 o Ulpg Uy — g )+D E(f—uz Z)

+D,B(3uu,) + D2E(—ui?)
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TABLE 2. Dissipative decompositions: m =2, n = 3.

&

gy = E(—u*uzuy) + Do Dy E(—ut)

zzy U gy = E(uuluy) + DiDyE(1—12u4)
Uy Uy = B(—3uuluy) + Dy E(—3u?u?) + D2DyE(—5u?)
UUpUgy = E(—uvuuy) + Dy B(—3uuzuy) + DgDyE(—l—gu‘l)

uiuy = E(uuuy) + Dy E(uugpuy) + DyE(u?u?) + D2DyE(Lu?)

zTTY U Ugrry = B(utuggtgy — 172 wduy) + D E(4uu uy) + D E( u3)
+D2E( w?uguy) + Dy D E(1 2 2)

UlyUggy = BE(-1 u UggUgy + 4uwuy) +D.E(— 4uu 2uy) + D E'(i2 3)
+D2E(—3u*uyuy) + Dy Dy E(—u?u?)

UUgpUgpy = u? UggUgy + Ludu + uu Uy ) + Uy,
v=E(-3 y + usty) + Do B(juuiuy) + DyB(—j5uu)
+D2E(—YuPuyuy) + Dy Dy E(2u?u?)

Uz llgy = B2l ugptizy — Suduy) + Dy E(—Yuuluy) + DyE(—Suul)
+D2E(uuyuy) + Dy Dy E(3u?u?)

Ugly Uy = B(—j5uluy) + Dy B(Guuguy) + Dy B(— juu)
+D2E(3u?uguy) + DD E(—lu2u2)

uzumy—E(f12 usuy) + Dy E(— uu uy)—i—D E( ul)
+D2E(—Zu uztly) + Dy Dy E(Su?u?)
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TABLE 2. (Continued)

Uy gyy = E(u? iy + %uuxuyuzy + 12 u? y) + D, E( Uy U 5)
+Dy E(fuu uy) +D2E(& u?u?)
+DZE( u2) + DD E'( uuguy)

wul

+ D, E(— tuugu?)

— UlgUyUgy — 12 uZ y) y

+D, E(juuluy) +D2E(—ﬁu2u§)
+D2E(—{5uu?) + Dy Dy E(—3u’uguy)

1
Uy Uy = E(—5u v

Uy tyy = E(3u?u2 +3uu$uyuwy+ Huiul) + D E(—fuugul)

+DyE(— tuuiuy) + D2E(Z sutul)

—i—DZE(12 u2) + Dy Dy E(— 3uuguy)

u?u? uuzuyuzy 112 u? y)—i—D E( UL U 5)

+DyE(—tuwuuy,) + D2E(—1 uzu?g)
+D2E(—ﬁu u2) + D, D E( 3uuguy)

_ 1
UlglUgyy = E(—35 v

uu?, = B(tu?u?, — Su2u) + Do E(—tuugu?) + Dy B(—uuluy)
+D2E(—5v’u )+D2E( Hulu?)

+D,D,E(3u*u,u,)

uium =E(— 254u2u 2uuwuyuwy iu u )+D E( UL U 2)
+Dy E(—tuuuy) +D2E(fiu2u§)

+D2E(—- Zu2u2) + DDy E(u?uzuy)

= B(3uu? 2p01,2,2
UpUy Uy = E(57uug, + utytyisy, + 4uzuy) + DL E(zuuy)

+D2E(fu*ul) + Do Dy E(—ju’ugu,)

wuyy = B(—Zu*ul, — 2utguytyy — SuZul) + Dy B(—juugul)
+DyE(zuu uy) +D2E(—Zu2u§)
+D2E(—ju*u2) + DDy E(u’ugu,)
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