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The purpose of this paper is to describe explicitly in a characteristic-free setting 
certain maps between skew Weyl modules for the general linear group. As an 
application, we indicate briefly how our generalized Pieri maps are utilized to 
obtain new results concerning nonzero homomorphisms between certain skew Weyl 
modules over fields of positive characteristics. In particular, we obtain a new proof 
of the special case of the Carter-Payne theorem considered in this paper. c: 1992 

Academic Press. Inc. 

Let V be a finite dimensional vector space over the field of rational num- 
bers and let 2 be a partition. By Kl, V we denote the Weyl module for the 
general linear group GL( V) corresponding to 2. The representation Kj, V is 
an irreducible polynomial representation of GL( V). Consider the tensor 
product V@ KA V (over the rationals). Pieri’s formula describes the decom- 
position of V@ K;, V into irreducible GL( V) modules. We have 

V@K,V=c Kj.,V, 

where I’ runs over all partitions obtained by adding one box to the 
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diagram of i. Explicit maps of the type Cpj,: V@ K, V -+ K,’ V were first 
constructed by the second-named author in [0,, Sect. 51. These maps 
were important in the study of “differential hyperforms” (see also [O,, 
Sect. 61). Another application of these maps appears in [D], where the 
invariant ideals of the symmetric algebra S( V@ A*V) are studied. The 
purpose of this paper is to show that the Pieri maps cpj, above can be 
extended in a characteristic-free way to obtain explicit maps between 
certain skew Weyl modules (See Theorem 1 and its corollary of Section 2). 
The usefulness of our construction is demonstrated in the last section of 
this paper, where new results concerning nonzero homomorphisms between 
certain skew Weyl modules over fields of positive characteristic are 
obtained (see Theorem 10 of Section 4). For simplicity our discussion there 
is restricted to a special case. As a by-product of our considerations we 
obtain a new proof of the corresponding special case of the Carter-Payne 
theorem [CP]. The general case will appear elsewhere [M]. 

1. NOTATION AND PRELIMINARIES 

Let R be a commutative ring with identity and let F be a free R module 
of finite rank. The exterior algebra and the divided power algebra of F will 
be denoted by AF and DF, respectively. If r* = (a,, . . . . a,) is any sequence of 
nonnegative integers we denote the tensor product (over R) ,4”lF@ 
n “>F@ . @ /i “$F of exterior powers of F by n(a). Likewise we put D(a) = 
D,,F@ .. @ D,F. If 3./p is a skew partition, i.e., 1, and p are partitions 
n=(it,>, ... aj,,>,O), p=(p,a ... 2~~20) such that A,>p, for i= 
1 > ..., k, we denote by l/ji the transpose skew partition of 21~. In [ABW] 
the Weyl module, K,;,F, for the general linear group CL(F) was defined as 
the image of a particular natural map 

We will need two results from [ABW] concerning the modules K,,,F: 
(a) the standard basis theorem for K,,,F and (b) the description of K,,,F 
in terms of generators and relations. (See [ABW, Theorem 11.3.161.) We 
state these facts. 

(A) Let S be an ordered basis for F. The module K;./, is free over R with 
basis given by 

{ d>.:,( X,) ) T is costandard tableau in S of shape A/p}, 

where X, is the element of 0(1./p) corresponding to T. 
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Before we state the second fact we establish some notation. If (a,, . . . . uk) 
is any sequence of nonnegative integers we define for i < j and t 2 0 a 
natural map 

a;/?: D(a,, . ..) Uk) --) D(a, ) . ..) aj - t, . ..) a, + t, . . . . Uk) 

as the composition of t-fold diagonalization on the ith factor 

D(a, > . ..> Uk) -+ D(U,) . ..) aj - t, t, . ..) Uk) 

and multiplication of D,F with the jth factor of D(a,, . . . . a,), 

D(a 1 , ..., a; - t, t, . . . . uj, . . . . uk) + D(u, , . . . . a; - t, . . . . ui + t, . . . . uk). 

Similarly, if i > j and t 2 0, we define a natural map 

a;): D(u,, . . . . uk) ---f D(u,, . . . . a, + t, . . . . ui- t, . . . . uk) 

as the composition of the indicated diagonalization and multiplication. For 
t = 1 we write a:‘= crV. Finally, if i=j we put oji= identity map. Now if 
A/p = (A, - p,, . . . . & - A,) is a skew partition, define a map 

where i ranges from 1 to k - 1 and I ranges from 0 to Ai+ , - ,u; - 1, by 
putting 

(B) There is an natural isomorphism Coker II 2Ilr = K,,,,F 

2. GENERALIZED PIERI MAPS 

Let a and ~(4 r) be two skew partitions related as follows: the diagram 
of cc(d, r) is obtained from the diagram of a by subtracting d boxes from the 
left of the bottom row of c( and adding these to the right of the rth row of 
a. Thus if o:= (;L1, . . . . A,)/(p,, . . . . ,u& then cr(d, r) = (A,, . . . . A,+ d, . . . . A,)/ 
(p,, . . . . pLk + d). Note that since a and cc(d, r) are skew partitions we have 
,uk-, >pLk+d and A,-, >A1,+d. We always assume rck. 
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EXAMPLE. If 

d= 1, and r=2, then 

For r = 2 we cannot take d > 1 in this example. 

Let k denote the number of rows of c( and assume d = 1. Assuming a( 1, r) 
is a skew partition we want to define a natural map 

which will induce a map of the corresponding Weyl modules. This will 
include the Pieri maps as a special case; see Remark 1 below. If J= 
(r < j, . < j, < k) is an ordered (q + 2)-tuple of positive integers define the 
map 

o,:D(a ,,..., uk)-+D(a ,,..., a,+1 ,..., ak-1) 

as the composition 

where the maps rsrr were defined in Section 1. Also for J as above we define 
an integer cJ (associated to a) as a product of hook lengths given by the 
formula 

where i runs over all r + 1, r + 2, . . . . k such that i 4 J and l; # p, (Perhaps a 
remark on the condition li# pi is needed here. Any skew Weyl module 

481fl4&1-6 
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Kj.,P F can be represented by L/p with ii - pi > 0, in which case our condi- 
tion is not needed.) Now put 

where J runs over all sequences of the form (r < j, < . . < j, < k). 

We can now state our main result, where we write (Pi for cp%,,. 

THEOREM 1. Let F be a free module over the commutative ring R and let 
a be a skew partition with k rows, where k < rank F. The map qr: D(a) + 
D(cr( 1, r)) induces a map 

If R is the ring of integers, @5a is nonzero, and hence if R is a field of charac- 
teristic p > 0, the map (l/6) 4, is nonzero, where 6 is a suitable power of p. 

Before we start the proof we have an example and two remarks. 

EXAMPLE. Assume r = 1 in the definition of cp*. For k = 2 we have 

while for k = 3 

q, = (Iz, -‘b + 2, O31 + O32O21 

and for k=4 

cp* = (%, - %2 + 2)(;1, - A3 + 3) c74] + (%, - %2 + 2) 043631 

+ (‘6 - A3 + 3, O42O21 + 643032021. 

Remarks. 1. If a=(L,+l,&+l,..., L,-,+l,l)/(lk~l) we have 
K,F= F@ K,F and K,(,,,, F= K,.F, where A’= (A,, . . . . 1,+ 1, . . . . &-i) and 
thus we obtain the Pieri maps 

F@ K,F-+ K,.F. 

If, moreover, R is a field of characteristic zero our maps FO K,F+ Ki., F 
are integer multiples of the maps constructed in [0,, Sect. 53, the integer 
being 

k-l 

n (%,-%,+j-s+ l), 
j=r+l 

which serves to clear the denominators. 
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2. The assumption on the rank of F in the statement of the theorem 
is used only to ensure that the corresponding Weyl modules are nonzero, 
and we note that this is the weakest possible condition on rank F by (A) 
of Section 1. 

We use the notation [a$‘, a:!,] := ~~‘a~~ - a!$~$) for the commutator 
of the maps o!S’ and G (f’. 
following very ‘easy lemza. 

For the proof of the theorem we will need the 

LEMMA 2. Let (a,, . . . . ak) he a sequence of positive integers. For 
x=x,@ ... @xkED(a,, . . . . a,), i# j, and m#n we have 

i 

(a,-a,--+ l)a~;“(x) if i=nandj=m 

CfJo, ~:;l(x, = 
c7m,cT;, l’(x) if i=n andj#m 
-a&J;, ‘J(x) if i#nandj=m 
0 otherwise. 

Proof. (1) For the first case (i = n and j = m) it is enough to check the 
desired equality for i = n = 1, j = m = 2. Now, if we denote multiplication in 
DF by juxtaposition and if the image of x2 E D(a,) under the diagonaliza- 
tion D(az) + D( t, a, - t) is denoted by C, x,,(t) 0 xzl(a2 - t)‘, we have 

Thus 

wJ::‘b, = 1 x,/d aI - 1) -h(t) 0 x18(1 )’ da2 - t)’ 
2.B 

+(a,-t++)Cx,x,,(t-l)0xZl(a2-t+l)’, 
2 

where the coefficient a2 - t + 1 comes from multiplication in DF. Likewise 
we have 

4344 = a1 c x,x,,(t-l)@x,,(a,-ttl) 

+ C xl&al - 1) xZa(t)OxIB(l) xzor(a2- t)‘. 
%B 

Hence CO,*, CJ$](X) = (a2 - a, - t + 1) gyIP l’(x), as desired. 
(2) (3), (4). The proofs are similar and thus omitted. 
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Proof of Theorem 1. 

We first prove the theorem for r = 1. The general case will follow easily 
from this as we will see later. Recall from (B) of Section 1 that the relations 
of K,F are indexed by i= 1, 2, . . . . k - 1. Consider the relation 

for O<l<Ai+, --pi. We distinguish two cases. 

Case I. i < k - 1. Define a map $, on the relations 

$1: D(Si, -/Al, ...) %,-pi+ %i+ 1 -/lj+ 1 - 1% 1, ..-) ;l/+ -/lk) 

-+ D(i, + 1 -/A,, %z - ,U*, . . . . E., - /Ai 

+&+1 -/L;+,-f-1,1+1,..., A,-/L,-1) 

where the sum ranges over all J’ = ( 1 4 j, < . < j, < k) that contain both 
i and i + 1, and J;, J; are defined as follows: J; = (1 < j, < . . . < i) and 
J$=(i+l< ... < j, < k). (Note J; u J; = J’ and J’, n J; = 4.) The coef- 
ficients cJz were defined earlier in this section. We remark that for i= 1 the 
target of $, is D(A, -p, +&-I, I+ 1, A3 -p3, . . . . A, - A,). In this case 
g/i =Oll, which is the identity map by definition. 

Note that the range of Ic/$ is a relation for K,(,.,,F except when I= 
ai+, -pLi-- 1. But in this case rl/, =O. Thus we consider the diagram 

D(i,+l--p ,,..., A,-pi+&+,--p,+,-I,I ,..., A,-p,-1) & D(a(1, 1)) 
/” 

+ 

/ 

h 

D(1,+1--,,...,1,-~,+~,+,--i+,-~-l,~+l,...,~k--~-~) 

where a = ~j,?;+~+:-P~+I-” and b=a~4+‘-LG+I-l-l) 
jr+ I 

Note that the maps a and b above are the appropriate components of the 
maps 0, and q ac1.1) that were considered in (B) of Section 1. We claim 
that our diagram commutes, i.e., [pn,, a] = brl/,. Indeed, let J be a sequence 
(1 < . I < k). Four cases need to be considered. 
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1. iEJandi+lEJ. Wewrite 

J=J’=(l<j,< . . . <j,<i<i+l<j,+,< ... <j,<k). 

2. i$Jand i+lgJ. We write 

J=J”=(l<j,< . . . <j,<i+l<j,+,< . ..<j.<k) 

3. iEJand i+l$J. We write 

J=J”‘=(l<j,< ... <js<i<js+,< . ..<j.<k). 

4. i$Jandi+l#J. Wewrite 

J=(l<j,< ... <j.,<js+,< ... <j,<k). 

Now in each case we compute and apply the lemma. 

1. [o,~,a]=ukj~...uj,+,i+1[ui+,i,ui~;+~~~~+~-’~]”U~...aj,~ 

=(3.-p.-/) ‘I I . . I’ 
OkJq ‘O,,+,r+l rr+l 

a!?‘+l-~“+l-‘~“a,...oj,,. 

2. [o,,,, ~l=~kj~..~~j~+,i+~C~;+;~~,~i;;~ (A+l-Pr+l-‘-l)] uj>j.,m, “‘“ill, 

=~k,r.“%+~~+ldrj~~ii+I 
(&+l-Pi+l-I)uj5,,_, “‘Uj,,. 

3. [a,**?, a] =bk,~“‘~js+ljr+,[bjs+,i, a$-“‘+‘-‘)] a,-i,‘..~l,l 

= -(Tkj~“‘~,lr+~j,+~%+~i+l~ii+l 
(~l+l-~l+l-~-‘)q ;.. (J ,,,’ 

4. [o,, a] = 0. 

Thus 

[CJ,UJ, + CJ”UJ” + CJ”‘UJ’” + CJUJ, a] 

= {(A, - pi - I) CJ’ + CJ” - cy) 

xukj,...~ji,+,i+,d~~~+~-~~+~-‘-~~uij,...~j,I. 

From the definition of the integers cJ we have 

cJ., = (A, - A, + i - 1) cJ. 

(1) 

and 

By substituting in (1) and summing over all sequences J of the type 
considered in case 4 and recalling the definition of the map rl/= we see that 
[(P=, a] = bll/, and hence our diagram commutes. This finishes case I. 
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Case II. i = k - 1. We need to define a different map on the relations in 
this case but the idea is similar. Consider the relation D(L, - p,, . . . . Ak ~ 1 - 
,LL~-,++~-~~--I,I) for K,F, where O<I<2,-pk-,. Note that both 
D(A,+l-P, ,..., ~k-I-~~-,+/Ik-~k-I,I-l) and D(/z,+l-p ,,..., 
A,-, --pk-, +A,-,uk-I- 1, 1) are relations for K,(,,,,F. (If in the first of 
these Z=O, then this relation is zero.) 

Define a map 

by setting 

where J’ ranges over all sequences of the form (1 < j, < . .. <k - 1 <k) 
and J; = J’ - {k}. We claim that the diagram 

commutes. Here a’ and 6’ are the appropriate components of the maps 
0, and q rcl,l) considered in (B) of Section 1, i.e., a’= ai’L;p-‘) and 
b’ = a?!;?-‘- I). To prove the claim let J= (1 < ... <k). Two cases need 
to be considered. 

1. k-1EJ. We write J=J’=(l<j,< ... <j,<k-lck). 

2. k-l#J. We write J=(l<j,< ... <j,(k). 

Again using the lemma we have 

1. [a,,, u’]=(~k~1-~Lk-1-1)6~~~4;~-I~I)~k~,jy...~j*l. 

2. [a,,, (f] =afprlp-l-l) 
flk-ljq..‘~j,l. 

Thus 

= {@k-l -pk-1 
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From the definition of the coefficients cJ, 

Substituting in (2) and summing over all J’ of the type considered in case 1 
we have [Iv,,, a’] = b’$l, and this concludes the proof of case II. 

So far we have proved that the map cpz: D(a) + D(a( 1, 1)) induces a 
map of skew Weyl modules K,F + K,,,. ,,F. Now consider the map 

10 ... @ 1 @(ps: D(a) -+D(a(l, r)), 

which is the identity on the first r - 1 factors of D(a) and (Pi, where /I is 
the skew shape (A, - pr, . . . . A, - pk), on the other factors. It follows easily 
that this map induces a map 

Indeed, by the previous situation (r = 1) we need only consider relations 
coming from the first r - 1 rows of D(a) (i.e., i= 1, 2, . . . . r - 1). For 
i = 1, 2, . . . . r - 2 the map on the relations is given by 

10 .‘. ~l~rps:D(~,-~,,,...,~i-~i+~i+l-~i+l 

- I, I, . ..) 2, - pr, . ..) Ak - &) 

- I, 1, . ..) 1, + 1 - pL,, . ..) I, - 1 - Pk). 

Finally for i = r - 1 the map on the relations is given by 

10 . ..OIOcPa.D(I,-~,,,...,d,-,-~,-, 

+bpr-l, A..., A-PI,) 

--* w4 - Pl, ..., L I -/L, 

+&-/&-/,I+1 )...) 2,-l-/&). 

Thus we have proved that the map ‘pI: D(a) + D(a( 1, r)) induces a map, 
Gm: K,F+K .cl,,jF. Now we will show that over the integers the map 4, is 
nonzero. Consider the tableau T of shape a whose entries in the ith row are 
all equal to i. Let I = (r, k) and let XT~ D(a) be the element corresponding 
to T. Then 

CPAX,) = CIO,(XT) + c CJOJ(XT). 
Jfl 
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Now note: (a) every 0,(X,) is row costandard, i.e., weakly increasing 
along the rows; (b) for every .Z#Z, 0,(X,) is lexicographically strictly 
smaller than 0,(X,); and (c) 0,(X,) is costandard, i.e., a basis element of 
K .(,,,)F (see (A) of Section 1). These observations together with the fact 
that the straightening law decreases the lexicographic order of row 
costandard tableaux (see [ABW, Lemma 11.3.151) implies that 4, #O 
when the ground ring, R, is the ring of integers. This concludes the proof 
of the theorem. 

COROLLARY 3. The composition of maps 

D(a) 5 D(a( 1, r)) ‘Pu’l,r)+ D(c42, r)) - . . - D(cr(d, r)) 

induces a map Ka F -+ KarCd,?, F which over the integers is nonzero. 

Proof: To show that the induced map K, F-+ K+,rj F is nonzero over 
the integers one argues as in the proof of the theorem. 

3. COMMUTATIVITY OF MAPS 

Let TV be a skew partition with at least two boxes in the last row. Assume 

P=a(l, r), 8’ = 41, $1, and Y = B(L s)= B’(1, r) 

are also skew partitions. The preceding maps give two distinct ways of 
mapping K,F to K,F, according to the diagram 

&, r K,F - KF P 
4h.s 

I - I 
6% 

K .F B rptt’,t K,F 

and we are interested in whether the diagram commutes. 

THEOREM 4. Suppose LY is a skew partition with at least two boxes in the 
last row. Assume p=a(l, r), /I’= (1, s) and y =p(l, s)=fi’(l, r) are also 
skew partitions. Then the diagram (*) commutes, i.e., 

4fl.*Qa,r = @‘8’,r@cr,s. (**I 

This commutativity is intimately related to the general definition of a 
“hypercomplex” introduced in [0, , O,], significantly generalizing the 
Koszul and deRham complexes. 
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To prove Theorem 4, we begin by slightly generalizing the maps intro- 
duced in Section 2. Let Z= (i, < i, < . . . < iP) be an ordered p-tuple of 
positive integers. For .Z = (j, <j, < . . . <j,) an ordered q-tuple of positive 
integers, we say .Z< Z if all the integers in J are contained in Z, and the first 
and last entries agree: i, = j, , i,, = jy . In this case, given c = (c,, . . . . cN) E 2 N, 
where N 3 iP, define cJ = JJ c,, where the product is over all i E Z with i $ J. 
Define the map 

generalizing the Pieri map of Section 2. Note that v,(c) does not actually 
depend on c,, or tip. The following two lemmas are easily proved using 
Lemma 2. 

LEMMA 5. Let j < k < i, < . . . < iP be positive integers. Then 

(Byklwemean the (p+l)-tuple (k<i,< ... <i,).) 

LEMMA 6. Let j < k < i, < . . . < i, be positive integers. Then 

(Pjkl(c) = CLqjI(C) + Vkltclak,. 

In fact, the identity in Lemma 6 in a special case of the more general 
identity 

(PJdc) = ck(PJ,(c) + (PdC) (PJktC) 

valid for any j, < .. . <j,, <k < i, < .. < iP. However, we use only the 
elementary case here. 

The key identity required to prove the commutativity theorem is the 
following. 

LEMMA 7. Letj<kci,< . . . c i, be positive integers, c E Z N an N-tuple 
of integers with N 3 iP, and XE Z any integer. Define c+x= 
(cl +x, c,+x, . . . . c,+x). Then 

xCVjl(c), (PkltC + x)l = cPjItc + x) (PkltC) - (ojICc) (P!cI(~ + x). 

COROLLARY 8. For j < i, -c . . < i,, and any c E Z N, x E Z, 

CVjl(c)3 rPjltc + x)l =O, 
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Proof Let 0(x) = [qjpi,(c), ~~,(c+x)]. Setting j= k in the lemma, we 
find 

x8(x) = 4(x) 

which, as x is arbitrary, implies e(x) = 0. 

Proof of Lemma 7. The identity is trivial if Z= (iI) is a singleton. We 
prove it in general by induction on p, the number of elements of Z. Thus, 
assuming the identity holds for any p-tuple Z (and hence the corollary), 
the goal is to prove it for a (p + 1)-tuple I’ = (I, I), where 
j<kcl-ci,< .‘. <i,. Expanding the left hand side using Lemmas 5 
and 6, we find 

XC~j,~(C)~ (PkI,(C + XII 

= xCc,cp,,(c) + cp,,(cb,,-> (c,+ xl (Pk,(C + x) + cp,I(C + Xbkl 

= XC,(CI + X)CVjA4? 9kAC + XII + x(c,+ x)[cp,(c), (P/AC + x)10/j 

f xc,[~~C(c)~ ‘pdc + x)l O/k + x[q,,(c)~ ~Utc + x)l Ooa/k 

+ x(4)ll(c) qjpi,tc +x) g/k - ~l,tc + x, (PkltCbO). 

On the other hand, the right hand side expands to 

qj/I(c+X) (Pkll(C)-(Pjll(C) (Pkll(C+X) 

= (tcl+ x) qj,tc + x) + q,Itc +x)ao)(c,~k,(c) + ~ll(c)a,k) 

- (c,cP,,(c) + V,,(c)o~)((c, + X) ‘?kltC + x, + ‘PUtc + x)dlk) 

=c~(c~+x)(Vj~(c+X) (Pkl(C)-qjI(C) (PkI(C+X)) 

+ tc,+ x)(q,I(c + x) (Pk,tC) - qdc) (Pk,tC + x))“Q 

+c,(‘J’j,(c+X) V~~~(c)-Vj,il(c) CP/I(C+X))O,~ 

+x(qj,(c+X) CPU(C) a/k-qlI(c+x) qkl(c)a(i) 

+ (cP,~(c+x) qj,i,(c) a/k-qlI(c) ‘?j,(c+x)o,). 

Comparing these two expressions, we see that the first three sets of terms 
are equal owing to the induction hypothesis for the indices (j, k, I), 
(k, I, I), and (j, 1, I) respectively. The fourth commutator on the left hand 
side vanishes owing to the corollary. Finally, after one cancellation, the 
remaining terms reproduce another copy of the identity for the indices 
(j, 1, I). Thus the induction step is complete and the identity proved. 

Let e, = (0, . . . 0, 1, 0, ..,) denote the ith basis vector of Z”, so by c + e, we 
mean the p-tuple of integers obtained by increasing the ith element of c 
by 1. The commutativity theorem is a special case of the following result. 
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PROPOSITION 9. Let j, < . . . <j, < i, < .. . < i, be positive integers. 
Then, for any c E Zp + y, x E Z, 

provided ci, = 0. 

ProoJ: We begin with the case J= (j) is a singleton. For simplicity, we 
replace I by (I, I), so j < 1< i, < . . < i,. We need to show 

0 = CPU(C) ‘P,I,(~ + x + ef) - cpj,Ac + xl cpll(c) 

= cPll(c)((c,+ x+ l) cPjltc + x, + ‘PIItc + x)b/j) 

- ((Cl + x) CpjAC + x) + (P,I(C + x)0(j) CPU(C) 

= (CI + XKcpll(C), cpj,(C + x)1 

+ (cP,,(c) cPjltc + x, - ‘Plltc + x, cPjl(c)) + CPll(c)t cPll(c + x)l O/j. 

Here, the second equality follows since neither cpjl(c) nor ‘pi,(c) depend 
explicitly on the lth entry of c. Thus, assuming c,= 0, the result follows 
using Lemma 7 and Corollary 8. The general identity follows by an easy 
induction on the number of entries in J using Lemma 6. 

To see that Proposition 9 includes the Commutativity Theorem, we 
assumer<s<k,andsetI=(s,s+l,..., k),J=(r,r+l,..., s-l).Define 

and 

Then note that 

ci=ls--li+i-s+ 1, i#s, 

c, = 0, 

x = I, - I., + s - r. 

c;+x=%-E,,+i-r+ 1, i # s. 

We find, then, that 

cp CL,, = ‘PAC +x + es), cpx,, = CPACL 

cPa,s = CpAch (Pa,,r = VJ,(C + XL 

since /I’ has one extra box in the sth row. The theorem follows. 

Remark, A different proof can be constructed in the special case 

a=(R, +2, . ..) A,-, +2, 2)/(2k-‘) 

corresponding to the Pieri formula for K,F= D, F@ KIF. According to the 
Littlewood-Richardson rule, the irreducible Weyl module K, F appears 
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exactly once in the decomposition of K,F into irreducible components, 
except in the case r = s + 1, R, = ;1,. For this particular case, there are no 
nonzero natural maps from K,F to K,,F, so the composite map must 
be zero, and the theorem is trivial. Otherwise, there is, up to constant 
multiple, only one natural map, so the two composite maps in the formula 
must be multiples of each other. To prove the multiple is unity, it suffices to 
compute the highest lexicographic terms obtained by applying the maps to 
the canonical tableau X,, where T has shape c( and all entries in its ith row 
are i. The computation is not difficult, and also shows that the composite 
map is nonzero over the integers provided rank F> k. 

Remark. The results in Lemmas 5, 6, 7, Corollary 8, and Proposition 9 
are all consequences of the basic defining properties of the maps cii con- 
tained in Lemma 2. It would be of great interest to determine the structure 
of the algebra generated by these maps in view of these rather remarkable 
identities contained therein. We remark that our algebra coincides with 
the algebra of polarization operators (applied to suitably homogeneous 
polynomials), which appear in the Capelli identity of invariant theory; see 
[H, pp. 565-5661. 

4. APPLICATION 

In this section we illustrate how the explicit form of our generalized Pieri 
maps is utilized to obtain certain nonzero homomorphisms between skew 
Weyl modules over fields of positive characteristic. Here we restrict our- 
selves to a special case in order to keep our proofs short. This restriction 
however does not hinder the main idea, which is quite simple. The general 
case will be treated in [M]. We prove the following result. 

THEOREM 10. Let Ajy and p//y be two skew partitions related as follows: 

pi = pi + 1, pj=n,- 1, 

Cltl=& for h # i, jfor some i <J’. 

Furthermore assume ;I,, - Ah+ I 2 1 for all h = 1, . . . . k - 1. Over a field of 
characteristic p > 0 we have 

HomGLdKLl,F, K,,,F) Z 0 

ifp divides Ai-Aj+ j-i+ 1. 

Remarks. 1. The hypothesis & - A,,, , , > 1 is in fact not essential but it 
is assumed here in order to simplify our proofs. Also, one can prove an 
analogous result under the hypothesis ,uLi = Ai + d and pi = ;ij - d. 
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2. For y = (0) we obtain the Carter-Payne result [CP] (with a new 
proof) corresponding to our special case. The general case will appear 
in [Ml. 

Proof of Theorem 10. First, we prove the theorem for i = 1 and j= k. 
The general situation will follow easily from this. Let c1 be the skew shape 
(2, , . . . . 2, - 1 , 2, - 1 )/(y 1, . . . . ykp,, yk - 1). Then the skew shape LX( 1, l), 
as we recall from Section 2, is given by (A1 + 1, . . . . Ak _ , , 1, - 1 )/ 
(yi , . . . . yk _, , yk). The first claim is that there is an exact sequence 

d&(X) ~ K,F~ K,,,F~O, (1) 

where d& is the map considered in the definition of K,F (see Section 1) and 
X is the image of the map ok- ,k: D(i, -y I,..., A,_,-y,-,+l,&- 
yk - 1) --, D(E) that was defined in Section 1. Indeed, by (B) of Section 1 
every relation of K, F is also a relation of Kj,ly F. Thus the identity map 

induces a surjection of the corresponding Weyl modules. Now note that the 
only relation of K,,,F which is not a relation for K,F is the one corre- 
sponding to the pair of rows k - 1 and k for 1= I, - yk - 1, i.e., it is given 
by the map 

Ok- Ik :D(i”,-yl,...,IIk~,-yk-,+l,~k-yk-l)~D(~/y). 

Therefore the exact sequence (1) is established. 
Now from Section 2 recall that we have Pieri maps 

$,: K,F--+ JL,,,,,F. 

The second claim is that, under the hypothesis on the characteristic p, the 
restriction of @5, on d:(X) is zero. Indeed, consider diagram (*) in the proof 
of Theorem 1 of Section 2 and let I = %k - ykp I - 1 in this diagram. Then 
we have the commutative diagram 

WA I - Y , 2 . . . . 2,-,-y&, + 1, I”,-y,- 1) Ok-,k - D(a) 

I 
4% + i; 

I 
‘pz 

D(~,+1-y,,...,j~,-,-yk_,+1,~,-yk-2)~D(a(l,1)) 

+ 
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where Id stands for the identity map. The commutativity of this diagram 
and the definition of $& (case II in the proof of Theorem 1 of Section 2) 
imply that, for XED(;I., -y,, . . . . Akml -ykp, + 1, Ak-yk- l), we have 

4, Ok- ,/c(x) 

= G,,,, 
1 

ak-tkvor(x)+(l,-&+k) C (J, ‘.Jca.l;> Cx)]’ 

Now since the map ak- ,k in the bottom row of our diagram gives a 
relation for &i,,) F (see (B) of Section 1) we have from the above 
equation 

Hence, under the hypothesis of the theorem that p divides 1, - 1, + k, we 
have 

$,(d:(X)) = 0, 

and the second claim is proven. 
From the exact sequence (1) we see that the Pieri map 

lifts, for characteristic p dividing 1, - 1, + k, to a map 

@i/y: &,,F+ K,c,,,,F. 

Note that a( 1, 1) = ,u/y. Hence we have our natural map 

We show now that this map is nonzero. Consider the tableau, T, of shape 
J./y whose ith row entries are all equal to i, for i= 1, . . . . k. Observe the 
following: (a) Since (by the hypothesis) we have A,, - A,, i 2 1, for all h, the 
image of XTs D(A/y) under the map aJ: D(A/y) + D(p/y) is again a 
costandard tableau for all J = (1~ . . . < k); and (b) the coefficient of aI for 
I= (1, 2, . . . . k - 1, k) in the definition of ‘Pj,lr (see Section 2) is equal to 1, 
i.e., c,= 1. Hence we see that qrly d&(X,) is a linear combination of dis- 
tinct basis elements of K,,,yF and not all the coefficients are divisible by p. 
Thus our map is nonzero and this concludes the proof of the theorem for 
i=l andj=k. 

Now if i and j are arbitrary in the statement of the theorem consider the 
skew shapes /I = (Ai, Ai+ i, . . . . Aj)/(y,, .,., y,) and fl’ = (pj, . . . . LL/)/(Y~, . . . . y,). 
From the case that we just proved there is a nonzero map 
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induced by the map 
‘pg: W) -+ W’) 

if p divides Ai - lj + j - i + 1. Now consider the map 

10 ... @l@CpB@10 ... 0 1: ~(~lY)-twdJ), 

which is the identity on all rows except rows i, i + 1, . . . . j, where it is equal 
to qPa. Just as in the proof (after case II) of Theorem 1 of Section 2 one 
sees very easily that we have corresponding maps on the relations and 
hence we obtain our induced natural map 

K;./7 F -+ KuLIi’ F, 

which is nonzero by the case i= 1 and j= k. This concludes the proof of 
Theorem 10. 

Remark. As we mentioned before, the condition A, - I”,,+ i > 1 is not 
essential. It was included here to show quickly that gilr # 0. Otherwise this 
is not true in general and one needs to consider maps of the form 
(l/6) (PAP,, where 6 is a suitable power of the characteristic p. 
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