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1 Introduction

Classical invariant theory, [9, 11, 23], refers to the study of invariants, equivalence, and
symmetry of homogeneous polynomials, referred to as “forms”, under the action of the
general linear group. Usually, one introduces projective coordinates and studies the
behavior of the corresponding inhomogeneous polynomial under projective transforma-
tions. The terminology incorporates the number of variables, so that a binary form
refers to a homogeneous polynomial in two variables or its equivalent inhomogeneous
univariate version, while a homogeneous ternary form depends on three variables or,
equivalently a projectively transformed inhomogeneous polynomial in two variables.
The goal of this paper is to apply the method of equivariant moving frames, first devel-
oped in [7] — see also [23] — to study the differential invariants, joint invariants, and
joint differential invariants of binary and ternary forms.

Lie himself, in [16, Chapter 23], advocated the application of Lie group methods
and differential invariants to the problems of classical invariant theory. This received a
significant boost with the discovery that applying the Cartan equivalence method, [22],
to a problem in the calculus of variations produced a new solution to the equivalence
problem for binary forms based on the signature curve1 traced out by two particular
differential invariants, which can be viewed as absolute rational covariants, [20]. In
essence, the result says that two binary forms are equivalent under a projective trans-
formation if and only if they have identical signatures. Moreover, the symmetries or
self-equivalences of a binary form are determined by the signature’s index, meaning the
number of times it is retraced.

These results, which have no counterpart in the classical literature, were rederived
and extended using the method of equivariant moving frames in [23, Chapter 8]. Further
developments appear in Irina Kogan (Berchenko)’s thesis, [5, 14], which includes a
Maple package for computing the symmetries (both discrete and continuous) of binary
forms. Kogan then analyzed the case of ternary forms, using the moving frame to
produce a complete system of differential invariants; see also [15] for further results,
including the application to equivalence and symmetry properties of elliptic curves. In
his thesis, [31], Kogan’s student Thomas Wears revisited the equivalence problem for
binary forms, ternary forms, and forms in many independent variables. Wears’ moving
frame-based analysis is performed in homogeneous coordinates, and so his results must
be translated into the projective context analyzed here. Recently, Görlach, Hubert,
and Papadopoulo, [8], have analyzed the rational invariants and equivalence of ternary
forms under the action of the orthogonal group.

In this paper, we revisit Kogan’s results. By choosing a different cross-section to
construct the moving frame, we are able to prove that the entire differential invariant
algebra of a ternary form is generated by a single invariant by repeatedly applying the
operators of invariant differentiation. This result is based on the general “commutator
trick” method used to establish similar recent results for the differential invariant al-
gebra associated with Euclidean, equi-affine, conformal, and projective surfaces in R3,
cf. [12, 25, 27]. In the Euclidean case, the differential invariants are entirely gener-
ated by the mean curvature, and hence, in particular, for suitably generic surfaces, the
Gauss curvature can be written as a universal rational function of the invariant deriva-
tives of the mean curvature. In the equi-affine case, the differential invariant algebra is

1In [20, 22], the older term “classifying curve” is used.
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generated by the third order Pick invariant.
In addition, we present complete classifications and explicit formulas for the joint

invariants and joint differential invariants for both binary and ternary forms. In general,
a joint invariant is an invariant of the Cartesian product or joint action of the underlying
transformation group, while a joint differential invariant is an invariant of the joint
prolonged action of the transformation group on the Cartesian product jet space. As
far as we know, these invariants of binary and ternary forms have not appeared or been
classified in the literature to date.

Our main tool is the powerful new constructive method of equivariant moving
frames, [7, 17, 26], that has seen a remarkably broad range of applications includ-
ing geometry, differential equations, calculus of variations, computer vision, numerical
analysis, and classical invariant theory. The theory rests on a reinterpretation of the
classical formulation of a moving frame due to Élie Cartan, [6, 10], as an equivariant
map to the transformation group, leading to an algorithmic tool for studying the geo-
metric properties of submanifolds and their invariants under the action of a Lie group.
The equivariant approach can be systematically applied to general Lie transformation
groups, [7, 17], including infinite-dimensional Lie pseudo-groups, [28]. Among the sig-
nificant new applications of the equivariant method of moving frames is the derivation
and classification of joint invariants and joint differential invariants, [24]. These have
been used in computer vision applications, [19, 30], and in the design of invariant nu-
merical approximation schemes, [13, 18, 29].

One of the key applications of differential invariants and joint differential invariants
is to the equivalence and symmetry properties of submanifolds — in this case binary
and ternary forms. The Cartan equivalence method, [22], tells us that two suitably
non-degenerate smooth submanifolds are equivalent under a group transformation if
and only if they have identical syzygies among all their differential invariants. While,
for any finite-dimensional Lie group action, there are an infinite number of functionally
independent differential invariants, and hence an infinite number of syzygies, the higher
order ones can always be generated from a finite number of low order syzygies through
invariant differentiation. (Recall that the order of a differential invariant is that of the
the highest order jet coordinate upon which it depends.) This motivates the definition
of the signature manifold, [23, 26], which is parametrized by the low order differential
invariants appearing in these generating syzygies. Cartan’s result thus implies that two
suitably non-degenerate smooth submanifolds are equivalent if and only if they have
identical signatures. Moreover, the codimension of the signature prescribes the dimen-
sion of the (local) symmetry group, while in the maximal dimension case, the symmetry
group is discrete, whose cardinality equals the index of the signature, meaning the num-
ber of times it is retraced, [27]. In [14, 5], this fact was used to design a computational
algorithm, implemented in Maple, for explicitly constructing the discrete symmetries
of binary forms. The methodology can be extended in the obvious manner to joint
differential invariant signatures, [24]. Here, we explain how to construct differential in-
variant signatures and joint differential invariant signatures for both binary and ternary
forms, thus extending the results in [5, 14, 20, 23].

The outline of the paper is as follows. Section 2 summarizes some important pre-
liminaries about the moving frame method, and includes a new general formula relating
the (differential, joint, etc.) invariants associated with different cross-sections. Section
3 is devoted to the joint invariants and joint differential invariants of binary forms. In
particular, we find minimal generating sets of the latter. In Section 4, we determine the
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differential invariants of ternary forms, exhibit the relationship between our differential
invariants and those of Kogan, and prove that the differential invariant algebra is gen-
erated by a single invariant. Finally, Section 5 classifies the joint differential invariants
of ternary forms, and proves that, in contrast to the case of binary forms, they can be
generated by a single joint differential invariant through invariant differentiation.

2 The Method of Moving Frames

In this section, we review the equivariant moving frame construction proposed in [7,
23, 26]. Let G be an r-dimensional Lie group that acts on an m-dimensional manifold
M . A moving frame is, by definition, a smooth, G-equivariant map ρ : M → G with
respect to either left or right multiplication on G. Clearly, if ρ(z) is any right equivariant
moving frame, its group inverse ρ(z)−1 is a left equivariant moving frame. All classical
moving frames, as in [10], can be reinterpreted as left equivariant maps, but the right
equivariant versions are often easier to compute.

Existence of an equivariant moving frame map requires that the action of G be free
and regular. Here, freeness requires that all points have trivial isotropy, so g · z0 = z0
for some z0 ∈ M if and only if g = e. Regularity is the global condition that the
orbits of G form a regular foliation, and does not play any role in any applications to
date. Of course, many interesting transformation groups do not act freely, and hence
to construct a moving frame one needs to prolong the action to a higher dimensional
space in some canonical manner — either to a jet bundle, or a Cartesian product space,
or even a Cartesian product of jet bundles, [24]. The invariant functions in these cases
are known, respectively, as differential invariants, joint invariants, and joint differential
invariants.

If G acts freely and regularly on M , then a (locally defined) equivariant mov-
ing frame is constructed through the choice of a cross-section K ⊂ M to the group
orbits, meaning that K intersects each orbit at most once and transversally. Let
z = (z1, . . . , zm) be local coordinates on M and w(g, z) = g · z be the explicit lo-
cal coordinate formula for the group transformations. For simplicity, assume K =
{z1 = c1, . . . , zr = cr } is a coordinate cross-section prescribed by setting the first r co-
ordinates to suitable constants. The associated right-equivariant moving frame map
g = ρ(z) is then obtained by solving the normalization equations

w1(g, x) = c1, . . . wr(g, x) = cr, (2.1)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z = (z1, . . . , zm),
as guaranteed by the Implicit Function Theorem.

Substituting the moving frame formulae for the group parameters into the remaining
transformation rules yields a complete system of functionally independent invariants:

I1(z) = wr+1(ρ(z), z), . . . Im−r(z) = wm(ρ(z), z). (2.2)

This is a special case of the process of invariantization with respect to the moving
frame. Given any object – function, differential form, differential operator, etc. —
one invariantizes it by first transforming it according the the action of G and then
replacing all group parameters g by their moving frame formulas g = ρ(z). The invari-
antization process is denoted by ι. Geometrically, the invariantization J = ι(F ) is the
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unique invariant that agrees with F on the cross-section: J | K = F | K. In particular,
invariantizing the coordinate functions yields

ι(z1) = c1, . . . ι(zr) = cr, ι(zr+1) = I1(z), . . . ι(zm) = Im−r(z).

Thus, invariantizing the first r coordinates that define the cross-section reproduces the
normalization constants — because g = ρ(z) solves the normalization equations (2.1)
— while invariantizing the remaining m − r coordinates produces the fundamental
invariants. The first r trivial constant invariants are sometimes referred to as the
phantom invariants. Invariantization clearly respects all algebraic operations, and hence
the invariantization of a function F (z) is

ι[F (z1, . . . , zm)] = F (ι(z1), . . . , ι(zm)) = F (c1, . . . , cr, I1(z), . . . , Im−r(z)). (2.3)

Moreover invariantization does not affect an invariant: ι(J) = J , which, in view of
(2.3), implies the powerful Replacement Rule

J(z1, . . . , zm) = J(c1, . . . , cr, I1(z), . . . , Im−r(z)) (2.4)

that allows one to immediately rewrite any invariant J in terms of the fundamental
invariants, thus proving their completeness.

It will be important here to connect the moving frame invariants associated with
two different cross-sections. Suppose the Lie group G acts freely on M , with z =
(z1, . . . , zm) ∈M being local coordinates. Let K, K̂ ⊂M be two different cross-sections.
Let ρ, ρ̂ the corresponding right moving frames, and ι, ι̂ the associated invariantization
maps, producing the respective invariants I = (I1, . . . , Im) = (ι(z1), . . . , ι(zm)) and

Î =
(
Î1, . . . , Îm

)
=
(
ι̂(z1), . . . , ι̂(zm)

)
. By the Replacement Rule (2.4), we know that

we can write each Îk as a function of the Ij ’s, and vice versa. To this end, we assume

K ⊂ dom ρ̂ and K̂ ⊂ dom ρ. The following result enables us to easily determine the
required expressions.

Theorem 1 The normalized invariants corresponding to the two right-equivariant
moving frames ρ, ρ̂ are related by the formula

I = ρ( Î ) · Î (2.5)

Proof : It suffices to recall that each Ik is the unique invariant that agrees with the
coordinate function zk on the cross-section. Thus, I | K = z | K, and, similarly, Î | K̂ =
z | K̂. Given a point ẑ ∈ K̂, the right moving frame determines the unique group element
g = ρ(ẑ ) ∈ G that maps ẑ to a point z in the cross-section K. In other words,

ẑ ∈ K̂ 7−→ z = ρ(ẑ ) · ẑ ∈ K. (2.6)

By the first remark, this implies that the left and right hand sides of (2.5) agree on
the cross-section K. Since they are constant on orbits, these two invariants must agree
everywhere, which proves that formula (2.5) holds where defined. Q.E.D.

As noted earlier, one typically needs to prolong the group action in order to make
it free and regular, and hence admit a moving frame. We assume the reader is familiar
with the basic constructions of jet bundles, [21, 22]. We let x = (x1, . . . , xp) denote
the independent variables and u = (u1, . . . , uq) the dependent variables, defining local
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coordinates on a manifold M of dimension m = p + q, so that one can identify the
graphs of functions u = f(x) as p-dimensional submanifolds of M . The corresponding
local coordinates uαK , for α = 1, . . . , q, K = (k1, . . . , ki), 1 ≤ kσ ≤ p, i = #K ≤ s, on
the order s jet bundle Js = Js(M,p) represent the derivatives of the u’s with respect to
the x’s.

Suppose G acts freely and regularly on an open subset of Js – which, for s sufficiently
large, holds in all examples of interest2. Let ρ(x, u(s)) be the right-equivariant moving
frame constructed through the choice of cross-section K ⊂ Js. A complete system of
differential invariants is then found by invariantizing the jet coordinates: Hi = ι(xi),
IαK = ι(uαK). Of course r of them — namely those corresponding to the cross-section
coordinates — are constant phantom differential invariants, while the remainder provide
a complete system of functionally independent differential invariants of order ≤ s. Any
other differential invariant can be immediately expressed in terms of these fundamental
differential invariants though the Replacement Rule (2.4).

An alternative means of constructing differential invariants is through the process
of invariant differentiation. For i = 1, . . . , p, let ωi = ι(dxi) denoted the invariantized
horizontal one-forms, and Di = ι(Di) the dual invariantized differential operator ob-
tained from the total derivative with respect to the independent variable xi, [21]. Each
Di represents an invariant derivation, so that if J is any differential invariant so is DiJ .
The Fundamental Basis Theorem, [7, 22], states that all differential invariants can be
found by repeated invariant differentiation of a finite number of low order differential
invariants. In fact, if the moving frame is of order s, then the fundamental differential
invariants of order ≤ s+1 provide a basis, generating the entire differential invariant al-
gebra. However, these bases are typically far from minimal, and indeed, determination
of a minimal basis is often not easy. Indeed, there are, as yet, no known algorithms
for testing for minimality, except in the trivially minimal case when the algebra is
generated by a single differential invariant.

Although invariantization respects all algebraic operations, it does not respect dif-
ferentiation. However, its effect on derivatives can be explicitly determined through
the powerful recurrence formulae. Let F (x, u(s)) be a differential function and ι(F ) its
moving frame invariantization. Then

Di[ι(F )] = ι[Di(F )] +

r∑
κ=1

Rκi ι
[

pr vκ(F )
]
. (2.7)

Here

vκ =

p∑
i=1

ξiκ(x, u)
∂

∂xi
+

q∑
α=1

ϕακ(x, u)
∂

∂uα
, κ = 1, . . . , r, (2.8)

are a basis for the Lie algebra of infinitesimal generators of the action of G, while pr vκ
denotes their jet bundle prolongations, whose explicit formulae are well known, [21, 22].
The Rκi are certain differential invariants known as the Maurer-Cartan invariants3, and

2Scot Adams has recently constructed rather intricate counterexamples for both smooth, [3], and analytic,
[2], actions. On the other hand, prolonged freeness and regularity is true for algebraic actions, [1]. See also
[4], where a version of the latter result is proved for connected analytic actions.

3The Maurer–Cartan invariants can be intrinsically characterized as the coefficients of the invariantized
horizontal forms ωi in the pulled-back Maurer–Cartan forms via the moving frame map, [7]. However, while
this characterization is important for the underlying proofs, it need not concern us here since, as we will see,
the Maurer–Cartan invariants can all be explicitly determined directly from the recurrence formulae.
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are determined by setting F in (2.7) to be the cross-section variables corresponding to
the phantom differential invariants. Since each such F has constant invariantization,
the left hand side of (2.7) is 0, and hence we obtain a system of r linear equations which
can be uniquely solved for the Maurer–Cartan invariants. Substituting the resulting
expressions back into (2.7) produces the complete set of recurrence formulae for the
remaining differential invariants, which then prescribes the complete structure of the
algebra of differential invariants. The recurrence formula (2.7) extends to differential
forms as stated, where the differential operators and vector fields act as Lie derivatives
when F represents a differential form.

The general moving frame constructions can be readily adapted to Cartesian prod-
uct actions of groups, as well as their prolongations to Cartesian products of jet bundles,
[24]. The invariantization process produces complete bases of joint invariants and joint
differential invariants. The corresponding recurrence formulae will determine the com-
plete structure of the algebra of joint differential invariants.

Explicitly, given a Lie group G acting on M , consider the “joint action” of G on the
(l + 1)-fold Cartesian product M×(l+1) = M × · · · ×M given by

g · (z0, . . . , zl) = (g · z0, . . . , g · zl), g ∈ G z0, . . . , zl ∈M. (2.9)

An invariant I(z0, . . . , zl) of this product action is known as an (l+1)-point joint invari-
ant of the original transformation group. The product action (2.9) induces a prolonged
action on the s-th order Cartesian product jet bundle (Js)×(l+1), which coincides with
the (l+1)-fold Cartesian product of the prolonged action on Js = Js(M,p). The invari-
ants of the induced action of G on (Js)×(l+1) are known as (l+1)-point joint differential
invariants, [24]. These are found by constructing a moving frame through the choice of
cross-section, and then a complete system of joint differential invariants is obtained by
invariantization, I = ι(F ), of the joint differential functions F : (Js)×(l+1) → R,

The infinitesimal generators of the joint action are just given by summing l + 1
copies of the infinitesimal generators of the action of G on M , indexed by the points.
We will employ capital letters to denote them, so

Vκ =

l∑
j=0

vjκ =

l∑
j=0

[
p∑

i=1

ξiκ(xj , uj)
∂

∂xji
+

q∑
α=1

ϕακ(xj , uj)
∂

∂uα,j

]
, κ = 1, . . . , r,

(2.10)
and similarly for their prolongations pr Vκ to the joint jet space (Js)×(l+1). In analogy
with (2.7), the recurrence relations for the joint differential invariants take the form

Dji ι(F ) = ι(D
xji
F ) +

r∑
κ=1

Rκj ι(pr Vκ(F )), (2.11)

where F is a joint differential function, Dji = ι(D
xji

) is the invariantized total derivative

operator, while Rκk are the Maurer-Cartan invariants, which can be found by solving
(2.11) when F assumes the values of the cross-section variables producing the phantom
invariants.
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3 Binary Forms

To study binary forms, as in [23], we consider the planar action

X =
αx+ β

γ x+ δ
, U = (γ x+ δ)−nu, (3.1)

of the general linear group G = GL(2) on functions u = f(x) whose graphs are identified
as plane curves. In our analysis, we will focus on the real case, although all our results
apply equally well to complex forms under GL(2,C). When n is a positive integer,
this induces the transformation rules for binary forms (polynomials) of degree n, whose
invariance properties form the focus of classical invariant theory. In the following, we
will assume n 6= 0, 1. (These cases can also be handled by the moving frame method,
but the formulas are slightly different.) Since the differential invariants of binary forms
are well known, [5, 14, 23], we will study their joint invariants and joint differential in-
variants. Here the variables z0 = (x0, u0), . . . , zl = (xl, ul) are simultaneously subjected
to the same transformation rule (3.1), as in (2.9).

For the joint action of GL(2) on M×(l+1) ' R2 l+2, we choose the simple cross-section

x0 = 0, u0 = x1 = u1 = 1, (3.2)

noting that setting any uk = 0 does not produce a valid cross-section. The correspond-
ing normalization equations are

X0 = 0, U0 = 1, X1 = 1, U1 = 1. (3.3)

Substituting the formulas based on (3.1), and then solving the resulting normalization
equations for the group parameters produces the right moving frame ρ : M×2 → GL(2),
given by4

α =
n
√
u1

x1 − x0
, β =

x0
n
√
u1

x0 − x1
,

γ =
n
√
u0 − n

√
u1

x0 − x1
, δ =

x0
n
√
u1 − x1 n

√
u0

x0 − x1
.

(3.4)

The moving frame formulas are then used to invariantize the remaining variables to
produce the normalized joint invariants

yk 7−→ Ik = ι(xk) =
(xk − x0) n

√
u1

Ak
,

vk 7−→ Jk = ι(uk) = uk
(
x1 − x0

Ak

)n
,

(3.5)

where
Ak = (xk − x0) n

√
u1 + (x1 − xk) n

√
u0. (3.6)

We note that, for all distinct i, j, k,

Ikij =
xj − xk

xi − xk
n
√
ui

n
√
uj

=
Ij − Ik

Ii − Ik
n
√
J i

n
√
J j
, (3.7)

4For simplicity, we do not try to deal with the ambiguity in the n-th root and consequential local equivari-
ance of the moving frame map, that stems from the local freeness of the product action on M×2. Furthermore,
if any uk < 0, one can replace it with −uk. Equivalently, one could use |uk | throughout.
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are also joint invariants, whose expressions in terms of the fundamental invariants (3.5)
are immediate consequences of the Replacement Rule (2.4). Also,

Ik =
1

1− Ik01
, Jk =

(
1

I01k − I10k

)n
. (3.8)

The prolonged group transformations are obtained by implicit differentiation of
(3.1); in particular,

vy =
(γ x+ δ)ux − nγu

(γ x+ δ)n−1(αδ − β γ)
. (3.9)

Plugging (3.4) into the preceding formula yields the fundamental normalized first order
joint differential invariants

K0 = ι(u0x) =
(x1 − x0)u0x

n
√
u0 + nu0(

n
√
u0 − n

√
u1)

u0
n
√
u1

,

K1 = ι(u1x) =
(x1 − x0)u1x

n
√
u1 + nu1(

n
√
u0 − n

√
u1)

u1
n
√
u0

,

Kk = ι(ukx) = −
[

(x0 − xk)ukx + nuk
]

n
√
u1 −

[
(x1 − xk)ukx + nuk

]
n
√
u0

n
√
u0u1

(
x1 − x0

Ak

)n−1

.

(3.10)

The invariantization process can be used to produce all the higher order joint dif-
ferential invariants. However, we will avoid the long explicit expressions by employing
invariant differentiation and the recurrence formulae. The invariantized one forms that
play the role of joint arc length forms are

dXk =
(αδ − β γ)dxk

(γ xk + δ)2
7−→ ωk = ι(dxk) =

(x1 − x0) n
√
u0u1 dxk

(Ak)2
, (3.11)

with corresponding invariant differential operators

DXk 7−→ Dk = ι(Dxk) =
(Ak)2

(x1 − x0) n
√
u0u1

Dxk . (3.12)

In particular,

D0 =
(x1 − x0) n

√
u0

n
√
u1

Dx0 , D1 =
(x1 − x0) n

√
u1

n
√
u0

Dx1 . (3.13)

The invariant differential operators satisfy the following commutation relations:

[D0,D1 ] =

(
1− K1

n

)
D0 +

(
1 +

K0

n

)
D1, [D0,Dk ] =

(
(2Ik − 1)

K0

n
+ 1

)
Dk,

[D1,Dk ] = −
(

(2Ik − 1)
K1

n
+ 1

)
Dk, [Dj ,Dk ] = 0, where j, k ≥ 2.

(3.14)
These can be derived directly from the explicit formulae (3.12), (3.13), or symboli-
cally through use of the recurrence formulae for the differentials of the invariantized
horizontal one-forms, [7, 25]; see also (4.14) below.
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We now determine the recurrence relations (2.11) for the joint differential invariants,
based on the infinitesimal generators

v1 = ∂x, v2 = x∂x, v3 = u∂u, v4 = x2∂x + nxu∂u, (3.15)

of the GL(2) action (3.1). The Maurer-Cartan invariants Rσk are found by solving the
recurrence formulae for the phantom invariants corresponding to the cross-section (3.2):

0 = D0ι(x0) = ι(1) +R1
0 ι(1) +R2

0 ι(x
0) +R3

0ι(0) +R4
0 ι((x

0)2) = 1 +R1
0,

0 = D1ι(x0) = ι(0) +R1
1 ι(1) +R2

1 ι(x
0) +R3

1 ι(0) +R4
1 ι((x

0)2) = R1
1,

0 = D0ι(u0) = ι(u0x) +R1
0 ι(0) +R2

0 ι(0) +R3
0 ι(u

0) +R4
0 ι(nx

0u0) = K0 +R3
0,

0 = D1ι(u0) = ι(0) +R1
1 ι(0) +R2

1 ι(0) +R3
1 ι(u

0) +R4
1 ι(nx

0u0) = R3
1,

0 = D0ι(x1) = ι(0) +R1
0 ι(1) +R2

0 ι(x
1) +R3

0 ι(0) +R4
0 ι((x

1)2) = R1
0 +R2

0 +R4
0,

0 = D1ι(x1) = ι(1) +R1
1 ι(1) +R2

1 ι(x
1) +R3

1 ι(0) +R4
1 ι((x

1)2) = 1 +R2
1 +R4

1,

0 = D0ι(u1) = ι(0) +R1
0 ι(0) +R2

0 ι(0) +R3
0 ι(u

1) +R4
0 ι(nx

1u1) = R3
0 + nR4

0,

0 = D1ι(u1) = ι(u1x) +R1
1 ι(0) +R2

1 ι(0) +R3
1 ι(u

1) +R4
1 ι(nx

1u1) = K1 + nR4
1.

(3.16)

Thus,

R1
0 = −1, R2

0 = 1− K0

n
, R3

0 = −K0, R4
0 =

K0

n
,

R1
1 = 0, R2

1 =
K1

n
− 1, R3

1 = 0, R4
1 = −K

1

n
.

(3.17)

Substituting back into (2.11), the final recurrence formulae, up to order 1, are

D0Ik = (Ik − 1)

(
IkK0

n
+ 1

)
, D1Ik = Ik

(
(1− Ik)K1

n
− 1

)
,

D0Jk = (Ik − 1)JkK0, D1Jk = −IkJkK1,

DjIk =

{
1, j = k,

0, j 6= k,
DjJk =

{
Kk, j = k,

0, j 6= k,

D0K0 = L0 − n− 1

n
(K0)2, D1K0 = −K

0K1

n
+K0 −K1,

D0K1 = −K
0K1

n
+K0 −K1, D1K1 = L1 − n− 1

n
(K1)2,

D0Kk = JkK0 +

(
n− 2

n
IkK0 − n− 1

n
K0 − 1

)
Kk,

D1Kk = −JkK1 −
(
n− 2

n
IkK0 +

1

n
K0 − 1

)
K1,

DjK0 = DjK1 = 0, DjKk =

{
Lk, j = k,

0, j 6= k,

(3.18)

where j 6= k are not 0 or 1, and Li = ι(uixx) are the second order normalized invariants.
In particular, assuming we have at least 3 points, by invariantly differentiating the
order zero joint invariants Ik and Jk for k ≥ 2, we can obtain all the first order joint
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differential invariants Kk, including K0,K1, and hence all the higher order differential
invariants. On the other hand, there are no two-point joint invariants of order zero, and
hence in this case the joint differential invariant algebra is generated by the first order
invariants K0,K1. Finally recall that the ordinary (one-point) differential invariant
algebra is generated by a single third order differential invariant, [20, 23].

The above generating sets are not minimal, except (obviously) in the 1 point case.
In the 2 point case, in view of (3.18), we can obtain K1 by differentiating K0 or vice
versa, and hence either K0 or K1 serve as a minimal generating set.

In the (l + 1)-point case for l ≥ 2, again by (3.18), we claim that the l − 1 joint
differential invariants J2, . . . , J l form a minimal generating set. To prove this, we first
show that we can obtain Ik by differentiating Jk. To see this, using (3.18), we have

D0Jk

Jk
= (Ik − 1)K0,

D1Jk

Jk
= −IkK1. (3.19)

Differentiating the latter formula and using again (3.18) produces

D0

(
D1Jk

Jk

)
= −(D0Ik)K1 − Ik(D0K1)

= −(Ik − 1)

(
IkK0

n
+ 1

)
K1 − Ik

(
−K

0K1

n
+K0 −K1

)
= − 1

n
Ik(Ik − 2)K0K1 − IkK0 +K1.

(3.20)

Solving (3.19) for K0,K1 and then substituting the results into (3.20) produces a
quadratic equation for Ik with coefficients depending on Jk and its invariant derivatives,
which can thus (generically) be solved to give an explicit formula for Ik in terms of Jk

and its invariant derivatives of order ≤ 2, and hence, by (3.19), can similarly express
K0,K1. This implies that J2, . . . , J l form a generating set. To prove minimality,
meaning that any generating set has at least l − 1 elements, we argue as follows. For
any k ≥ 2, consider the basic joint differential invariants Ik = ι(xk), Jkν = ι(ukν), for
ν = 0, 1, 2, . . . , obtained by invariantizing the joint jet coordinate functions, with ukl
denoting the l-th derivative of uk. In particular, Jk0 = Jk, Jk1 = Kk, Jk2 = Lk. Using
the formulae (3.17) for the Maurer–Cartan invariants, we see that the only places Ik, Jkν
appear on the right hand side of the joint recurrence formulae (2.11) are those in which
one of them is differentiated. Thus, to generate any differential invariant with index
k ≥ 2 requires at least one of that index to be in the generating set. This completes
the proof of the claim.

Theorem 2 The algebra of (l+1)-point joint differential invariants of a generic binary
form is minimally generated by a single joint differential invariant when l = 0 or 1 and
by l − 1 joint differential invariants when l ≥ 2.

Remark: To be completely accurate, what we have proved in Theorem 2 is that,
among the basic normalized joint differential invariants, any minimal system consists
of l − 1 joint differential invariants. There remains the possibility of finding a smaller
generating system consisting of functional combinations of the basic invariants. This
seems highly unlikely, although we have not been able to conclusively prove that this
cannot occur. Another option for potentially reducing the number of generators would

11



be to modify the invariant differential operators by taking linear combinations with
invariant coefficients, and using the commutator trick discussed below. Again, while
this seems unlikely to succeed, we cannot guarantee it. Indeed, it would be good to
establish general theorems concerning the structure of differential invariant algebras
and joint differential invariant algebras that deal with such questions.

As is well known, [5, 23], the ordinary differential invariant signature of a binary
form is parametrized by the fundamental differential invariants of order 3 and 4. We
call the maximum of these orders, namely 4, the order of the signature. According to
our recurrence formulae, we can now specify the appropriate joint invariant signatures
for binary forms:

1 point: Fourth order signature;

2 point: Second order signature parametrized by K0,K1, L0, L1;

3 point: First order signature parametrized by I2, J2,K0,K1,K2;

4 point: First order signature parametrized by I2, J2, I3, J3,K0,K1,K2,K3;

≥ 5 point: Zero-th order signature parametrized by Ik, Jk, k ≥ 2.

Applications of these signatures to the equivalence and symmetry properties of binary
forms will be the subject of future investigations.

4 Differential Invariants of Ternary Forms

Now, we turn our attention to ternary forms. As above, we work in projective co-
ordinates. In this section, we shall revisit Kogan’s analysis, [14], of their differential
invariants.

We are thus interested in the action5

X =
αx+ β y + γ

ρx+ σy + τ
, Y =

λx+ µy + ν

ρx+ σy + τ
, U = (ρx+ σy + τ)−nu, (4.1)

of the general linear group G = GL(3) on two dimensional surfaces S ⊂ M = R3

representing the graphs of functions u = f(x, y). When n is a positive integer, this
action encodes the transformation rules for ternary forms of degree n, [9, 11, 14, 23].

Let

∆ = det

α β γ
λ µ ν
ρ σ τ

 . (4.2)

We prolong the action (4.1) to the surface jet spaces Js(M, 2), coordinatized by x, y
and the derivatives

ujk = Dj
xD

k
yu for 0 ≤ j + k ≤ s. (4.3)

Explicitly, the action is given by

ujk 7−→ Ujk = Dj
XD

k
Y U,

5From here on, we use ρ to denote one of the group parameters.
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where

DX =
ρx+ σy + τ

∆

( [
(µρ− λσ)x+ µτ − ν σ

]
Dx +

[
(µρ− λσ)y − λτ + ν ρ

]
Dy

)
,

DY =
ρx+ σy + τ

∆

( [
(ασ − β ρ)x− β τ + γ σ

]
Dx +

[
(ασ − β ρ)y + ατ − γ ρ

]
Dy

)
,

(4.4)
are the operators of implicit differentiation. They are dual to the transformed horizontal
one-forms

dX =

[
(ασ − β ρ)y + ατ − γ ρ

]
dx+

[
(β ρ− ασ)x+ β τ − γ σ

]
dy

(ρx+ σy + τ)2
,

dY =

[
(λσ − µρ)y + λτ − ν ρ

]
dx+

[
(µρ− λσ)x+ µτ − ν σ

]
dy

(ρx+ σy + τ)2
,

(4.5)

meaning that6

dF = (DxF ) dx+ (DyF ) dy = (DXF ) dX + (DY F ) dY,

for any differential function F .
Let us construct the moving frame based on the minimal order cross-section

K =
{
x = y = 0, u = 1, ux = uy = uxx = uyy = 0, uxy = uxxx = 1

}
. (4.6)

The moving frame formulas obtained by solving the associated normalization equations
for α, β, γ, λ, µ, ν, ρ, σ, τ are rather complicated, and will be discussed at the end of
this section. Let Ijk = ι(ujk) denote the resulting differential invariants obtained by
invariantization of the jet coordinates using the moving frame; these are obtained by
substituting the moving frame formulas into the prolonged transformations. Again, the
expressions are quite complicated. In particular, the phantom invariants are

H1 = ι(x) = 0, H2 = ι(y) = 0,

I00 = ι(u) = 1, I10 = ι(ux) = 0, I01 = ι(uy) = 0,

I20 = ι(uxx) = 0, I11 = ι(uxy) = 1, I02 = ι(uyy) = 0, I30 = ι(uxxx) = 1.

(4.7)

Let us next construct the recurrence formulae (2.7) for the differentiated invari-
ants. We let D1 = ι(Dx), D2 = ι(Dy), be the invariant differential operators. The
infinitesimal generators of the group action (4.1) are

v1 = ∂x, v2 = ∂y, v3 = x∂x, v4 = y∂y, v5 = u∂u, v6 = y∂x,

v7 = x∂y, v8 = x2∂x + xy∂y + nxu∂u, v9 = xy∂x + y2∂y + nyu∂u.
(4.8)

Thus, according to (2.7), the recurrence formulae for the differential invariants are

D1Ijk = Ij+1,k +
9∑

κ=1

ι(ϕjkκ )Rκ1 , D2Ijk = Ij,k+1 +
9∑

κ=1

ι(ϕjkκ )Rκ2 , (4.9)

where Rκi , i = 1, 2, κ = 1, . . . , 9, are the Maurer–Cartan invariants and ϕjkκ is the
coefficient of ∂/∂ujk in the prolongation of the infinitesimal generator vκ obtained

6When F depends on jet coordinates, dF denotes its horizontal differential, [22].
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by the standard prolongation formula, [21]. Solving the resulting phantom recurrence
formulae

0 = D1H1 = 1 +R1
1,

0 = D1H2 = R2
1,

0 = D1I00 = I10 +R5
1,

0 = D1I10 = I20 + nR8
1,

0 = D1I01 = I11 + nR9
1,

0 = D1I20 = I30 − 2R7
1,

0 = D1I11 = I21 −R3
1 −R4

1,

0 = D1I02 = I12 − 2R6
1,

0 = D1I30 = I40 − 3R3
1 − 3I21R

7
1,

0 = D2H1 = R1
2,

0 = D2H2 = 1 +R2
2,

0 = D2I00 = I01 +R5
2,

0 = D2I10 = I11 + nR8
2,

0 = D2I01 = I02 + nR9
2,

0 = D2I20 = I21 − 2R7
2,

0 = D2I11 = I12 −R3
2 −R4

2,

0 = D2I02 = I03 − 2R6
2,

0 = D2I30 = I31 − 3R3
2 − 3I21R

7
2,

produces the Maurer-Cartan invariants

R1
1 = −1, R2

1 = 0, R3
1 = 1

3 I40 −
1
2 I21,

R4
1 = 3

2 I21 −
1
3 I40, R5

1 = 0, R6
1 = 1

2 I12,

R7
1 = 1

2 , R8
1 = 0, R9

1 = −1/n,

R1
2 = 0, R2

2 = −1, R3
2 = 1

3 I31 −
1
2 I

2
21,

R4
2 = I12 − 1

3 I31 + 1
2 I

2
21, R5

2 = 0, R6
2 = 1

2I03,

R7
2 = 1

2 I21, R8
2 = −1/n, R9

2 = 0.

(4.10)

Substituting these expressions back into (4.9) produces all the non-phantom recurrence
formulae that completely prescribe the structure of the differential invariant algebra.
The non-phantom third order recurrence formulae are

D1I21 = I31 − 1
3 I21I40 −

1
2 I

2
21 − 3

2 I12,

D2I21 = I22 − 1
3 I21I31 + 1

2 I
3
21 − 2I21I12 − 1

2 I03 − 2 + 4/n,

D1I12 = I22 + 1
3 I12I40 −

7
2 I21I12 −

1
2 I03 − 2 + 4/n,

D2I12 = I13 + 1
3 I12I31 −

1
2 I

2
21I12 − 2I212 − 3

2 I21I03,

D1I03 = I13 + I03I40 − 9
2 I21I03 −

3
2 I

2
12,

D2I03 = I04 + I03I31 − 9
2 I12I03 −

3
2 I

2
21I03,

(4.11)

while those of the fourth order are

D1I40 = I50 − 4
3 I

2
40 + 2I21I40 − 2I31,

D2I40 = I41 − 4
3 I31I40 − 2I221I40 − 2I21I31 − 4 + 12/n,

D1I31 = I41 − 2
3 I40I31 −

1
2 I12I40 −

3
2 I22 − 1 + 3/n,

D2I31 = I32 − 1
2 I03I40 −

2
3 I

2
31 + I221I31 − I12I31 − 3

2 I21I22 − (3− 9/n)I21,

D1I22 = I32 − 2I22I21 − I31I12 − I13 − (2− 6/n)I21,

D2I22 = I23 − 2I22I12 − I31I03 − I13I21 − (2− 6/n)I12,

D1I13 = I23 + 2
3I13I40 − 4I21I13 − 3

2I12I22 −
1
2 I04 − (3− 9/n)I12,

D2I13 = I14 + 2
3 I13I31 − I21I13 − 3I12I13 − 3

2 I03I22 −
1
2 I21I04 − (1− 3/n)I03,

D1I04 = I14 − 6I21I04 + 4
3 I40I04 − 2I12I13 − (4− 12/n)I03,

D2I04 = I05 − 4I12I04 + 4
3 I04I31 − 2I221I04 − 2I03I13.

(4.12)
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Finally, the invariant differential operators D1 and D2 satisfy the commutator relation

[D1,D2 ] = Y1D1 + Y2D2, (4.13)

whose coefficients are known as the commutator invariants. As a consequence of the
general recurrence formulae for the invariant horizontal differential one-forms, [7, 25],
we find

Y1 =
9∑

σ=1

[
Rσ2 ι(Dxξσ)−Rσ1 ι(Dyξσ)

]
= R3

2 −R6
1,

Y2 =
9∑

σ=1

[
Rσ2 ι(Dxησ)−Rσ1 ι(Dyησ)

]
= R7

2 −R4
1,

(4.14)

in which ξσ, ησ are the coefficients of ∂x, ∂y, respectively, in the infinitesimal generator
vσ. Substituting our formulas (4.10) for the Maurer–Cartan invariants yields

Y1 = 1
3 I31 −

1
2 I

2
21 − 1

2 I12, Y2 = 1
3 I40 − I21. (4.15)

Now we investigate the structure of the algebra of differential invariants of a ternary
form, with a particular interest in generating sets. To proceed, let us abbreviate

I = I21, J = I12, K = I03. (4.16)

The recurrence formulae (4.11), (4.12), combined with a general theorem, [7], imply that
the differential invariant algebra I of ternary forms is generated by I, J,K by repeatedly
applying the invariant differentiation operators D1,D2. In fact, we can prove more:

Theorem 3 The single differential invariant I = I21 generates the entire differential
invariant algebra I of a general ternary form through invariant differentiation.

Proof : During the proof, we will use lower case Greek letters — α, β, . . . , ζ — to denote
functions of I and its invariant derivatives DLI = Dl1 · · · DlmI, m ≥ 1. Thus, they will
not denote group parameters in what follows.

First recall the “commutator trick”, [25]. In view of the commutator formula (4.13),
we can write

D1D2I −D2D1I = Y1D1I + Y2D2I,

D1D2DNI −D2D1DNI = Y1D1DNI + Y2D2DNI,
(4.17)

where DNI = Dn1Dn2 · · · Dnk
I, with nj = 1 or 2, is any invariant derivative of I.

Treating (4.17) as a pair of linear equations for Y1, Y2, and assuming non-vanishing of
the determinant

D1I D2DNI −D2I D1DNI 6= 0, (4.18)

allows us to write the the commutator invariants as rational combinations of I and its
invariant derivatives. In particular, setting N = (1), say, yields

Y1 = η1 =
(D1D2I −D2D1I)D2D1I − (D1D2D1I −D2D2

1I)D2I

D1I D2D1I −D2I D2
1I

,

Y2 = η2 =
(D1D2D1I −D2D2

1I)D1I − (D1D2I −D2D1I)D2
1I

D1I D2D1I −D2I D2
1I

,

(4.19)

bearing mind our convention about lower case Greek letters. A routine but tedious cal-
culation shows that the denominators in (4.19) are non-vanishing differential functions.
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Remark: By the same argument as was used for Euclidean surfaces, [27], the only
ternary forms for which all the determinants (4.18) vanish identically, are so are not
amenable to the commutator trick, are those for which

D1I = Φ1(I), D2I = Φ2(I), (4.20)

for scalar functions Φ1,Φ2. It would be interesting to explicitly characterize such de-
generate ternary forms.

Thus, according to (4.15),

I31 = 3
2 J + η̂1, I40 = η̂2, where η̂1 = 3η1 + 3

2 I
2, η̂2 = 3η2 + 3I. (4.21)

Next, the second recurrence formula in (4.11) for I21 = I implies

D2I = I22 − 1
2K −

5
2 I J + ϕ, where ϕ = − 1

3 I η̂1 + 1
2 I

3 − 2 +
4

n
.

Hence,
I22 = 1

2K + 5
2 I J + ϕ̂, where ϕ̂ = −ϕ+D2I.

Substituting this expression into the third formula in (4.11) for I12 = J yields

D1J = I22− 1
2K−

7
2 I J+ 1

3 J η̂2−2+
4

n
= αJ+β, where α = 1

3 η̂2 − I, β = ϕ̂− 2 +
4

n
.

(4.22)
Next, differentiating (4.22) yields

D1I31 −D2I40 = 3
2D1J +D1η̂1 −D2η̂2 = 3

2 αJ + ζ, where ζ = D1η̂1 −D2η̂2 + 3
2 β.

(4.23)
On the other hand, the fourth order recurrence formulae (4.12) imply that

D1I31−D2I40= 2
3 I31I40 −

3
2 I22 + 2I I31 − 1

2 J I40 − 2I2 I40 + 3− 9

n
=− 3

4K+λJ + µ,

where λ = 1
2 η̂2 −

3
4 I, µ = 2

3 η̂1 η̂2 −
3
2 ϕ̂+ 2I η̂1 − 2I2 η̂2 + 3− 9

n
.

(4.24)

Comparing (4.23), (4.24) yields

K = λ̂ J + µ̂, where λ̂ = 4
3 λ− 2α, µ̂ = 4

3 (µ− ζ). (4.25)

Next, again using (4.11),

D1K −D2J =
(
I13 +KI40 − 9

2IK −
3
2J

2
)
−
(
I13 + 1

3 J I31 −
3
2IK − 2J2 − 1

2 I
2J
)

= −J Y1 + 3KY2 = ρ J + σ, (4.26)
where, in view of (4.19), (4.25),

ρ = 3 λ̂ η2 − η1, σ = 3 µ̂ η2.

On the other hand, differentiating (4.25) and using (4.22),

D1K = κJ + τ, where κ = D1λ̂+ λ̂ α, τ = D1µ̂+ λ̂ β.
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Thus, comparing with (4.26), we find

D2J = γ J + δ, where γ = κ− ρ, δ = τ − σ. (4.27)

Finally, cross differentiating (4.22), (4.27) yields

D1D2J −D2D1J = (D1γ −D2α) J +D1δ −D2β + β γ − α δ.

On the other hand, (4.13), (4.19) combined with (4.22), (4.27) says

D1D2J −D2D1J = Y1D1J + Y2D2J = (αη1 + γ η2)J + β η1 + δ η2.

These last two identities imply

ω J + θ = 0, where
ω = D1γ −D2α− αη1 − γ η2,
θ = D1δ −D2β + β γ − α δ − β η1 − δ η2.

Thus, provided ω 6= 0, we can solve for

J = − θ/ω (4.28)

as a rather complicated but explicit rational function of I and its derivatives. Substi-
tuting this formula into (4.25) proves the same is true of K, thereby proving the claim.
To verify that ω is not identically zero, we merely note that, when the third order
expressions (4.19) are employed, D1γ evidently depends upon fifth order derivatives of
I, while all the other terms in ω involve at most fourth order derivatives. On the other
hand, ω may well vanish for special forms; again, their explicit characterization would
be of interest. Q.E.D.

It is also of interest to establish, by a slightly different argument, an alternative
generating differential invariant.

Theorem 4 The single differential invariant K = I03 generates the entire differential
invariant algebra I of a general ternary form through invariant differentiation.

Remark: We believe the same is also true for J = I12 although we have not tried
to work through the details.

Remark: The one difference between Theorem 3 and Theorem 4 is that, whereas
I generates within the category of rational differential invariant algebras — see the
remarks after (4.28) — the proof that K generates relies on the solution to a system of
quadratic equations and the resulting expressions for the other differential invariants
are algebraic functions of K and its invariant derivatives.

Proof : Applying the preceding “commutator trick”, replacing I by K in (4.17) and
(4.19), allows us to alternatively express the commutator invariants Y1, Y2 as rational
combinations of invariant derivatives of K:

Y1 =
(D1D2K −D2D1K)D2D1K − (D1D2D1K −D2D2

1K)D2K

D1K D2D1K −D2K D2
1K

,

Y2 =
(D1D2D1K −D2D2

1K)D1K − (D1D2K −D2D1K)D2
1K

D1K D2D1K −D2K D2
1K

,

(4.29)
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Thus, from (4.15), we can write

I40 = 3Y2 + 3I = ξ1(I, J ;K(3)), I31 = 3Y1 + 3
2 I

2 + 3
2 J = ξ2(I, J ;K(3)), (4.30)

where ξ1, ξ2 are quadratic (or linear) functions of the invariants I, J whose coefficients
are rational combinations of K and its invariant derivatives. In subsequent calculations
during this proof, all the indicated functions ξj will be of a similar form.

The last two recurrence relations in (4.11) combined with (4.30) allow us to write

I13 = D1K −KI40 + 9
2IK + 3

2J
2 = ξ3(I, J ;K(3)),

I04 = D2K −KI31 + 9
2JK + 3

2I
2K = ξ4(I, J ;K(3)).

(4.31)

Then, by use of (4.30), (4.31), the first four recurrence relations in (4.11) can be rewrit-
ten in the form

D1I = ξ5(I, J ;K(3)), D1J = I22 + ξ7(I, J ;K(3)),

D2I = I22 + ξ6(I, J ;K(3)), D2J = ξ8(I, J ;K(3)).
(4.32)

Next, according to (4.12), and applying the same substitutions (4.30), (4.31), we have

D2I40 −D1I31 = 3
2 I22 + ξ9(I, J ;K(3)). (4.33)

On the other hand, invariantly differentiating the expressions (4.30) and substituting
for the derivatives of I, J wherever they occur according to (4.32) produces a formula
of the form

D2I40 −D1I31 = 3
2 I22 + ξ10(I, J ;K(4)). (4.34)

Clearly, ξ11 = ξ10 − ξ9 6≡ 0, and so, after substituting for Y1, Y2 according to (4.29), we
derive a nontrivial rational relation that takes the explicit form

0 = ξ11(I, J ;K(4)) = − 3
4I J + 3

4K + 3D1Y1 − 3D2Y2 − 6Y1Y2 + 3/n. (4.35)

Furthermore, if we invariantly differentiate (4.35) and substitute for the derivatives of
I, J according to (4.32), we derive expressions of the form

0 = D1ξ11 = −3
4 I I22 + ξ12(I, J ;K(5)),

0 = D2ξ11 = −3
4 J I22 + ξ13(I, J ;K(5)).

(4.36)

Setting ξ14 = J ξ12 − I ξ13 produces a second quadratic relation, which, after a tedious
computation, can be shown to have the explicit form

ξ14(I, J ;K(5)) =
(
3
4D1K − 9

4KY2
)
I2 +

(
−3D2D1Y1 + 3D2

2Y2 + 6D2(Y1Y2)− 3
4D2K

)
I

− 9
4 Y1J

2 +
(
3D2

1Y1 − 3D1D2Y2 − 6D2(Y1Y2) + 3
4D1K

)
J = 0.

(4.37)
Clearly ξ11, ξ14 are functionally independent as quadratic functions of I, J , and so we
can locally solve (4.35), (4.37) for I, J as functions K and its invariant derivatives up
to order 5:

I = θ1(K
(5)), J = θ2(K

(5)). (4.38)

In fact, a Mathematica calculation demonstrates that the functions θ1, θ2 can be writ-
ten as explicit complicated rational algebraic combinations of K and its derivatives.
Thus, we have shown how to generate both I and J directly from K, which implies
that K indeed (algebraically) generates the entire differential invariant algebra. Q.E.D.
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In Irina Kogan’s thesis, [14], a more symmetric, but non-minimal order cross-section
was used to construct the differential invariants, namely

K̂ =
{
x = y = 0, u = 1, ux = uy = uxx = uyy = 0, uxxx = uyyy = 1

}
. (4.39)

Let us label the differential invariants resulting from this cross-section as Îjk = ι̂(ujk).
We shall apply Theorem 1 to determine the relationship between the two sets of

differential invariants associated with the preceding cross-sections (4.6) and (4.39). To
this end, let us determine the group elements that map K̂ to K, as in (2.6). A direct
calculation7 shows that a group element sufficiently close to the identity8 preserves the
common equations

x = y = 0, u = 1, ux = uy = uxx = uyy = 0, uxxx = 1,

if and only if it has the diagonal form

g =

α β γ
λ µ ν
ρ σ τ

 =

 1 0 0
0 µ 0

0 0 1

 . (4.40)

Such elements act by simple scaling of the jet coordinates (4.3):

ujk 7−→
ujk
µk

. (4.41)

Thus, g maps K̂ to K if and only if

uxy 7−→ uxy/µ = 1, and hence µ = uxy.

This implies

ρ(z(3)) =

 1 0 0
0 uxy 0
0 0 1

 for any z(3) = (0, 0, 1, 0, 0, 0, uxy, 0, 1, uxxy, uxyy, 1) ∈ K̂.

(4.42)
In view of (2.5), (4.41), (4.42), the relationship between the the two sets of normalized
differential invariants is given explicitly by

Ijk =
Îjk

(Î11)k
. (4.43)

In particular,

I30 = Î30 = 1, I21 =
Î21

Î11
, I12 =

Î12

(Î11)2
, I03 =

Î03

(Î11)3
=

1

(Î11)3
. (4.44)

Keep in mind that the invariant differential operators and hence the commutator
invariants are different for the two cross-sections. Indeed, for a group element of the
simple form (4.40),

dx 7−→ dx, dy 7−→ µdy.

7One can determine values for the matrix entries order by order to simplify the computations; for example
the fact that both cross-sections have x = y = 0 implies γ = ν = 0, and one can then restrict to this subgroup
when determining the first order prolonged action.

8This restriction is needed because of local freeness.
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Invariantizing these horizontal forms and dual differential operators implies that two
invariant differential operators are related by

D1 = D̂1, D2 =
1

Î11
D̂2. (4.45)

As an immediate consequence of Theorem 4, we deduce that the differential invariant

algebra is generated by the differential invariant Î11 = I
−1/3
03 = K−1/3.

The explicit formulas for the lowest order differential invariants of a ternary form
were found in Irina Kogan’s thesis, [14]; see also [15]. Since these have not all appeared
in print, we collect them here. Given a ternary form u(x, y), we begin by defining the
following differential functions:

Q20 = u2(1/n−1)

[
uu20 −

n− 1

n
u210

]
,

Q11 = u2(1/n−1)

[
uu11 −

n− 1

n
u10u01

]
,

Q02 = u2(1/n−1)

[
uu02 −

n− 1

n
u201

]
,

Q30 = u3(1/n−1)

[
u2u30 − 3

n− 2

n
uu10u20 + 2

(n− 1)(n− 2)

n2
u310

]
,

Q21 = u3(1/n−1)

[
u2u21 −

n− 2

n
u(u01u20 + 2u10u11) + 2

(n− 1)(n− 2)

n2
u210u01

]
,

(4.46)

Q12 = u3(1/n−1)

[
u2u12 −

n− 2

n
u(2u01u11 + u10u02) + 2

(n− 1)(n− 2)

n2
u10u

2
01

]
,

Q03 = u3(1/n−1)

[
u2u03 − 3

n− 2

n
uu01u02 + 2

(n− 1)(n− 2)

n2
u301

]
.

Set

P2 = Q20Q02 −Q2
11,

P3 = Q2
30Q

2
03 − 6Q30Q21Q12Q03 + 4Q30Q

3
12 + 4Q3

21Q03 − 3Q2
21Q

2
12,

M1 = Q30Q12Q02 −Q30Q03Q11 −Q2
21Q02 +Q21Q12Q11 +Q21Q03Q20 −Q2

12Q20,

M2 = 5Q2
30Q

3
02 − 30Q30Q21Q11Q

2
02 + 6Q30Q12Q20Q

2
02 + 24Q30Q12Q

2
11Q02 −

− 6Q30Q03Q20Q11Q02 − 4Q30Q03Q
3
11 + 9Q2

21Q20Q
2
02 + 36Q2

21Q
2
11Q02 −

− 54Q21Q12Q20Q11Q02 − 36Q21Q12Q
3
11 + 6Q21Q03Q

2
20Q02 + 9Q2

12Q
2
20Q02 +

+ 24Q21Q03Q20Q
2
11 + 36Q2

12Q20Q
2
11 − 30Q12Q03Q

2
20Q11 + 5Q2

03Q
3
20.

(4.47)

Then,

Î1 =
Î21Î12 − 1

(Î11)3
=
M1

P 2
2

, Î2 = −4
9 Î21Î12 + 1

(Î11)3
=
M2

P 3
2

,

Î3 =
1− 3(Î21Î12)

2 − 6 Î21Î12 + 4(Î21)
3 + 4(Î12)

3

(Î11)6
=
P3

P 3
2

.

(4.48)

The algebraic equations (4.48) can be solved to give the three generating differen-
tial invariants Î11, Î21, Î12, or, equivalently through (4.44), our differential invariants
I21, I12, I03. The resulting formulas are rational algebraic functions of the form u and
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its derivatives of order ≤ 3. The ambiguities in these functions stem from the fact that
the action of GL(3) on J3 is only locally free; according to [31], the cardinality of the
isotropy subgroup of an individual point on the cross-section (4.39) is 18.

The formulas for the invariant differential operators are not explicitly displayed in
[14, 15], but can be reconstructed by substituting their moving frame formulas for the
group parameters into the implicit differentiation operators (4.4).

5 Joint Differential Invariants of Ternary Forms

This final section is devoted to the study of (l + 1)-point joint differential invari-
ants of ternary forms. The GL(3) transformations (4.1) now act on multiple points
zk = (xk, yk, uk), k = 0, 1, . . . , l. To simplify the subsequent notation, we define the
quantities

Aijk = xi(yj − yk) + xj(yk − yi) + xk(yi − yj), (5.1)

which are skew symmetric in their indices.
We begin by studying the case when there are ≥ 3 points, leaving the more difficult

2 point case until the end of this section. For the Cartesian product action on M×(l+1)

for l ≥ 2, a simple cross section is given by

x0 = y0 = x1 = 0, u0 = y1 = u1 = x2 = y2 = u2 = 1. (5.2)

The solution of the corresponding normalization equations gives the following right
moving frame:

α =
(y0 − y1) n

√
u2

A012
, β =

(x1 − x0) n
√
u2

A012
, γ =

(x0y1 − x1y0) n
√
u2

A012
,

λ =
(y2 − y0) n

√
u1 + (y0 − y1) n

√
u2

A012
, µ =

(x0 − x2) n
√
u1 + (x1 − x0) n

√
u2

A012
,

ν =
(x2y0 − x0y2) n

√
u1 + (x0y1 − x1y0) n

√
u2

A012
,

ρ =
(y1 − y2) n

√
u0 + (y2 − y0) n

√
u1 + (y0 − y1) n

√
u2

A012
,

σ =
(x2 − x1) n

√
u0 + (x0 − x2) n

√
u1 + (x1 − x0) n

√
u2

A012
,

τ =
(x1y2 − x2y1) n

√
u0 + (x2y0 − x0y2) n

√
u1 + (x0y1 − x1y0) n

√
u2

A012
.

(5.3)

As before, we ignore the branching ambiguity in the n-th roots that is a consequence
of the local freeness of the action; for instance, we can restrict our attention to the case
of real, positive forms. Then, substituting (5.3) into (4.1) produces a complete system
of joint invariants:

Hk = ι(xk) =
(x2 − x1)yk n

√
u0 + (x0 − x2)yk n

√
u1 +A01k n

√
u2

Bk
,

Ik = ι(yk) =
A0k2 n

√
u1 +A01k n

√
u2

Bk
, Jk = ι(uk) = uk

(
A012

Bk

)n
,

(5.4)

where
Bk =

n
√
u0A12k +

n
√
u1A20k +

n
√
u2A01k. (5.5)
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The invariant differential operators for the joint differential invariants are given
by invariantization of the total derivatives: Dk = ι(Dxk), Ek = ι(Dyk). As usual,
these are found by substituting the moving frame expressions (5.3) into the implicit
differentiation operators DXk , DY k , which are simply obtained from (4.4) by replacing
x, y by xk, yk. The explicit formulas are

Dk =
Bk

n
√
u0u1u2A012

[ n
√
u0u1(xk − x2) +

n
√
u0u2(x1 − xk)

]
Dxk

+
[ n
√
u0u1(yk − y2) +

n
√
u0u2(y1 − yk)

]
Dyk

 ,

Ek =
Bk

n
√
u0u1u2A012

[ n
√
u0u2(xk − x1) +

n
√
u1u2(x0 − xk)

]
Dxk

+
[ n
√
u0u2(yk − y1) +

n
√
u1u2(y0 − yk)

]
Dyk

 .

(5.6)

Further, using the phantom recurrence formulae to calculate the Maurer–Cartan
invariants, we deduce the following recurrence formulae (2.11) for the joint differential
invariants of ternary forms. Let

Kk = ι(ukx), Lk = ι(uky). (5.7)

Then, for j, k ≥ 2,

D0Hk = (Ik − 1)

(
1

n
HkK0 + 1

)
,

D0Ik =
1

n
Ik(Ik − 1)K0,

D0Jk = (Ik − 1)JkK0,

D1Hk = (Hk − Ik)
(

1

n
HkK1 + 1

)
,

D1Ik =
1

n
(Hk − Ik)(Ik − 1)K1,

D1Jk = (Hk − Ik)JkK1,

D2Hk = Hk

(
1

n
(1−Hk)K2 − 1

)
,

D2Ik =
1

n
Hk(1− Ik)K2,

D2Jk = −HkJkK2,

E0Hk =
1

n
Hk(Ik − 1)L0,

E0Ik = (Ik − 1)

(
1

n
IkL0 + 1

)
,

E0Jk = (Ik − 1)JkL0,

E1Hk =
1

n
Hk(Hk − Ik)L1,

E1Ik = (Hk − Ik)
(

1

n
(Ik − 1)L1 + 1

)
,

E1Jk = (Hk − Ik)JkL1,

E2Hk =
1

n
Hk(1−Hk)L2,

E2Ik =
1

n
Hk(1− Ik)L2 −Hk,

E2Jk = −HkJkL2,

(5.8)

while, for k 6= 0, 1, 2,

DjHk =

{
1, j = k,

0, j 6= k,
DjIk = 0, DjJk =

{
Kk, j = k,

0, j 6= k,

EjHk = 0, EjIk =

{
1, j = k,

0, j 6= k,
EjJk =

{
Lk, j = k,

0, j 6= k.

(5.9)

Finally, adapting (4.14) to the multi-point case, we calculate the commutators of the
invariant differential operators (5.6). For k,m ≥ 3,
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[D0, E0 ] =

(
L0

n
+ 1

)
D0 − K0

n
E0, [D0,D1 ] = −D0 +

K0

n
E0,

[D0, E1 ] =

(
L1

n
− 1

)
E0 +D1 +

K0

n
E1, [D0,D2 ] = −

(
L2

n
− 1

)
D0 − K2

n
E0,

[D0, E2 ] = −L
2

n
D0 −

(
L2

n
− 1

)
E0 +

(
L0

n
+ 1

)
D2 +

K0

n
E2,

[D0,Dk ] =
(Ik − 1)K0

n
Dk, [D0, Ek ] =

(
HkL0

n
+ 1

)
Dk +

(2Ik − 1)K0

n
Ek,

[ E0,D1 ] = D0 − L1

n
E0, [ E0, E1 ] = −

(
L1

n
− 1

)
E0 +

(
L0

n
+ 1

)
E1,

[ E0,D2 ] = 0, [ E0, E2 ] =
L0

n
D2 +

(
L0

n
+ 1

)
E2,

[ E0,Dk ] =
(Ik − 1)L0

n
Dk, [ E0, Ek ] =

HkL0

n
Dk +

(
(2Ik − 1)L0

n
+ 1

)
Ek,

[D1, E1 ] =

(
L1

n
− 1

)
D1 −

(
K1

n
+ 1

)
E1,

[D1,D2 ] = −
(
K2

n
− 1

)
D1 +

(
K1

n
+ 1

)
D2,

[D1, E2 ] = −L
2

n
D1 + E1 −

(
K1

n
+ 1

)
D2,

[D1,Dk ] =

(
(2Hk − Ik)K1

n
+ 1

)
Dk +

(Ik − 1)K1

n
Ek,

[D1, Ek ] = −
(
HkK1

n
+ 1

)
Dk +

(Hk − 2Ik + 1)K1

n
Ek,

[ E1,D2 ] =
L1

n
D2 + E2, [ E1, E2 ] = −L

1

n
D2 − E2,

[ E1,Dk ] =
(2Hk − Ik)L1

n
Dk +

(
(Ik − 1)L1

n
+ 1

)
Ek,

[ E1, Ek ] = −H
kL1

n
Dk +

(
(Hk − 2Ik + 1)L1

n
− 1

)
Ek,

[D2, E2 ] =
L2

n
D2 −

(
K2

n
− 1

)
E2,

[D2,Dk ] =

(
(1− 2Hk)K2

n
− 1

)
Dk +

(1− Ik)K2

n
Ek,

[D2, Ek ] = −H
kK2

n
Ek,

[ E2,Dk ] =
(1− 2Hk)L2

n
Dk +

(
(1− Ik)L2

n
− 1

)
Ek,

[ E2, Ek ] = −H
kL2

n
Ek,

[Dk,Dm ] = [Dk, Em ] = [ Ek, Em ] = 0.

(5.10)
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In order to determine a minimal system of generators of the resulting joint differ-
ential invariant algebra, observe first that the recurrence relations (5.8), (5.9) allow us
to generate all first order joint differential invariants Kj , Lj for j ≥ 0 from the order
0 joint differential invariants Hk, Ik, Jk for k ≥ 2. Moreover, according to (5.10), the
latter all appear as combinations of commutator invariants. Thus, by applying the
commutator trick used above, cf. [25], we can generate all the zeroth order joint differ-
ential invariants by differentiating any one of them, for example H2 or I2 or J2. We
have thus proved the following result.

Theorem 5 The algebra of (l+ 1) point joint differential invariants of a ternary form
for l ≥ 2 is generated by a single joint invariant through invariant differentiation.

Finally , let us investigate the two-point joint differential invariants, where one only
has (x0, y0, u0) and (x1, y1, u1). In this case, since dim GL(3) = 9 the action is not
free on M×2, and so one must prolong to a Cartesian product jet space. The choice
of cross-section is a little subtle. The action is transitive on the dense open subset of
M×2 consisting of linearly independent points with non-zero u coordinate, and so, as
in (5.2), we can set

x0 = y0 = x1 = 0, u0 = y1 = u1 = 1. (5.11)

Solving the resulting algebraic equations for the group parameters β, γ, µ, ν, σ, τ leads
to the following partial moving frame:

β =
x0 − x1

y1 − y0
α, γ =

x1y0 − x0y1

y1 − y0
α,

µ =
(x0 − x1)λ+

n
√
u1

y1 − y0
, ν =

(x1y0 − x0y1)λ− y0 n
√
u1

y1 − y0
,

σ =
(x0 − x1)ρ+

n
√
u1 − n

√
u0

y1 − y0
, τ =

(x1y0 − x0y1)ρ+ y1
n
√
u0 − y0 n

√
u1

y1 − y0
.

(5.12)

Surprisingly, even though dim J1(M, 2)×2 = 10 > dim GL(3) = 9, the joint action of
GL(3) on J1(M, 2)×2 is not free. Indeed, by computing the dimension of the subspace
of the tangent space TJ1(M, 2)×2 spanned by the prolonged infinitesimal generators,
we find that the generic orbits are 8 dimensional, and hence there are, in fact, two
first order joint differential invariants. Moreover, due to a subtle degeneracy, it is not
possible to normalize both of the first order derivatives of either u0 or u1. Thus, we
must prolong to order 2, and a cross-section is provided by combining (5.11) with the
further normalizations

u0x = u0xx = 0, u1x = 1. (5.13)

Substituting the partial moving frame formula (5.12), and solving the two first order
normalization equations for α, λ produces

α =
(u1)1/n−1

[ (
n2u0u1 − S0S1

)
ρ+W

]
T

, λ =

n
√
u1
(
−nu0 ρ+

n
√
u0u0x

)
T

, (5.14)

where

S0 = (x1 − x0)u0x + (y1 − y0)u0y + nu0, S1 = (x0 − x1)u1x + (y0 − y1)u1y + nu1,

T =
n
√
u0 S0 − nu0 n

√
u1, W =

n
√
u0 (S0u1x − nu1u0x)− n

√
u1(S1u0x − nu0u1x).

(5.15)
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Finally, the remaining second order normalization produces

ρ =
(y1 − y0)T

√
X + nu0Y + n(n− 1)u0u0x

(
n
√
u0 − n

√
u1
)
(S0 − nu0)

Z
, (5.16)

where

X = n2 (u0)2
[

(u0xy)
2 − u0xxu0yy

]
+ n(n− 1)u0

[
(u0y)

2u0xx − 2u0xu
0
yu

0
xy + (u0x)2u0yy

]
,

Y = (x1 − x0)
[ n
√
u0
(

(y1 − y0)u0y + nu0
)
− nu0 n

√
u1
]
u0xx − (y1 − y0)2 n

√
u0u0xu

0
yy −

− (y1 − y0)
[ n
√
u0
(

(x1 − x0)u0x − (y1 − y0)u0y − nu0
)

+ nu0
n
√
u1
]
u0xy,

Z = −n2 (u0)2
[

(x1 − x0)2u0xx + 2(x1 − x0)(y1 − y0)u0xy + (y1 − y0)2u0yy
]

+

+ n(n− 1)u0
[

(x1 − x0)2(u0x)2 + 2(x1 − x0)(y1 − y0)u0xu0y + (y1 − y0)2(u0y)2
]
.

(5.17)
Substituting (5.16) back into (5.14) and then the results into (5.12) produces the explicit
formulae for the moving frame which, because they are quite complicated, we do not
write out.

Let us denote the resulting differential invariants by

Lk = ι(uky), P k = ι(ukxx), Qk = ι(ukxy), Rk = ι(ukyy), k = 0, 1. (5.18)

In particular, P 0 = 0 is a phantom invariant. The two first order joint differential
invariants are

L0 = (u0)1/n−1(u1)−1/n S0 − n, L1 = − (u0)−1/n(u1)1/n−1 S1 + n. (5.19)

Of course, we can drop the constant terms without changing any of the subsequent
results. The second order differential invariants are more complicated, but can be
derived by invariant differentiation using the recurrence relations. For this, the invariant
differential operators are

D0 =
n
√
u0/u1u1(

n2u0u1 − S0S1
)
ρ+W

D̃0, D1 =
u1(

n2u0u1 − S0S1
)
ρ+W

D̃1,

E0 = n
√
u0/u1

[
(x1 − x0)Dx0 + (y1 − y0)Dy0

]
,

E1 = n
√
u1/u0

[
(x1 − x0)Dx1 + (y1 − y0)Dy1

]
,

(5.20)

where

D̃0 =
[
nu0

(
(x1 − x0)ρ− n

√
u1
)

+
n
√
u0
(

(y1 − y0)u0y + nu0
) ]
Dx0

+ (y1 − y0)
[
nu0ρ− n

√
u0u0x

]
Dy0 ,

D̃1 =
[
S0
(

(x1 − x0)ρ+
n
√
u0
)
− n
√
u1
(

(x1 − x0)u0x + nu0
) ]
Dx0

+ (y1 − y0)
[
S0ρ− n

√
u1u0x

]
Dy0 ,

(5.21)

when ρ is replaced by its moving frame formula (5.16). The resulting expressions are
then fully symmetrical with respect to to permutation of indices, but in that form are
much longer and more cumbersome to write down.

We use the phantom recurrence formulae to calculate the Maurer–Cartan invari-
ants, and then substitute the resulting expressions to derive the first order recurrence
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relations

D0L0 = Q0, E0L0 = R0 − n− 1

n
(L0)2,

D1L0 = − 1

n
L0 − 1, E1L0 = − 1

n
L0L1 + L0 − L1,

D0L1 = −1, E0L1 = − 1

n
L0L1 + L0 − L1,

D1L1 = Q1 − n− 1

n
L1, E1L1 = R1 − n− 1

n
(L1)2.

(5.22)

Thus, starting with the first order joint differential invariant L0, we can generate the
other first order joint differential invariant L1, and then use those to generate the second
order joint differential invariants Q0, R0, Q1, R1. In order to generate the remaining
second order joint differential invariant P 1, we use some of the second order recurrence
formulae:

D0R0 = U0 − 2Q0, D1U0 = 2T 0 −
(
P 1 − n− 3

n

)
U0 − 2n− 4

n
L1Q0,

E0Q0 = U0 +

(
(n− 1)(L0)2 − nR0

2nQ0
+

1

2n
L0L1 − 1

2
L0 +

1

2
L1

)
T 0

−
(

1

n
L1 − 1

)
(Q0)2 −

(
2n− 3

n
L0 + 1

)
Q0,

(5.23)

where, for k = 0, 1,

Sk = ι(ukxxx), T k = ι(ukxxy), Uk = ι(ukxyy), V k = ι(ukyyy). (5.24)

Since we have already generated Q0, R0, the first two allow us to then generate the
third order invariants U0, T 0. From these, we can then generate P 1 using the third of
these formulae. With all the third order joint differential invariants in hand, the general
theorem, [7], allows us to establish our final result.

Theorem 6 The algebra of two point joint differential invariants of a ternary form is
generated by the single first order differential invariant L0 = ι(u0y) through invariant
differentiation.

Finally, the commutator formulas for the invariant differential operators are

[D0, E0 ] =

(
(L0L1 − nL0 + nL1)T 0

2nQ0
+Q0 − 1

L1 +
1
L0 + 1

)
D0 − T 0

2Q0
E0,

[D0,D1 ] =

(
n− 1

n
− P 1

)
D0 − (L0L1 − nL0 + nL1)S0

2nQ0
D1 +

(L0 + n)S0

2nQ0
E1,

[D0, E1 ] =

(
n− 1

n
L1 −Q1

)
D0 +D1,

[ E0, E1 ] = −
(

1

n
L1 − 1

)
E0 +

(
1

n
L0 + 1

)
E1, [D1, E1 ] = (L1 −Q1 − 1)D1 − 1

n
E1,

(5.25)

[ E0,D1 ] = D0 − 1

n
E0 +

(
− (L0L1 − nL0 + nL1)T 0

2nQ0
−Q0 +

1

n
L1

)
D1

+

(
(L0 + n)T 0

2nQ0
− 1

n
Q0

)
E1.
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Thus, since P 1 appears, modulo an additive constant, as one of the commutator invari-
ants, the commutator trick provides an alternative method to generate it by differenti-
ating L0, and thereby reprove Theorem 6.
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les Espaces Généralisés, Exposés de Géométrie, no. 5, Hermann, Paris, 1935.

[7] Fels, M., and Olver, P.J., Moving coframes. II. Regularization and theoretical
foundations, Acta Appl. Math. 55 (1999), 127–208.

[8] Görlach, P., Hubert, E., and Papadopoulo, T., Rational invariants of even ternary
forms under the orthogonal group, Found. Comput. Math. 19 (2019), 1315–1361.

[9] Grace, J.H., and Young, A., The Algebra of Invariants, Cambridge University
Press, Cambridge, 1903.

[10] Guggenheimer, H.W., Differential Geometry, McGraw–Hill, New York, 1963.

[11] Gurevich, G.B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff
Ltd., Groningen, Holland, 1964.

[12] Hubert, E., and Olver, P.J., Differential invariants of conformal and projective
surfaces, SIGMA 3 (2007), 097.

[13] Kim, P., Invariantization of numerical schemes using moving frames, BIT 47
(2007), 525–546.

[14] Kogan, I.A., Inductive Approach to Cartan’s Moving Frame Method with
Applications to Classical Invariant Theory, Ph.D. Thesis, University of
Minnesota, 2000, https://arxiv.org/abs/1909.02055.

27



[15] Kogan, I.A., and Moreno Maza, M., Computation of canonical forms for ternary
cubics, in: Proceedings of the 2002 International Symposium on Symbolic and
Algebraic Computation, T. Mora, ed., The Association for Computing Machinery,
New York, 2002, pp. 151–160.

[16] Lie, S., and Scheffers, G., Vorlesungen über Continuierliche Gruppen mit
Geometrischen und Anderen Anwendungen, B.G. Teubner, Leipzig, 1893.

[17] Mansfield, E. L., A Practical Guide to the Invariant Calculus, Cambridge
University Press, Cambridge, 2010.
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