AIMS Lecture Notes 2006

Peter J. Olver

8. Numerical Computation of Eigenvalues

In this part, we discuss some practical methods for computing eigenvalues and eigen-
vectors of matrices. Needless to say, we completely avoid trying to solve (or even write
down) the characteristic polynomial equation. The very basic power method and its vari-
ants, which is based on linear iteration, is used to effectively approximate selected eigenval-
ues. To determine the complete system of eigenvalues and eigenvectors, the remarkable () R
algorithm, which relies on the Gram—Schmidt orthogonalization procedure, is the method
of choice, and we shall close with a new proof of its convergence.

8.1. The Power Method.

We have already noted the role played by the eigenvalues and eigenvectors in the
solution to linear iterative systems. Now we are going to turn the tables, and use the
iterative system as a mechanism for approximating the eigenvalues, or, more correctly,
selected eigenvalues of the coefficient matrix. The simplest of the resulting computational
procedures is known as the power method.

We assume, for simplicity, that A is a complete’ n x n matrix. Let vy,...,Vv, denote
its eigenvector basis, and A,,..., A, the corresponding eigenvalues. As we have learned,
the solution to the linear iterative system

is obtained by multiplying the initial vector v by the successive powers of the coefficient
matrix: v(®¥) = A¥v. If we write the initial vector in terms of the eigenvector basis

v=cVvy+ - +¢c,V,, (8.2)
then the solution takes the explicit form given in Theorem 7.2, namely

vl = Afv = e Mvy o e, My (8.3)

n‘n  "n-

T This is not a very severe restriction. Most matrices are complete. Moreover, perturbations
caused by round off and/or numerical inaccuracies will almost inevitably make an incomplete
matrix complete.
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Suppose further that A has a single dominant real eigenvalue, A, that is larger than
all others in magnitude, so

[ ALl > 1A for all j>1 (8.4)

As its name implies, this eigenvalue will eventually dominate the iteration (8.3). Indeed,
since
A [F> AP forall j>1 andall k>0,

the first term in the iterative formula (8.3) will eventually be much larger than the rest,
and so, provided ¢; # 0,

v~ e Ay, for k> 0.

Therefore, the solution to the iterative system (8.1) will, almost always, end up being a
multiple of the dominant eigenvector of the coefficient matrix.

To compute the corresponding eigenvalue, we note that the ¢t® entry of the iterate
v(¥) is approximated by fugk) SEPY vy ;, where vy ; is the i*h entry of the eigenvector v;.
Thus, as long as v, ; # 0, we can recover the dominant eigenvalue by taking a ratio between
selected components of successive iterates:

(k)
v; . k—
A R~ DR provided that vi( 2 #0. (8.5)
-1 2 2
Example 8.1. Consider the matrix A= | —1 —4 —2 |. As you can check, its
eigenvalues and eigenvectors are -3 9 7
1 0 -1
3 -1 -2

Repeatedly multiplying an initial vector v = (1,0,0 )T, say, by A results in the iterates
v(k) = AFv listed in the accompanying table. The last column indicates the ratio \(¥) =

vgk)/ v§’“‘1) between the first components of successive iterates. (One could equally well
use the second or third components.) The ratios are converging to the dominant eigenvalue
A; = 3, while the vectors v(#) are converging to a very large multiple of the corresponding
eigenvector v, = (1,-1,3)".

The success of the power method lies in the assumption that A has a unique dominant
eigenvalue of maximal modulus, which, by definition, equals its spectral radius: |\, | =
p(A). The rate of convergence of the method is governed by the ratio | A\,/A; | between
the subdominant and dominant eigenvalues. Thus, the farther the dominant eigenvalue
lies away from the rest, the faster the power method converges. We also assumed that the
initial vector v(9) includes a nonzero multiple of the dominant eigenvector, i.e., c; #0. As
we do not know the eigenvectors, it is not so easy to guarantee this in advance, although
one must be quite unlucky to make such a poor choice of initial vector. (Of course, the
stupid choice v(?) = 0 is not counted.) Moreover, even if ¢, happens to be 0 initially,
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k v(k) Ak)
0 1 0 0

1 —1 —1 -3 —1.

2 -7 11 —-27 7.

3 —25 17 —69 3.5714
4 —79 95 —255 3.1600
5 —241 209 —693 3.0506
6 =727 791 —2247 3.0166
7 —2185 2057 —6429 3.0055
8 —6559 6815 —19935 3.0018
9 —19681 19169 —58533 3.0006
10 —59047 60071 —178167 3.0002
11 —177145 175097 —529389 3.0001
12 —531439 535535 —1598415 3.0000

numerical round-off error will typically come to one’s rescue, since it will almost inevitably
introduce a tiny component of the eigenvector v, into some iterate, and this component
will eventually dominate the computation. The trick is to wait long enough for it to show
up!

Since the iterates of A are, typically, getting either very large — when p(A) > 1
— or very small — when p(A) < 1 — the iterated vectors will be increasingly subject
to numerical over- or under-flow, and the method may break down before a reasonable
approximation is achieved. One way to avoid this outcome is to restrict our attention
to unit vectors relative to a given norm, e.g., the Euclidean norm or the oo norm, since
their entries cannot be too large, and so are less likely to cause numerical errors in the
computations. As usual, the unit vector u®) = || v(*) || =1 v(¥) is obtained by dividing the
iterate by its norm; it can be computed directly by the modified iterative scheme

0 k
(0) _ v(© ’ and a1 — L() )
v | Aa®) |

(8.6)

If the dominant eigenvalue A\, > 0 is positive, then u*) — u, will converge to one of the
two dominant unit eigenvectors (the other is —u;). If A\; < 0, then the iterates will switch
back and forth between the two eigenvectors, so ul®) ~ +u,. In either case, the dominant
eigenvalue )\, is obtained as a limiting ratio between nonzero entries of Au® and u®.
If some other sort of behavior is observed, it means that one of our assumptions is not
valid; either A has more than one dominant eigenvalue of maximum modulus, e.g., it has
a complex conjugate pair of eigenvalues of largest modulus, or it is not complete.

Example 8.2. For the matrix considered in Example 8.1, starting the iterative
scheme (8.6) with u®) = (1,0,0)” by A, the resulting unit vectors are tabulated below.
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k ulk) A

0 1 0 0

1 —.3015  —.3015  —.9045 —1.0000
2 —.2335 3669  —.9005 7.0000
3 —.3319 2257  —.9159 3.5714
4 —.2788 3353 —.8999 3.1600
5 —.3159 2740 —.9084 3.0506
6 —.2919 3176 —.9022 3.0166
7 —.3080 2899  —.9061 3.0055
8 —.2973 3089 —.9035 3.0018
9 —.3044 2965  —.9052 3.0006
10 —.2996 3048 —.9041 3.0002
11 —.3028 2993 —.9048 3.0001
12 —.3007 3030 —.9043 3.0000

The last column, being the ratio between the first components of Au*~1 and u*—1,
again converges to the dominant eigenvalue \; = 3.

Variants of the power method for computing the other eigenvalues of the matrix are
explored in the exercises.

8.2. The QR Algorithm.

The most popular scheme for simultaneously approximating all the eigenvalues of a
matrix A is the remarkable Q R algorithm, first proposed in 1961 by Francis, [18], and
Kublanovskaya, [31]. The underlying idea is simple, but surprising. The first step is to
factor the matrix

A:AO:QORO

into a product of an orthogonal matrix (), and a positive (i.e., with all positive entries along
the diagonal) upper triangular matrix R, by using the Gram-Schmidt orthogonalization
procedure. Next, multiply the two factors together in the wrong order! The result is the
new matrix

A =RyQ,.
We then repeat these two steps. Thus, we next factor

Ay =Q Ry
using the Gram—Schmidt process, and then multiply the factors in the reverse order to
produce

A, =R, Q.
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The complete algorithm can be written as

where @Q,, R; come from the previous step, and the subsequent orthogonal matrix @, _ 4
and positive upper triangular matrix R, are computed by using the numerically stable
form of the Gram—Schmidt algorithm.

The astonishing fact is that, for many matrices A, the iterates A, — V converge to
an upper triangular matrix V' whose diagonal entries are the eigenvalues of A. Thus, after
a sufficient number of iterations, say k*, the matrix A,. will have very small entries below
the diagonal, and one can read off a complete system of (approximate) eigenvalues along
its diagonal. For each eigenvalue, the computation of the corresponding eigenvector can
be done by solving the appropriate homogeneous linear system, or by applying the shifted
inverse power method.

Example 8.3. Consider the matrix A = (;
torization A = Q, R, yields

Q. = 7071 —=.7071 R o— 2.8284 2.8284
0 \.7071 7071 ) 0 0 1.4142 )~

These are multiplied in the reverse order to give

4 0
A12R0Q02<1 1)'

We refactor A, = @, R, via Gram-Schmidt, and then reverse multiply to produce
0, — 9701 —.2425 Ro— 4.1231 .2425
L7\ .2425 9701 )’ L 0 9701 )7

4.0588 —.7647
Ay =T Q1 = < 2353 .9412) '

;) The initial Gram—Schmidt fac-

The next iteration yields
0, — 9983  —.0579 R — 4.0656 —.7090
27\ .0579 9983 /)’ 2 0 9839 )’

4.0178 —.9431
Ay =Ry Qy = ( 0569 .9822) '

Continuing in this manner, after 9 iterations we find, to four decimal places,

4 — 4 —
Qg:((l) (1))7 Rg:(o 1)7 A10:R9Q9:<0 i)

The eigenvalues of A, namely 4 and 1, appear along the diagonal of A,,. Additional
iterations produce very little further change, although they can be used for increasing the
accuracy of the computed eigenvalues.
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If the original matrix A happens to be symmetric and positive definite, then the
limiting matrix A, — V = A is, in fact, the diagonal matrix containing the eigenvalues
of A. Moreover, if, in this case, we recursively define

Sk = Sk:—l Qk = Qo Q1 Qk:—l ka (8~8)
then S, — S have, as their limit, an orthogonal matrix whose columns are the orthonor-
mal eigenvector basis of A. 9 1 0

Example 8.4. Consider the symmetric matrix A = | 1 3 —1]. The initial
A = Q, R, factorization produces 0 -1 6
8944 —.4082 —.1826 2.2361 2.2361 — 4472
Sy =Qy = | 4472 .8165 .3651 |, Ry = 0 2.4495  —3.2660 |,
0 —.4082 9129 0 0 5.1121
and so
3.0000 1.0954 0
A =R,Q,= | 1.0954 3.3333 —2.0870
0 —2.0870 4.6667
We refactor A, = Q; R, and reverse multiply to produce
9393 —.2734 —.2071 7001 —.4400 —.5623
Q, = | -3430 7488 5672 |, S, =5,Q, = .7001 .2686 .6615 |,
0 —.6038 7972 —.1400 —.8569 .4962
3.1937 2.1723 —.7158 3.7451 1.1856 0
R, = 0 3.4565  —4.3804 |, A, =R,Q, = | 1.1856 5.2330 —1.5314
0 0 2.5364 0 —15314 2.0219
Continuing in this manner, after 10 iterations we find
1.0000 —.0067 0 0753 —.5667 —.8205
Q= .0067 1.0000  .0001 |, S0 = 3128 —.7679 5591 |,
0 —.0001 1.0000 —.9468 —.2987 1194
6.3229  .0647 0 6.3232 .0224 0
R,y = 0 3.3582 —.0006 |, A= 0224 3.3581 —.0002
0 0 1.3187 0 —.0002 1.3187
After 20 iterations, the process has completely settled down, and
1 00 0710 —.5672 —.8205
QRy=10 1 0], Soo = 3069 —.7702 5590 |,
0O 0 1 —.9491 —-.2915 1194
6.3234  .0001 0 6.3234 0 0
Ry = 0 3.3579 0 , Ay = 0 3.3579 0
0 0 1.3187 0 0 1.3187

The eigenvalues of A appear along the diagonal of A,;, while the columns of Sy, are the
corresponding orthonormal eigenvector basis, listed in the same order as the eigenvalues,
both correct to 4 decimal places.
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Figure 8.1. Elementary Reflection Matrix.

Tridiagonalization

In practical implementations, the direct @) R algorithm often takes too long to provide
reasonable approximations to the eigenvalues of large matrices. Fortunately, the algorithm
can be made much more efficient by a simple preprocessing step. The key observation is
that the @ R algorithm preserves the class of symmetric tridiagonal matrices, and, more-
over, like Gaussian Elimination, is much faster when applied to this class of matrices.

Consider the Householder or elementary reflection matriz
H=1-2uu’ (8.9)

in which u is a unit vector (in the Euclidean norm). The matrix H represents a reflection
of vectors through the orthogonal complement to u, as illustrated in Figure 8.1. It is easy
to shoe that H is a symmetric orthogonal matrix, and so

HT = H, H? =1, H'=H. (8.10)
The proof is straightforward: symmetry is immediate, while

HH" =g =(1 —2uu”)(I —2uu?) =1 —4uu’? +4u(u’u)u’ =1

Tu=ul?=1.

since, by assumption, u

In Householder’s approach to the () R factorization, we were able to convert the matrix
A to upper triangular form R by a sequence of elementary reflection matrices. Unfortu-
nately, this procedure does not preserve the eigenvalues of the matrix — the diagonal

entries of R are not the eigenvalues — and so we need to be a bit more clever here.

Lemma 8.5. If H = I —2uu” is an elementary reflection matrix, with u a unit
vector, then A and B = HA H are similar matrices and hence have the same eigenvalues.

Proof: According to (8.10), H™! = H, and hence B = H 'AH is similar to A.
Q.E.D.
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Given a symmetric n X n matrix A, our goal is to devise a similar tridiagonal matrix
by applying a sequence of Householder reflections. We begin by setting

0 0
Qg +ry
x, = | %1 |, Y1 = 01, where ro=lx =1y [l
Gn1 0
so that x,; contains all the off-diagonal entries of the first column of A. Let
X J—
H =1-2u uip, where u, = s B A W
% —y1 ]

be the corresponding elementary reflection matrix that maps x; to y;. Either + sign in
the formula for y, works in the algorithm; a good choice is to set it to be the opposite of
the sign of the entry a,;, which helps minimize the possible effects of round-off error when
computing the unit vector u,. By direct computation,

a; rn 0 ... 0
T Qg Ggg ... gy
Ay=H AH = | 0 a3 a3 ... ag (8.11)
0 apy Gu3 --- G,

for certain Eiij; the explicit formulae are not needed. Thus, by a single Householder trans-
formation, we convert A into a similar matrix A, whose first row and column are in
tridiagonal form. We repeat the process on the lower right (n — 1) x (n — 1) submatrix of
A,. We set

0 0
0 0
632 :|:T’2
Xo= | ay |° Yy = 0 ) where ro =[x | = [l y2 1],
anQ 0
and the + sign is chosen to be the opposite of that of a;,. Setting
X J—
Hy=1-2uy,uj, where u, = B /-2 ,
x5 — y2 |l
we construct the similar matrix
a;; Ty 0 0O ... 0
Ty Qg T 0 ... 0
0 7y Qg3 Ggy ... G,
Ag=Hy Ay Hy=| o 0 Ugg  Qyy ... Qg
0 0 Qo3 Gpy --- Gy
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whose first two rows and columns are now in tridiagonal form. The remaining steps in the
algorithm should now be clear. Thus, the final result is a tridiagonal matrix 7' = A, that
has the same eigenvalues as the original symmetric matrix A. Let us illustrate the method

by an example.

4 1 -1 2
. . 1 4 1 -1 ) .
Example 8.6. To tridiagonalize A = 1 1 4 1] we begin with its first
2 -1 1 4
0
column. We set x; = _1 , so that y; = (2 4495 . Therefore, the unit
0
vector is u; = s B S U 8391 , with corresponding Householder matrix
[ —yill | —2433
4865
1 0 0 0
N r |0 —.4082 4082 —.8165
Hy=T-=2wuw =, jog2 8816 .2367
0 —.8165 .2367 .5266
Thus,
4.0000 —2.4495 0 0
—2.4495 2.3333 —.3865 —.8599
A, =H, AH, = 0 —.3865 4.9440 —.1246
0 —.8599 —.1246 4.7227
0 0 0
In the next phase, x, = 0 = 0 SO u, = 0 and
PRAse, X = | _3865 | Y27 | —.9428 |* ™27 | —8306 [’
—.8599 0 —.5431
1 0 0 0
o r |0 1 0 0
Hy=T=2uu =4 o _4100 —.9121
0 0 -.9121 14100
The resulting matrix
4.0000 —2.4495 0 0
—2.4495 2.3333 9428 0
T'=A3=H, A, Hy = 0 9428 4.6667 0
0 0 0 5

is now in tridiagonal form.

Since the final tridiagonal matrix 7" has the same eigenvalues as A, we can apply
the @ R algorithm to T to approximate the common eigenvalues. (The eigenvectors must
then be computed separately, e.g., by the shifted inverse power method.) If A = A, is
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tridiagonal, so are all the iterates A,, A5,.... Moreover, far fewer arithmetic operations
are required. For instance, in the preceding example, after we apply 20 iterations of the
Q@ R algorithm directly to T', the upper triangular factor has become

6.0000 —.0065 0 0
o 0 45616 0 0
20 = 0 0  5.0000 0

0 0 0  .4384

The eigenvalues of T', and hence also of A, appear along the diagonal, and are correct to
4 decimal places.

Finally, even if A is not symmetric, one can still apply the same sequence of House-
holder transformations to simplify it. The final result is no longer tridiagonal, but rather
a similar upper Hessenberg matriz, which means that all entries below the subdiagonal are
zero, but those above the superdiagonal are not necessarily zero. For instance, a 5 X 5
upper Hessenberg matrix looks like

Xk ok k%
Xk ok k%
0 *x * % x|,
0 0 * % =
0 0 0 x =%

where the starred entries can be anything. It can be proved that the @ R algorithm
maintains the upper Hessenberg form, and, while not as efficient as in the tridiagonal
case, still yields a significant savings in computational effort required to find the common
eigenvalues. Further details and analysis can be found in [13, 43, 48].
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