
AIMS LectureNotes 2006

Peter J. Olver

8. Numerical Computation of Eigenvalues

In this part, we discuss some practical methods for computing eigenvalues and eigen-
vectors of matrices. Needless to say, we completely avoid trying to solve (or even write
down) the characteristic polynomial equation. The very basic power method and its vari-
ants, which is based on linear iteration, is used to effectively approximate selected eigenval-
ues. To determine the complete system of eigenvalues and eigenvectors, the remarkable QR
algorithm, which relies on the Gram–Schmidt orthogonalization procedure, is the method
of choice, and we shall close with a new proof of its convergence.

8.1. The Power Method.

We have already noted the role played by the eigenvalues and eigenvectors in the
solution to linear iterative systems. Now we are going to turn the tables, and use the
iterative system as a mechanism for approximating the eigenvalues, or, more correctly,
selected eigenvalues of the coefficient matrix. The simplest of the resulting computational
procedures is known as the power method .

We assume, for simplicity, that A is a complete† n× n matrix. Let v1, . . . ,vn denote
its eigenvector basis, and λ1, . . . , λn the corresponding eigenvalues. As we have learned,
the solution to the linear iterative system

v(k+1) = Av(k), v(0) = v, (8.1)

is obtained by multiplying the initial vector v by the successive powers of the coefficient
matrix: v(k) = Ak v. If we write the initial vector in terms of the eigenvector basis

v = c1 v1 + · · · + cn vn, (8.2)

then the solution takes the explicit form given in Theorem 7.2, namely

v(k) = Ak v = c1 λk
1 v1 + · · · + cn λk

n vn. (8.3)

† This is not a very severe restriction. Most matrices are complete. Moreover, perturbations
caused by round off and/or numerical inaccuracies will almost inevitably make an incomplete
matrix complete.

9/27/07 131 c© 2006 Peter J. Olver

Suppose further that A has a single dominant real eigenvalue, λ1, that is larger than
all others in magnitude, so

|λ1 | > |λj | for all j > 1. (8.4)

As its name implies, this eigenvalue will eventually dominate the iteration (8.3). Indeed,
since

|λ1 |k ≫ |λj |k for all j > 1 and all k ≫ 0,

the first term in the iterative formula (8.3) will eventually be much larger than the rest,
and so, provided c1 6= 0,

v(k) ≈ c1 λk
1 v1 for k ≫ 0.

Therefore, the solution to the iterative system (8.1) will, almost always, end up being a
multiple of the dominant eigenvector of the coefficient matrix.

To compute the corresponding eigenvalue, we note that the ith entry of the iterate

v(k) is approximated by v
(k)
i ≈ c1λ

k
1 v1,i, where v1,i is the ith entry of the eigenvector v1.

Thus, as long as v1,i 6= 0, we can recover the dominant eigenvalue by taking a ratio between
selected components of successive iterates:

λ1 ≈ v
(k)
i

v
(k−1)
i

, provided that v
(k−1)
i 6= 0. (8.5)

Example 8.1. Consider the matrix A =




−1 2 2
−1 −4 −2
−3 9 7


. As you can check, its

eigenvalues and eigenvectors are

λ1 = 3, v1 =




1

−1
3



 , λ2 = −2, v2 =




0
1

−1



 , λ3 = 1, v3 =




−1

1
−2



 .

Repeatedly multiplying an initial vector v = (1, 0, 0)
T
, say, by A results in the iterates

v(k) = Akv listed in the accompanying table. The last column indicates the ratio λ(k) =

v
(k)
1 /v

(k−1)
1 between the first components of successive iterates. (One could equally well

use the second or third components.) The ratios are converging to the dominant eigenvalue
λ1 = 3, while the vectors v(k) are converging to a very large multiple of the corresponding

eigenvector v1 = (1,−1, 3)
T
.

The success of the power method lies in the assumption that A has a unique dominant
eigenvalue of maximal modulus, which, by definition, equals its spectral radius: |λ1 | =
ρ(A). The rate of convergence of the method is governed by the ratio |λ2/λ1 | between
the subdominant and dominant eigenvalues. Thus, the farther the dominant eigenvalue
lies away from the rest, the faster the power method converges. We also assumed that the
initial vector v(0) includes a nonzero multiple of the dominant eigenvector, i.e., c1 6= 0. As
we do not know the eigenvectors, it is not so easy to guarantee this in advance, although
one must be quite unlucky to make such a poor choice of initial vector. (Of course, the
stupid choice v(0) = 0 is not counted.) Moreover, even if c1 happens to be 0 initially,

9/27/07 132 c© 2006 Peter J. Olver

k v(k) λ(k)

0 1 0 0

1 −1 −1 −3 −1.

2 −7 11 −27 7.

3 −25 17 −69 3.5714

4 −79 95 −255 3.1600

5 −241 209 −693 3.0506

6 −727 791 −2247 3.0166

7 −2185 2057 −6429 3.0055

8 −6559 6815 −19935 3.0018

9 −19681 19169 −58533 3.0006

10 −59047 60071 −178167 3.0002

11 −177145 175097 −529389 3.0001

12 −531439 535535 −1598415 3.0000

numerical round-off error will typically come to one’s rescue, since it will almost inevitably
introduce a tiny component of the eigenvector v1 into some iterate, and this component
will eventually dominate the computation. The trick is to wait long enough for it to show
up!

Since the iterates of A are, typically, getting either very large — when ρ(A) > 1
— or very small — when ρ(A) < 1 — the iterated vectors will be increasingly subject
to numerical over- or under-flow, and the method may break down before a reasonable
approximation is achieved. One way to avoid this outcome is to restrict our attention
to unit vectors relative to a given norm, e.g., the Euclidean norm or the ∞ norm, since
their entries cannot be too large, and so are less likely to cause numerical errors in the
computations. As usual, the unit vector u(k) = ‖v(k) ‖−1 v(k) is obtained by dividing the
iterate by its norm; it can be computed directly by the modified iterative scheme

u(0) =
v(0)

‖v(0) ‖ , and u(k+1) =
Au(k)

‖Au(k) ‖ . (8.6)

If the dominant eigenvalue λ1 > 0 is positive, then u(k) → u1 will converge to one of the
two dominant unit eigenvectors (the other is −u1). If λ1 < 0, then the iterates will switch
back and forth between the two eigenvectors, so u(k) ≈ ±u1. In either case, the dominant
eigenvalue λ1 is obtained as a limiting ratio between nonzero entries of Au(k) and u(k).
If some other sort of behavior is observed, it means that one of our assumptions is not
valid; either A has more than one dominant eigenvalue of maximum modulus, e.g., it has
a complex conjugate pair of eigenvalues of largest modulus, or it is not complete.

Example 8.2. For the matrix considered in Example 8.1, starting the iterative
scheme (8.6) with u(k) = (1, 0, 0)

T
by A, the resulting unit vectors are tabulated below.

9/27/07 133 c© 2006 Peter J. Olver

k u(k) λ

0 1 0 0

1 −.3015 −.3015 −.9045 −1.0000

2 −.2335 .3669 −.9005 7.0000

3 −.3319 .2257 −.9159 3.5714

4 −.2788 .3353 −.8999 3.1600

5 −.3159 .2740 −.9084 3.0506

6 −.2919 .3176 −.9022 3.0166

7 −.3080 .2899 −.9061 3.0055

8 −.2973 .3089 −.9035 3.0018

9 −.3044 .2965 −.9052 3.0006

10 −.2996 .3048 −.9041 3.0002

11 −.3028 .2993 −.9048 3.0001

12 −.3007 .3030 −.9043 3.0000

The last column, being the ratio between the first components of Au(k−1) and u(k−1),
again converges to the dominant eigenvalue λ1 = 3.

Variants of the power method for computing the other eigenvalues of the matrix are
explored in the exercises.

8.2. The QR Algorithm.

The most popular scheme for simultaneously approximating all the eigenvalues of a
matrix A is the remarkable QR algorithm, first proposed in 1961 by Francis, [18], and
Kublanovskaya, [31]. The underlying idea is simple, but surprising. The first step is to
factor the matrix

A = A0 = Q0 R0

into a product of an orthogonal matrix Q0 and a positive (i.e., with all positive entries along
the diagonal) upper triangular matrix R0 by using the Gram–Schmidt orthogonalization
procedure. Next, multiply the two factors together in the wrong order ! The result is the
new matrix

A1 = R0 Q0.

We then repeat these two steps. Thus, we next factor

A1 = Q1 R1

using the Gram–Schmidt process, and then multiply the factors in the reverse order to
produce

A2 = R1 Q1.

9/27/07 134 c© 2006 Peter J. Olver

The complete algorithm can be written as

A = Q0 R0, Ak+1 = Rk Qk = Qk+1 Rk+1, k = 0, 1, 2, . . . , (8.7)

where Qk, Rk come from the previous step, and the subsequent orthogonal matrix Qk+1

and positive upper triangular matrix Rk+1 are computed by using the numerically stable
form of the Gram–Schmidt algorithm.

The astonishing fact is that, for many matrices A, the iterates Ak −→ V converge to
an upper triangular matrix V whose diagonal entries are the eigenvalues of A. Thus, after
a sufficient number of iterations, say k⋆, the matrix Ak⋆ will have very small entries below
the diagonal, and one can read off a complete system of (approximate) eigenvalues along
its diagonal. For each eigenvalue, the computation of the corresponding eigenvector can
be done by solving the appropriate homogeneous linear system, or by applying the shifted
inverse power method.

Example 8.3. Consider the matrix A =

(
2 1
2 3

)
. The initial Gram–Schmidt fac-

torization A = Q0 R0 yields

Q0 =

(
.7071 −.7071
.7071 .7071

)
, R0 =

(
2.8284 2.8284

0 1.4142

)
.

These are multiplied in the reverse order to give

A1 = R0 Q0 =

(
4 0
1 1

)
.

We refactor A1 = Q1 R1 via Gram–Schmidt, and then reverse multiply to produce

Q1 =

(
.9701 −.2425
.2425 .9701

)
, R1 =

(
4.1231 .2425

0 .9701

)
,

A2 = R1 Q1 =

(
4.0588 −.7647
.2353 .9412

)
.

The next iteration yields

Q2 =

(
.9983 −.0579
.0579 .9983

)
, R2 =

(
4.0656 −.7090

0 .9839

)
,

A3 = R2 Q2 =

(
4.0178 −.9431
.0569 .9822

)
.

Continuing in this manner, after 9 iterations we find, to four decimal places,

Q9 =

(
1 0
0 1

)
, R9 =

(
4 −1
0 1

)
, A10 = R9 Q9 =

(
4 −1
0 1

)
.

The eigenvalues of A, namely 4 and 1, appear along the diagonal of A10. Additional
iterations produce very little further change, although they can be used for increasing the
accuracy of the computed eigenvalues.

9/27/07 135 c© 2006 Peter J. Olver

If the original matrix A happens to be symmetric and positive definite, then the
limiting matrix Ak −→ V = Λ is, in fact, the diagonal matrix containing the eigenvalues
of A. Moreover, if, in this case, we recursively define

Sk = Sk−1 Qk = Q0 Q1 · · · Qk−1 Qk, (8.8)

then Sk −→ S have, as their limit, an orthogonal matrix whose columns are the orthonor-
mal eigenvector basis of A.

Example 8.4. Consider the symmetric matrix A =




2 1 0
1 3 −1
0 −1 6



. The initial
A = Q0 R0 factorization produces

S0 = Q0 =




.8944 −.4082 −.1826

.4472 .8165 .3651
0 −.4082 .9129


 , R0 =




2.2361 2.2361 − .4472
0 2.4495 −3.2660
0 0 5.1121


 ,

and so

A1 = R0 Q0 =




3.0000 1.0954 0
1.0954 3.3333 −2.0870

0 −2.0870 4.6667



 .

We refactor A1 = Q1 R1 and reverse multiply to produce

Q1 =




.9393 −.2734 −.2071
.3430 .7488 .5672

0 −.6038 .7972



 , S1 = S0 Q1 =




.7001 −.4400 −.5623
.7001 .2686 .6615

−.1400 −.8569 .4962



 ,

R1 =




3.1937 2.1723 − .7158
0 3.4565 −4.3804
0 0 2.5364


 , A2 = R1 Q1 =




3.7451 1.1856 0
1.1856 5.2330 −1.5314

0 −1.5314 2.0219


 .

Continuing in this manner, after 10 iterations we find

Q10 =




1.0000 − .0067 0
.0067 1.0000 .0001

0 −.0001 1.0000


 , S10 =




.0753 −.5667 −.8205

.3128 −.7679 .5591
−.9468 −.2987 .1194


 ,

R10 =




6.3229 .0647 0
0 3.3582 −.0006
0 0 1.3187


 , A11 =




6.3232 .0224 0
.0224 3.3581 −.0002

0 −.0002 1.3187


 .

After 20 iterations, the process has completely settled down, and

Q20 =




1 0 0
0 1 0
0 0 1


 , S20 =




.0710 −.5672 −.8205

.3069 −.7702 .5590
−.9491 −.2915 .1194


 ,

R20 =




6.3234 .0001 0

0 3.3579 0
0 0 1.3187



 , A21 =




6.3234 0 0

0 3.3579 0
0 0 1.3187



 .

The eigenvalues of A appear along the diagonal of A21, while the columns of S20 are the
corresponding orthonormal eigenvector basis, listed in the same order as the eigenvalues,
both correct to 4 decimal places.

9/27/07 136 c© 2006 Peter J. Olver

v

u

H v

u⊥

Figure 8.1. Elementary Reflection Matrix.

Tridiagonalization

In practical implementations, the direct QR algorithm often takes too long to provide
reasonable approximations to the eigenvalues of large matrices. Fortunately, the algorithm
can be made much more efficient by a simple preprocessing step. The key observation is
that the QR algorithm preserves the class of symmetric tridiagonal matrices, and, more-
over, like Gaussian Elimination, is much faster when applied to this class of matrices.

Consider the Householder or elementary reflection matrix

H = I − 2uuT (8.9)

in which u is a unit vector (in the Euclidean norm). The matrix H represents a reflection
of vectors through the orthogonal complement to u, as illustrated in Figure 8.1. It is easy
to shoe that H is a symmetric orthogonal matrix, and so

HT = H, H2 = I , H−1 = H. (8.10)

The proof is straightforward: symmetry is immediate, while

H HT = H2 = (I − 2uuT) (I − 2uuT) = I − 4uuT + 4u (uTu)uT = I

since, by assumption, uTu = ‖u ‖2 = 1.

In Householder’s approach to the QR factorization, we were able to convert the matrix
A to upper triangular form R by a sequence of elementary reflection matrices. Unfortu-
nately, this procedure does not preserve the eigenvalues of the matrix — the diagonal
entries of R are not the eigenvalues — and so we need to be a bit more clever here.

Lemma 8.5. If H = I − 2uuT is an elementary reflection matrix, with u a unit

vector, then A and B = HAH are similar matrices and hence have the same eigenvalues.

Proof : According to (8.10), H−1 = H, and hence B = H−1AH is similar to A.
Q.E.D.

9/27/07 137 c© 2006 Peter J. Olver

Given a symmetric n × n matrix A, our goal is to devise a similar tridiagonal matrix
by applying a sequence of Householder reflections. We begin by setting

x1 =




0
a21

a31
...

an1




, y1 =




0
±r1

0
...
0




, where r1 = ‖x1 ‖ = ‖y1 ‖,

so that x1 contains all the off-diagonal entries of the first column of A. Let

H1 = I − 2u1 uT
1 , where u1 =

x1 − y1

‖x1 − y1 ‖
be the corresponding elementary reflection matrix that maps x1 to y1. Either ± sign in
the formula for y1 works in the algorithm; a good choice is to set it to be the opposite of
the sign of the entry a21, which helps minimize the possible effects of round-off error when
computing the unit vector u1. By direct computation,

A2 = H1 A H1 =




a11 r1 0 . . . 0
r1 ã22 ã23 . . . ã2n

0 ã32 ã33 . . . ã3n

...
...

...
. . .

...
0 ãn2 ãn3 . . . ãnn




(8.11)

for certain ãij ; the explicit formulae are not needed. Thus, by a single Householder trans-
formation, we convert A into a similar matrix A2 whose first row and column are in
tridiagonal form. We repeat the process on the lower right (n− 1)× (n − 1) submatrix of
A2. We set

x2 =




0
0

ã32

ã42
...

ãn2




, y1 =




0
0

±r2

0
...
0




, where r2 = ‖x2 ‖ = ‖y2 ‖,

and the ± sign is chosen to be the opposite of that of ã32. Setting

H2 = I − 2u2 uT
2 , where u2 =

x2 − y2

‖x2 − y2 ‖
,

we construct the similar matrix

A3 = H2 A2 H2 =




a11 r1 0 0 . . . 0
r1 ã22 r2 0 . . . 0
0 r2 â33 â34 . . . â3n

0 0 â43 â44 . . . â4n

...
...

...
...

. . .
...

0 0 ân3 ân4 . . . ânn




.

9/27/07 138 c© 2006 Peter J. Olver

whose first two rows and columns are now in tridiagonal form. The remaining steps in the
algorithm should now be clear. Thus, the final result is a tridiagonal matrix T = An that
has the same eigenvalues as the original symmetric matrix A. Let us illustrate the method
by an example.

Example 8.6. To tridiagonalize A =




4 1 −1 2
1 4 1 −1

−1 1 4 1
2 −1 1 4


, we begin with its first

column. We set x1 =




0
1

−1
2


, so that y1 =




0√
6

0
0


 ≈




0
2.4495

0
0


. Therefore, the unit

vector is u1 =
x1 − y1

‖x1 − y1 ‖
=




0
.8391

−.2433
.4865


, with corresponding Householder matrix

H1 = I − 2u1 uT
1 =




1 0 0 0
0 −.4082 .4082 −.8165
0 .4082 .8816 .2367
0 −.8165 .2367 .5266


.

Thus,

A2 = H1 A H1 =




4.0000 −2.4495 0 0
−2.4495 2.3333 −.3865 −.8599

0 −.3865 4.9440 −.1246
0 −.8599 −.1246 4.7227


.

In the next phase, x2 =




0
0

−.3865
−.8599


, y2 =




0
0

−.9428
0


, so u2 =




0
0

−.8396
−.5431


, and

H2 = I − 2u2 uT
2 =




1 0 0 0
0 1 0 0
0 0 −.4100 −.9121
0 0 −.9121 .4100


.

The resulting matrix

T = A3 = H2 A2 H2 =




4.0000 −2.4495 0 0
−2.4495 2.3333 .9428 0

0 .9428 4.6667 0
0 0 0 5




is now in tridiagonal form.

Since the final tridiagonal matrix T has the same eigenvalues as A, we can apply
the QR algorithm to T to approximate the common eigenvalues. (The eigenvectors must
then be computed separately, e.g., by the shifted inverse power method.) If A = A1 is

9/27/07 139 c© 2006 Peter J. Olver

tridiagonal, so are all the iterates A2, A3, Moreover, far fewer arithmetic operations
are required. For instance, in the preceding example, after we apply 20 iterations of the
QR algorithm directly to T , the upper triangular factor has become

R20 =




6.0000 −.0065 0 0
0 4.5616 0 0
0 0 5.0000 0
0 0 0 .4384


.

The eigenvalues of T , and hence also of A, appear along the diagonal, and are correct to
4 decimal places.

Finally, even if A is not symmetric, one can still apply the same sequence of House-
holder transformations to simplify it. The final result is no longer tridiagonal, but rather
a similar upper Hessenberg matrix , which means that all entries below the subdiagonal are
zero, but those above the superdiagonal are not necessarily zero. For instance, a 5 × 5
upper Hessenberg matrix looks like




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


,

where the starred entries can be anything. It can be proved that the QR algorithm
maintains the upper Hessenberg form, and, while not as efficient as in the tridiagonal
case, still yields a significant savings in computational effort required to find the common
eigenvalues. Further details and analysis can be found in [13, 43, 48].

9/27/07 140 c© 2006 Peter J. Olver

