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Abstract. It is shown that every point transformation group whose prolonged orbit
dimensions pseudo-stabilize at order 0 is equivalent, under a change of variables, to the
elementary similarity group consisting of translations and dilatations.

In the study of differential invariants and symmetry groups of differential equations,
the geometry of the prolonged group actions plays an essential role. The purpose of this
paper is to further elucidate one aspect of this geometry, namely to provide a complete
characterization of groups which “pseudo-stabilize” at the lowest order. This result will
help explain an observation in [5], which was based on Lie’s classification of transforma-
tion groups in the plane, [1], [3], that, in the two-dimensional case, there is essentially
only one group which has this anomalous behavior. In this paper, this observation will

† Supported in part by NSF Grant DMS 95–00931.

September 11, 1996

1



be extended to groups in an arbitrary number of independent and dependent variables.
The reader should be familiar with the fundamentals of the Lie theory of prolongation of
transformation groups on jet bundles, as presented, for instance in my books [4], [5]. I
shall employ the same basic notation here.

Let G be a connected r-dimensional local transformation group acting on an open
subset M ⊂ X ×U ≃ R

p×R
q of the space (bundle) coordinatized by p independent and q

dependent variables. The space of infinitesimal generators of G — its Lie algebra — will
be denoted by g. The action of G on the sections u = f(x) of M induces an action of G on
the associated nth order jet bundle Jn = JnM , known as the nth prolonged transformation
group, and denoted by G(n). The generic or maximal dimension of the orbits of G(n) is
known as the prolonged orbit dimension (of order n) and denoted by sn. By definition,
G(n) acts semi-regularly (meaning all orbits have the same dimension) on the open subset
V n ⊂ Jn consisting of all points contained in orbits of maximal dimension. The orbit
dimensions satisfy the elementary inequalities, [5],

sn−1 ≤ sn ≤ sn−1 + q

(
p+ n− 1

n

)
. (1)

In particular, they form a nondecreasing sequence s0 ≤ s1 ≤ s2 ≤ · · · ≤ r, that is bounded
by the dimension of G, and hence eventually stabilizes: sm = s∞ for all m sufficiently
large. We will call s∞ the stable orbit dimension, and the minimal order n for which
sn = s∞ the order of stabilization of the group. The following fundamental result is due
to Ovsiannikov, [6].

Theorem 1. The stable orbit dimension of a transformation group G is equal to the

dimension of G if and only if G acts locally effectively.

Here “locally effectively” means that the only group element in some neighborhood of
the identity which acts trivially on M is the identity itself. If G does not act effectively,
we can replace it by the quotient group G/GM , where GM = { g | g · x = x for all x ∈ M }
is the global isotropy subgroup, which does act effectively on M in essentially the same
way as G itself. Consequently, there is no loss in generality in assuming that all our group
actions are (locally) effective, and hence s∞ = r = dimG in all cases.

Perhaps surprisingly, it is not necessarily true that if sk = sk+1 then the orbit di-
mension stabilizes at order k. This introduces the possibility that the orbit dimensions
“pseudo-stabilize”, in the following sense:

Definition 2. A transformation group G acting on M is said to pseudo-stabilize at
order k if its prolonged orbit dimensions satisfy sk = sk+1 < sk+2.

A key result, proved in [5; Theorem 5.37], which generalizes a theorem of Ovsiannikov,
[6; p. 313], is that there can be at most one such pseudo-stabilization.

Theorem 3. Suppose that the maximal orbit dimensions of the prolonged group

actions satisfy sk = sk+1 and, also, sn = sn+1 for some n > k. Then sm = sn for all

m ≥ n.
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Example 4. Let r ≥ 3. Let x, u ∈ R. Consider the r = k + 3-dimensional group

Gk : (x, u) 7−→ (λx+ a, λk+1u+ Pk(x)), (2)

in which λ > 0 and a are constants, and Pk(x) an arbitrary polynomial of degree ≤ k. The
infinitesimal generators are the vector fields

∂x, ∂u, x∂u, . . . , xk∂u, x∂x + (k + 1)u∂u.

An easy computation, cf. [5; Example 5.8], demonstrates that the prolonged maximal orbit
dimensions are given by s0 = 2, s1 = 3, . . . , sk = sk+1 = k + 2, sk+2 = sk = · · · = k + 3.
Thus, the orbit dimensions pseudo-stabilize at order k, and finally stabilize at order k+2.
In the simplest case k = 0, where the group G0 reduces to the elementary similarity group
(x, u) → (λx+a, λu+b), containing translations and a one-parameter group of elementary
dilatations.

Remarkably, in the planar (i.e., one independent variable and one dependent variable)
case, these are the only examples of transformation groups that pseudo-stabilize. Two
transformation group actions are called equivalent if there is a local change of variables
or point transformation† (x, u) 7→ (x̄, ū) = Φ(x, u) mapping one to the other, so that
g ·(x̄, ū) = Φ(g ·(x, u)). In [1], [3], Lie classified all possible transformation groups without
fixed points acting on a two-dimensional space, up to local equivalence. Lie’s classification
was applied by the author in [5; Theorem 5.24] to prove the following result.

Theorem 5. If G is a connected r-dimensional transformation group acting on an

open M ⊂ R
2 with no fixed points, whose prolonged orbit dimensions pseudo-stabilize at

order k, then G is locally equivalent to the transformation group Gk+3 given in (2) with
r = k + 3.

Thus, up to changes of variables, there is precisely one planar transformation group
that pseudo-stabilizes at a given order! In higher dimensions, there is no corresponding
classification of transformation groups; although Lie did claim, [2], to have completed the
three-dimensional classification, he never published the details. Therefore, attempts to
generalize Theorem 5 must rely on an alternative approach. In fact, I do not know of any
examples of transformation groups whose orbits pseudo-stabilize beyond fairly elementary
multi-dimensional generalizations of the groups in Example 4. The main result of this paper
is to prove that, in the order 0 case, this is, in fact, the case — there is, up to equivalence,
only one example of a transformation group whose prolonged orbit dimensions pseudo-
stabilize at order 0. In other words, the first prolongation G(1) has the same maximal
orbit dimensions as G itself does but these are strictly less than the dimension of G itself,
s0 = s1 < r = dimG. (As always, we assume G acts locally effectively.)

Theorem 6. Let G be a connected r-dimensional group of point transformations

acting locally effectively and semi-regularly on an open subset M ⊂ X × U ≃ R
p × R

q.

† In this paper we are restricting our attention to point transformations, since pseudo-
stabilization at order 0 does not make sense for contact transformation groups.
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If the prolonged orbit dimensions pseudo-stabilize at order 0, then G has dimension r =
p+q+1, and, moreover, there exists a local change of variables mapping G to the elementary

similarity group

G0 : (x, u) 7−→ (λx+ a, λu+ b), a ∈ R
p, b ∈ R

q, λ ∈ R. (3)

Remark : In particular, an intransitive transformation group cannot pseudo-stabilize
at order 0.

Proof : Note first that the similarity group G0 has trivial action on the first order
derivative coordinates uα

i = ∂uα/∂xi, but scales the higher derivatives via powers of λ,
and hence the fact that the group G0 pseudo-stabilizes is elementary.

Conversely, given a group G that pseudo-stabilizes at order 0, we let g denote the
Lie algebra of infinitesimal generators on M . Let† 1 ≤ s = s0 ≤ p + q denote the
dimension of the orbits of G on M . Note that s < r = dimG, since otherwise G would
immediately stabilize at order 0, contrary to our hypothesis. Therefore, we can (locally‡)
choose generators v1, . . . ,vs which span the tangent space to the orbit through each point.
Let v ∈ g be any other generator; we can write

v = λ1v1 + · · ·+ λsvs, (4)

for certain uniquely determined coefficient functions λ1(x, u), . . . , λs(x, u). We shall assume
that v does not belong to the subspace of g spanned by v1, . . . ,vs, which occurs if and
only if not all of the coefficients λκ in (4) are constant. Note that there exists at least one
such vector field v since G must have dimension strictly greater than s.

Since we are assuming that G pseudo-stabilizes at order 0, the maximal dimension
of the orbits of its first prolongation G(1) also equals s, and hence the prolonged vector

fields v
(1)
1 , . . .v

(1)
s must also span the tangent space to the orbit through each point of

V 1 ⊂ J1. Since the natural projection π: J1 → M maps prolonged vector fields back to

their progenerators, dπ(v
(1)
i ) = vi, equation (4) and the fact that the coefficients λκ are

unique imply that the first order prolongations also have the same linear relationship:

v(1) = λ1v
(1)
1 + · · ·+ λsv

(1)
s . (5)

The crucial point here is that the coefficients λκ(x, u), which are the same as in (4), do
not depend on the derivative coordinates uα

i .

In terms of our local coordinates, the standard prolongation formula, [5; Theorem
4.16], shows that any prolonged vector field has the form

v(1) =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
+

q∑

α=1

p∑

i=1

χα
i (x, u

(1))
∂

∂uα
i

, (6)

† The case s = 0 is trivial, since then G = {e}, and the action stabilizes at order 0.

‡ Since our considerations are always local, we shall restrict to open subsets when necessary.
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where the coefficients of the first order derivative coordinates are explicitly given by

χα
i =

p∑

i=1





∂ϕα

∂xi
+

q∑

β=1

uβ
i

∂ϕα

∂uβ
−

p∑

i=1

uα
j


∂ξj

∂xi
+

q∑

β=1

uβ
i

∂ξj

∂uβ







 . (7)

We now substitute (6), along with the corresponding formulae for the vκ, whose coefficients
are denoted by ξiκ, ϕα

κ , and (χκ)
α
i , into (5). Since the λκ(x, u) do not depend on the

derivative coordinates, we deduce that the coefficients of the first prolonged vector fields
are related by the system of linear equations

ξi =

s∑

κ=1

λκξ
i
κ, ϕα =

s∑

κ=1

λκϕ
α
κ , χα

i =

s∑

κ=1

λκ(χκ)
α
i ,

i = 1, . . . , p,

α = 1, . . . , q.
(8)

If we differentiate the first two sets of equations (8) and substitute into the third using the
prolongation formula (7), we find that the coefficients λκ must satisfy the following system
of partial differential equations:

s∑

κ=1

∂λκ

∂xi
ϕα
κ = 0,

s∑

κ=1

∂λκ

∂uα
ϕα
κ =

s∑

κ=1

∂λκ

∂xi
ξiκ,

s∑

κ=1

∂λκ

∂uα
ξiκ = 0,

s∑

κ=1

∂λκ

∂uβ
ϕα
κ = 0, α 6= β,

s∑

κ=1

∂λκ

∂xi
ξjκ = 0, i 6= j.

(9)

These hold for all i 6= j = 1, . . . , p, and α 6= β = 1, . . . , q. Note that in the second set of
equations there is no summation on α or i, and hence the function

µ =

s∑

κ=1

∂λκ

∂uα
ϕα
κ =

s∑

κ=1

∂λκ

∂xi
ξiκ, (10)

is independent of both α and i.

Now let

Λ =

(
∂λκ

∂xi
,
∂λκ

∂uα

)

denote the s× (p+ q) Jacobian matrix of the coefficients λ1, . . . , λs. Let

Ψ =
(
ξiκ, ϕ

α
κ

)

denote the s× (p+q) matrix of coefficients of the vector fields v1, . . . ,vs. (The coefficients
of vκ form the κth row of Ψ.) Using (10), the linear system (9) can be re-expressed in a
simple matrix format as

ΨTΛ = µ11, (11)

where 11 is the (p+ q)× (p+ q) identity matrix. First note that Ψ is nonsingular, since the
vκ are linearly independent at each point by construction. Thus, if µ ≡ 0, then (11) would
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imply that the Jacobian matrix Λ ≡ 0 would be identically zero, which would imply that
all of the coefficients λκ are constant. However, this is contrary to our original assumption
that v does not lie in the subspace spanned by v1, . . . ,vs. Therefore the function µ cannot
vanish identically if pseudo-stabilization is to occur.

If G acts intransitively, then the orbit dimension satisfies s < p + q. The matrix on
the left hand side of (11) has rank at most s, which requires that µ ≡ 0 (since otherwise
the right hand side would have rank p + q), which forces a contradiction. Therefore we
have now proven that pseudo-stabilization at order 0 requires G to act transitively, and
to have dimension r > s = p+ q, and that (11) is an equation for square matrices of size
p + q. Furthermore, the Jacobian matrix Λ must be nonsingular, which implies that the
coefficients λκ(x, u) are functionally independent. Moreover, again by invertibility of Ψ,
(11) implies that

ΛΨT = µ11. (12)

However, the (κ, ν) entry of the latter matrix equation reads

p∑

i=1

ξiκ
∂λν

∂xi
+

q∑

α=1

ϕα
κ

∂λν

∂uα
=

{
0, κ 6= ν,

µ, κ = ν,
(13)

which is equivalent to the conditions

vκ(λν) = µ · δκν , κ, ν = 1, . . . , p+ q, (14)

where δκν is the standard Kronecker delta.

Since the λκ are functionally independent, we can use them as new local coordinates
z1 = λ1(x, u), . . . , z

p+q = λp+q(x, u), on M . In terms of these new coordinates, formulae
(14) and (4) imply that the generators of the Lie algebra have the form

v1 = σ(z)
∂

∂z1
, . . . , vp+q = σ(z)

∂

∂zp+q
, v = σ(z)

(
z1

∂

∂z1
+ · · ·+ zp+q ∂

∂zp+q

)
,

(15)
for some function σ(z), which is just the function µ rewritten in the new coordinates, i.e.,
µ(x, u) = σ(λ1(x, u), . . . , λp+q(x, u)).

Let us now show that G can have precisely one additional linearly independent vector
field v besides the given vector fields v1, . . . ,vp+q that span TM , proving that dimG =

r = p+ q+1. If ṽ =
∑

λ̃κvκ is another such generator, then the same argument as led to
(14) will require that

vκ(λ̃ν) = µ̃ · δκν (16)

for some function µ̃. In view of our new local coordinate formulae (15) for the vector

fields vκ, equation (16) for κ 6= ν implies that λ̃κ is a function of zκ alone. Moreover,

equation (16) for κ = ν implies that ∂λ̃κ/∂z
κ is independent of κ and hence a constant.

Therefore, each λ̃κ = bzκ + cκ is an affine function of the corresponding zκ = λκ, so that
ṽ = bv +

∑
κ cκvκ lies in the span of the vector fields (15), proving the claim.
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Lastly, we must impose the conditions that the vector fields (15) form a Lie algebra.
We first compute, for i < j,

[vi,vj] = σ ·

(
∂σ

∂zi
∂

∂zj
−

∂σ

∂zj
∂

∂zi

)
.

This will be a constant coefficient linear combination of the generators (15) if and only if
there exist constants (bij1 , . . . , b

ij
p+q) and dij such that

∂σ

∂zi
= dijzj + bijj , −

∂σ

∂zj
= dijzi + biji , 0 = dijzk + bijk , k 6= i, j. (17)

Cross-differentiation of the first two equations implies that dij = 0, and hence

σ(z) = a1z
1 + · · ·+ ap+qz

p+q + c

for some constant c. Secondly, we compute

[vi,v] = σ(z)







zi
∂σ

∂zi
+ σ −

∑

j

zj
∂σ

∂zj



 ∂

∂zi
+
∑

i6=j

zj
∂σ

∂zi
∂

∂zj





= σ(z)


(aizi + b)

∂

∂zi
+

∑

i6=j

ajz
j ∂

∂zj


 .

Clearly, this vector field will be a constant coefficient linear combination of the vector fields
(15) if and only if all the ai are equal, and so

σ(z) = a(z1 + · · ·+ zp+q) + c. (18)

Now, if a = 0, then (18) implies that the vector fields (15) span the Lie algebra of the
desired similarity group,

v1 =
∂

∂z1
, . . . , vp+q =

∂

∂z1
, and v = z1

∂

∂z1
+ · · ·+ zp+q ∂

∂zp+q
.

(We have dropped an inessential multiple.) Otherwise, we must perform one last change
of variables to convert the Lie algebra (15) into the desired form. We set

w1 =
z1

σ(z)
, . . . , wp+q−1 =

zp+q−1

σ(z)
, wp+q =

1

σ(z)
.

In terms of the new coordinates, we find that

v1 =
∂

∂w1
− aw, . . . , vp+q−1 =

∂

∂wp+q−1
− aw,

vp+q = −aw, v = cw −
∂

∂wp+q
,

(19)

where w =
∑

wi∂wi . Clearly the transformed vector fields (19) span the desired Lie
algebra of the similarity group (in the new variables). This completes the proof of the
theorem. Q.E.D.

7



Of course, Theorem 6 leads one to immediately speculate on the case of higher order
pseudo-stabilization. Specifically, is it the case that all such pseudo-stabilizing groups in
higher dimension are straightforward analogs of the two-dimensional groups appearing in
Example 4? As yet, I have been unable to answer this question, which appears to be quite
a bit more difficult to analyze.
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