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1 Introduction

Identities of Pohozhaev type have been widely used in the theory of partial differential equations,
in particular for establishing non-existence results for large classes of forced elliptic boundary
value problems and eigenvalue problems, [20, 21, 22]. The purpose of this note is to obtain and
apply analogous identities in elastostatics and elastodynamics, which have not (to the authors’
knowledge) been developed to date. Our approach will be based on a fundamental identity
first introduced by Noether in her seminal paper [16] that connected symmetries of variational
problems to conservation laws of their Euler–Lagrange equations.

As noted in [19], the identities originally due to Pohozhaev, [20, 21], owe their existence to
Noether’s identity. For classical solutions of the linear equation ∆u+λu = 0 such an identity was
obtained by Rellich in [24]. Further, in [25], Rellich established an integral identity for a function
belonging to certain function spaces, without any reference to differential equations it may
satisfy. The Rellich Identity has been generalized by Mitidieri, [12, 13], for a pair of functions.
General Rellich-type identities on Riemannian manifolds have been recently established in [5, 6]
by use of Noether’s Identity applied to conformal Killing vector fields.

In [20], Pohozhaev established an integral identity for solutions of the Dirichlet problem
for the semilinear Poisson equation ∆u + λf(u) = 0 in a bounded domain with homogeneous
Dirichlet boundary condition. Later, for solutions of general Dirichlet problems, he obtained
in [21] what is now called the Pohozhaev Identity. Such identities became very popular after
the paper of Pucci and Serrin, [22], where, on p. 683, the relation with the general Noetherian
theory is mentioned. See also the earlier paper by Knops and Stuart, [11], and remarks in the
second author’s 1986 book [19]. The Noetherian approach to Pohozhaev’s identities was further
developed and applied in [3, 4, 23, 31]. Additional applications of Rellich–Pohozhaev estimates
to nonlinear elliptic theory can be found in [26, 27], while applications to nonlocal problems
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appear in [8]. With regard to geometric applications, [1, 7, 9, 28] develop a systematic approach
to Pohozhaev-type obstructions for partial differential equations invariant under the action of
a conformal group. For a relation between the Lie point symmetries of the nonlinear Poisson
equation on a (pseudo-) Riemannian manifold and its isometry and conformal groups see [2].

In dynamical problems, the conformal invariance of the wave and Klein–Gordon equations
was used by Morawetz, [14], to establish several very useful integral identities. These were
applied by her and Strauss, [29, 30], to the study of the decay, stability, and scattering of waves
in nonlinear media. In the final section, we will generalize Morawetz’ conformal identity to some
dynamical systems governing waves in elastic media. Applications of our identity to decay and
scattering of elastic waves will be treated elsewhere.

In elastostatics, the independent variables x ∈ R
n, for n ≥ 2, represent reference body coor-

dinates, while the dependent variables u = u(x) = (u1(x), . . . , un(x)) represent the deformation
of the point x. The independent variable x will belong to a bounded or unbounded domain
Ω ⊆ R

n that has sufficiently (piecewise) smooth boundary ∂Ω. We use ν to denote the outward
unit normal on ∂Ω. For elastodynamics, we append an additional independent variable, t, rep-
resenting the time, and so u = u(t, x). The partial derivatives of a smooth (vector) function
u(x) are denoted by subscripts:

uk
i :=

∂uk

∂xi
, uk

t :=
∂uk

∂t
, uk

ij :=
∂2uk

∂xi∂xj
, etc.

The n × n spatial Jacobian matrix ∇u = (uk
i ) is known as the deformation gradient.

We shall consistently use the Einstein summation convention over repeated indices, which
always run from 1 to n. We assume that all considered functions, vector fields, tensors, function-
als, etc. are sufficiently smooth in order that all the derivatives we write exist in the classical
sense. When we say that a function is “arbitrary”, we mean that it is a sufficiently smooth
function of its arguments defined on the domain Ω. Extensions of our results to more general
solutions will then proceed on a case by case basis.

2 Noether’s Identity

A vector field

v = ξi(x, u)
∂

∂xi
+ φi(x, u)

∂

∂ui

on the space of independent and dependent variables induces a flow that can be interpreted as
a (local) one-parameter group of transformations. The vector field is known as the infinitesimal

generator of the flow, [19]. For example, the particular vector field

v = axi
∂

∂xi
+ b ui ∂

∂ui
,

where a, b are constant, generates the group of scaling transformations

(x, u) 7−→ (λax, λbu).

The action of the group on functions u = f(x) by transforming their graphs induces an action
on their derivatives. The corresponding infinitesimal generator of the prolonged group action
has the form

pr(1)v = ξi(x, u)
∂

∂xi
+ φi(x, u)

∂

∂ui
+ φi

j(x, u,∇u)
∂

∂ui
j

, (1)
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where

φi
j(x, u,∇u) = Djφ

i − (Djξ
k)ui

k =
∂φi

∂xj
+

∂φi

∂uk
uk

j −
∂ξk

∂xj
ui

k −
∂ξk

∂ul
ul

ju
i
k, (2)

and Dj = ∂/∂xj + uk
j ∂/∂uk denotes the total derivative with respect to xj. See [19] for a proof

of this formula, along with its extension to higher order derivatives.
For a first order Lagrangian L(x, u,∇u), Noether’s Identity reads

pr(1)v(L) + LDiξ
i = Ei(L)(φi − ui

jξ
j) + Di

[

Lξi +
∂L

∂uj
i

(φj − uj
sξ

s)

]

, (3)

where Ei is the Euler operator or variational derivative with respect to ui, [19]. Once stated,
the verification of the identity is a straightforward computation. In the following sections, we
will investigate how to use Noether’s Identity in the framework of elasticity, and apply the
corresponding integral identities to establish non-existence results. The proofs are sketched,
while the full details are left to the interested reader as exercises.

3 Elastostatics

We recall that the equilibrium equations for a homogeneous isotropic linearly elastic medium in
the absence of body forces arise from the variational principle with Lagrangian

L0(x, u,∇u) =
1

2
µ‖∇u ‖2 +

1

2
(µ + λ)(∇ · u)2 =

1

2
µ

n
∑

i,j=1

(ui
j)

2 +
1

2
(µ + λ)

(

n
∑

i=1

ui
i

)2

,

where the parameters λ and µ are the Lamé moduli. The squared norm of the deformation
gradient matrix ∇u refers to the sum of the squares of its entries, while ∇ · u denotes the diver-
gence of the deformation. The corresponding Euler-Lagrange equations are known as Navier’s

equations:

µ∆u + (µ + λ)∇(∇ · u) = 0,

where the Laplacian ∆ acts component-wise on u. Henceforth, we assume that µ > 0 and
µ+λ > 0, thereby ensuring strong ellipticity and positive definiteness of the underlying elasticity
tensor, [10, 17].

In this paper, we shall study boundary value problems for elastic bodies that are subject to
a nonlinear body-force potential F (u). Thus, we modify the preceding Lagrangian

L(x, u,∇u) =
1

2
µ‖∇u ‖2 +

1

2
(µ + λ)(∇ · u)2 − F (u), (4)

where we assume, without loss of generality, that F (0) = 0. The associated equilibrium Euler-
Lagrange equations are

µ∆u + (µ + λ)∇(∇ · u) + f(u) = 0, (5)

where fi(u) = ∂F/∂ui are the components of the gradient of the body-force potential with
respect to the dependent variables u.

More generally, we consider Lagrangians of the form:

L =
1

2
Ckl

ij ei
ke

j
l − F (u), (6)
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where again F (0) = 0, and

e =
1

2
(∇u + ∇uT ), with components ei

k =
1

2
(ui

k + uk
i ), (7)

is the strain tensor. The quadratic components in the Lagrangian (6) model the stored energy
of a general anisotropic linearly elastic medium, while F (u) represents a nonlinear body-force
potential. The elastic moduli Ckl

ij are assumed to be constant, satisfying

Ckl
ij = Cil

kj = Ckj
il = C lk

ji . (8)

Thus in planar elasticity there are 6 independent elastic moduli, while in three dimensions 21
independent moduli are required in general, [10]. Additional symmetry restrictions stemming
from the constitutive properties of the elastic material may place additional constraints on the
moduli. We may also assume

Ckl
ij ai

ka
j
l ≥ 0 (9)

for any matrix A = (ap
q). The less restrictive Legendre-Hadamard condition is that

Ckl
ij vivjwkwl > 0 (10)

for any rank one matrix A = v ⊗ w. The Euler-Lagrange equations associated with (6) read

Ckl
ij uj

kl + fi(u) = 0. (11)

In general, the most basic Pohozhaev-type identity is based on the associated Noether identity
for the infinitesimal generator of an adroitly chosen scaling transformation group, [19].

Theorem 1. Let Ω be a bounded domain in R
n. Then the classical solutions of (11) — that is

u ∈ C2(Ω) ∩ C1(Ω̄) — subject to homogeneous Dirichlet boundary conditions on ∂Ω satisfy the

following Pohozhaev-type identity:
∫

Ω

[

n − 2

2
ukfk(u) − nF (u)

]

dx = −
1

2

∫

∂Ω
Ckl

ij ui
ku

j
l (x, ν)ds, (12)

where ν is the outward unit normal to ∂Ω and (., .) is the Euclidean scalar product in R
n.

Proof. We consider the one-parameter group of dilations

(x, u) 7−→ (λx, λ(2−n)/2u)

with infinitesimal generator

v = xi
∂

∂xi
+

2 − n

2
ui ∂

∂ui
.

According to (1), (2), the first order prolongation of this vector field is

pr(1)v = xi
∂

∂xi
+

2 − n

2
ui ∂

∂ui
−

n

2
uj

i

∂

∂uj
i

.

Then one easily sees that

pr(1)v(L) + LDiξ
i =

n − 2

2
ukfk(u) − nF (u). (13)

The identity (12) now follows from the Divergence Theorem using (3), (6), (13), our assumption
F (0) = 0, and the homogeneous Dirichlet boundary conditions, taking into account that, on ∂Ω,

uj
sνi = uj

iνs. (14)

See [22], p. 683, for more details on the last point. �
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For the sake of completeness, we specialize the general elastic Pohozhaev identity to the
isotropic case of the forced Navier equations (5) in Ω:

∫

Ω

[

n − 2

2
ukfk(u) − nF (u)

]

dx = −
1

2

∫

∂Ω

[

1

2
µ‖∇u ‖2 +

1

2
(µ + λ)(∇ · u)2

]

(x, ν)ds, (15)

again subject to homogeneous Dirichlet boundary conditions on ∂Ω.
As a corollary, we obtain the following non-existence result. Recall that the domain Ω is

star-shaped with respect to the origin if (x, ν) ≥ 0 for any x ∈ ∂Ω.

Theorem 2. Suppose that Ω is a star-shaped domain. Let the function

F = F (s) = F (s1, . . . , sn) ∈ C1(Rn)

satisfy the conditions F (0) = 0 and

n − 2

2
sk ∂F

∂sk
− nF (s) ≥ 0 i = 1, . . . , n, (16)

for any s ∈ R
n. We also suppose that equality in (16) holds if and only if s = 0. Then there is no

non-trivial classical solution of the potential systems (5), (11), subject to homogeneous Dirichlet

boundary conditions.

Proof. This theorem follows easily from the identity (12), taking into account the positivity
requirement (9) and star-shapedness condition. Indeed, any classical solution of (11) subject to
homogeneous Dirichlet boundary conditions on ∂Ω must satisfy the identity (12). For (9) and
the star-shapedness condition (x, ν) ≥ 0 for any x ∈ ∂Ω, it follows that the right-hand side of
(12) is non-positive. On the other hand, by (16) the left-hand side of (12) is positive unless
u = 0 in Ω. Hence u = 0. �

4 Elastodynamics

In this section, we turn our attention to hyperbolic elastodynamic systems of potential type:

−ui
tt + Ckl

ij uj
kl + fi(u) = 0 (17)

in R × Ω with homogeneous Dirichlet boundary conditions on R × ∂Ω. The corresponding
Lagrangian is given by

L =
1

2
Ckl

ij ei
ke

j
l −

1

2
ui

tu
i
t − F (u) =

1

2
Ckl

ij ui
ku

j
l −

1

2
ui

tu
i
t − F (u), (18)

where the second expression follows from the requirements (8) on the elastic moduli.

Theorem 3. The classical solutions of the problem (17) satisfy the following identity

d

dt

∫

Ω

[

tE(u) + ui
tu

i
kx

k +
n − 1

2
uiui

t

]

dx

=

∫

Ω

[

n − 1

2
ukfk(u) − (n + 1)F (u)

]

dx +

∫

∂Ω

[

1

2
(Ckl

ij ui
ku

j
l +

1

2
ui

tu
i
t)(x, ν) + t Ckl

ij ui
ku

j
l

]

ds,

(19)

where

E(u) =
1

2

(

Ckl
ij ei

ke
j
l + ui

tu
i
t

)

− F (u) =
1

2

(

Ckl
ij ui

ku
j
l + ui

tu
i
t

)

− F (u) (20)

is the energy density.
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Proof. We introduce a vector field v which is the infinitesimal generator of the dilation group

(t, x, u) 7−→ (λt, λx, λ(1−n)/2u).

The first order prolongation of v is given by

pr(1)v = t
∂

∂t
+ xi

∂

∂xi
+

1 − n

2
ui ∂

∂ui
−

n + 1

2
ui

t

∂

∂ui
t

−
n + 1

2
ui

j

∂

∂ui
j

.

As a result,

pr(1)v(L) + LDiξ
i =

n − 1

2
ukfk(u) − (n + 1)F (u), (21)

where the Lagrangian L is given by (18). Then, after some algebraic manipulations, the identity
(19) follows from the Noether identity (3) combined with (18), (14), (21), the homogeneous
Dirichlet boundary conditions, and, finally, the Divergence Theorem. �

Let Ω ⊂ R
n be a ball of radius R centered at the origin. If we assume that u(t, x) decays

sufficiently rapidly as R = |x| → ∞, then the following conformal identity holds for the nonlinear
hyperbolic system (17) in R × R

n:

Corollary 1. The classical solutions of the problem (17) in R × R
n that decay rapidly at large

distances satisfy the identity

d

dt

∫

Rn

[

tE(u) + ui
tu

i
kx

k +
n − 1

2
uiui

t

]

dx =

∫

Rn

[

n − 1

2
ukfk(u) − (n + 1)F (u)

]

dx.

We observe that this result generalizes Morawetz’s dilational identity for nonlinear wave
equations, [14, 29, 30], to elastodynamical systems.

Finally, we consider a nonlinear hyperbolic system of so-called Hamiltonian type, [4],

{

−ui
tt + Ckl

ij uj
kl + Hvi = 0,

−vi
tt + Ckl

ij vj
kl + Hui = 0,

(22)

in R×Ω with homogeneous Dirichlet boundary conditions on R×∂Ω. (The independent variable
x must belong to an even dimensional space R

2m.) For such systems, we obtain a generalization
of Morawetz’s conformal identity [30].

Theorem 4. The classical solutions of the problem (22) satisfy the following identity

d

dt

∫

Ω

[

tE(u, v) + (xkuj
kv

j
t + xkvj

ku
j
t ) +

n − 1

2
(aujvj

t + bvjuj
t)

]

dx

=

∫

Ω

[

n − 1

2
(aukHuk + bvkHvk)

]

dx

+

∫

∂Ω

[

(Ckl
ij ui

kv
j
l + ui

tv
i
t)(x, ν) + t Ckl

ij (ui
tv

j
l νk + vj

t u
i
kνl)

]

ds,

(23)

where the constants a and b are such that a + b = 2 and

E(u, v) = Ckl
ij ui

kv
j
l + ui

tv
i
t − H(u, v). (24)
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Proof. In order to prove Theorem 4, we use the same scheme as in the preceding Theorem 3.
Namely, we consider a vector field v which is the infinitesimal generator of the dilation group

(t, x, u, v) 7−→ (λt, λx, λa(1−n)/2u, λb(1−n)/2v),

where the constants a and b satisfy a + b = 2. Applying the first order prolongation

pr(1)v = t
∂

∂t
+ xi

∂

∂xi
+

a(1 − n)

2
ui ∂

∂ui
+

b(1 − n)

2
vi ∂

∂vi
+

(

a(1 − n)

2
− 1

)

ui
t

∂

∂ui
t

+

(

a(1 − n)

2
− 1

)

ui
j

∂

∂ui
j

+

(

b(1 − n)

2
− 1

)

vi
t

∂

∂vi
t

+

(

b(1 − n)

2
− 1

)

vi
j

∂

∂vi
j

to the Lagrangian

L =
1

2
Ckl

ij ui
kv

j
l − ui

tv
i
t − H(u, v) (25)

yields

pr(1)v(L) + LDiξ
i =

n − 1

2
(aukHuk + bvkHvk), (26)

when a+ b = 2. Then, after some additional work, the identity (23) follows from (25), (3), (26),
(14), the homogeneous Dirichlet boundary conditions, and the Divergence Theorem. �

Corollary 2. Let a, b and E be as in Theorem 4. Then, provided u and v decay sufficiently

rapidly at large distances,

d

dt

∫

R2m

[

tE(u, v) + (xkuj
kv

j
t + xkvj

ku
j
t ) +

n − 1

2
(aujvj

t + bvjuj
t )

]

dx

=

∫

R2m

[

n − 1

2
(aukHuk + bvkHvk)

]

dx.

Applications of these identities to the stability and scattering of waves in elastic media will
be developed elsewhere.

5 Further Directions

We emphasize that, in order to obtain Pohozhaev and Morawetz-type identities in elastostatics
and elastodynamics by the Noetherian approach developed in [3, 4], we have focussed our atten-
tion on dilations, which are particular cases of conformal transformations. Further variational
identities associated with other variational symmetries remain to be investigated. In particular,
it would be interesting to analyze the variational identity for the semilinear Navier equations
that corresponds to the first order generalized symmetry

v =
[

µui
j + (2µ + λ)δi

ju
k
k

] ∂

∂uj

found in [18]. In fact, the variational and (at least in three dimensions) non-variational symme-
tries for isotropic linear elastostatics were completely classified in [17, 18] and the systems not
only admit point symmetries, but also a number of first order generalized symmetries. In the
two-dimensional case, complex variable methods, as in [15], are used to produce infinite families
of symmetries and conservation laws. Also in the two-dimensional case, additional symmetries
appear when 3µ + λ = 0. In the three-dimensional case, when 7µ + 3λ = 0, Navier’s equations
admit a full conformal symmetry group, along with additional conformal-like generalized sym-
metries. Although these restrictions are non-physical, they still lead to interesting divergence
identities in the more general isotropic case, which can be applied to the analysis of eigenvalue
problems, and also, potentially, the nonlinearly forced case. This remains to be investigated
thoroughly.
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