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1. Introduction 

In 1956 ESHELBY, [5], introduced his celebrated energy-momentum tensor in 
his study of lattice defects. This tensor had the useful property of providing 
nontrivial path-independent integrals for the equations of finite elasticity, or, 
in other words, providing densities of nontrivial conservation laws. The importance 
of this quantity was demonstrated in its rediscovery and use by RICE [19], in 
the study of the propagation of cracks in linearly elastic materials. The path- 
independence of the "J-integral" enables one to deduce properties of the material 
near the tip of a crack from its behavior some distance away, [6], [11]. 

The belated discovery of these integrals is curious, in that NOETHER'S theorem 
relating symmetries and conservation laws had been available since 1918, [14]. 
Be that as it may, the elementary derivation of ESHELBY'S tensor, as well as an 
angular momentum analogue and one other general conservation law using 
group-theoretic techniques remained unnoticed until KNOWLES & STERNBERG, 
[10], systematically applied a restricted version of NOETHER'S theorem to the equa- 
tions of elasticity. KNOWLES & STERNBERG further asserted that these constituted 
the only (quadratic) conservation laws derivable from NOETHER'S theorem, a 
point echoed in more recent treatments of the subject, [3], [6], [7]. However, 
EOELEN, [4], has correctly noted that the restrictive notion of variational symmetry 
in these references precludes any claims of complete classification of conservation 
laws. Indeed, the last sentence of [4] reads "a detailed cataloguing of all invariance 
transformations and conservation laws in linear elasticity would seem a worthy 
task". It is the express purpose of this paper to complete this program for the 
most basic case of linear, homogeneous, isotropic elasticity. 

As remarked in the first paper of this series, [18] (hereafter referred to as I, 
so that formulas or sections preceded by Roman I refer therein) the general ver- 
sion of NOETHER'S original theorem allows the possibility of many more con- 
servation laws being found by the same group-theoretic techniques. (See also 
[1], [16].) Here the general techniques developed in I are applied to the specific 
problems of two-dimensional and three-dimensional linear, homogeneous, isotropic 
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elastostatics in the absence of body forces (Navier's equations--see section 2A). 
The nondegeneracy assumption #(/z + 2) (2# q- 2) ~ 0 on the Lam6 moduli 
2,/t is made throughout. 

In three dimensions, the variational problem admits, in addition to the seven 
parameter group E(3) •  of Euclidean motions and scaling found by KNOWLES 
& STERNBERr, an additional six parameter group, isomorphic to E(3), of general- 
ized first order symmetries, and hence six additional quadratic conservation laws. 
However, if the unexpected (and somewhat unphysical) restriction 7/z q- 32 ---- 0 
holds, the underlying group is the full conformal group 0(3, 1) of three-dimensional 
space together with a second conformal group of generalized symmetries, leading 
to twenty independent quadratic conservation laws. (Although perhaps not 
physically motivated, a mathematical study of the geometrical properties of 
this case, which we call the conformal Navier equations, could prove very interesting.) 
Further, it will be shown that together with the linear conservation laws arising 
from Betti's reciprocal theorem, these constitute the only nontrivial conservation 
laws, hence invariant integrals, depending on position x, deformation u, and defor- 
mation gradient Vu. Of course, as the underlying equations are linear, infinite 
families of conservation laws depending on higher order derivatives of the defor- 
mation can, as outlined at the end of section 2, be easily constructed. 

The seven conservation laws valid in the conformal case 7/~ -q- 32 ----- 0 still 
lead to interesting divergence expressions of the form 

V . A - - - - B ,  

where A is quadratic in Vu, and B is positive definite, more specifically a linear 
combination of IlVu/I 2, (V �9 u) 2 and their moments. These may prove of use in 
the study of crack propagation, since although ~sA �9 dS no longer vanishes for 
closed surfaces S as it would if A were a conserved density (B = 0), we still have 

~ A.dS>=O 

for any closed surface S. Thus measurement of A away from the tip of the crack 
leads to bounds on .4 near the crack. However, we shall not pursue this here. 

For two-dimensional elasticity, the situation is even more surprising. Now 
infinite families of independent symmetries and conservation laws, no longer 
restricted to being at most quadratic in Vu, appear. In the special conformal 
case, which now corresponds to 3# + ;t = 0 (when Navier's equations have 
an elementary explicit solution) even more symmetries and conservation laws 
apply. The situation is very reminiscent of the classification of conformal sym- 
metries and conservation laws of Laplace's equation in flat space, [12], [16]. 
In three or more dimensions, the conformal symmetries form only a finite-dimen- 
sional group, whereas in two dimensions any analytic function gives rise to a 
conformal transformation. As might be expected, analytic function techniques 
play a key role here; the results are described in detail in sections 4, 5C. In parti- 
cular, an infinite number of nontrivial path-independent integrals, of which 
RICE'S J-integral is the most elementary example, exist. See also [21]. 

Besides the potential applications to crack problems, there are a number of 
other directions in which the results here can be applied and extended. FLETCHER, 
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[7], has shown how the conservation laws of KNOWLES ~; STERNBERG can be 
suitably modified to provide conservation laws for the equations of elastodyna- 
mics. Presumably, the general Hamiltonian techniques of [15] apply to give 
dynamical laws for the additional conservation laws derived here. The appearance 
of conformal symmetries is of interest. STRAUSS & MORAWETZ, [20], have shown 
the importance of conservation laws derived from the full conformal group of 
the wave equation for decay and scattering properties of certain types of nonlinear 
wave equations. Our laws and identities may have similar applications in elasticity. 
However, this paper will only be concerned with the systematic classification 
of conservation laws and symmetries for linear isotropic elastostatics. Investiga- 
tion of these areas of application must be deferred to subsequent papers in this 
series. 

This work was begun during a visit to Heriot-Watt University in 1981. It 
is a pleasure to thank the mathematics department for their hospitality, and, in 
particular, JOHN BALL for much-needed encouragement to complete this research. 

2. Discussion of Results 

Except for the following innovations, standard tensor notation, as in [8], 
is used throughout. Vectors are 2-dimensional or 3-dimensional column vectors. 
The summation convention is used unless noted otherwise, the indices running 
from 1 to 3 (except in sections 4, 5C, where they run from 1 to 2). If v is a (three- 
dimensional) vector, b denotes the skew tensor with entries eijkV k. The cross pro- 
ducts between vectors and tensors are defined by 

v A A = b ' A ,  A A v = A ' b .  

If A(x) is a tensor-valued function, its divergence V �9 A is the vector-valued func- 
tion with entries OjA~, Oj = O/Ox j, where i, j are the row, column indices respec- 
tively of A. The transpose of a vector or tensor is denoted by a superscript r. 

A. The Equations of  Linear lsotropic Elasticity 

As detailed by GURTIN, [8], the equilibrium equations for a homogeneous, 
isotropic linearly elastic medium in the absence of body forces arise from the 
variational principle 

J---- f # IlVu + 7ur]l 2 + �89 2(V . u)2 dx. (2.1) 
a 

The corresponding Euler-Lagrange equations are known as Navier's equations 

g = ,u Au + (t z + 2) V(V.  u) = 0. (2.2) 

The constants/z, 2 are the Lam6 moduli, and are usually subjected either to the 
restriction 

/t > 0, 2/~ + 2 > 0 (2.3) 
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ensuring strong ellipticity, or, more restrictively 

/* > 0, 2/, -k- 32 > 0 (2.4) 

ensuring positive definiteness of the underlying elasticity tensor. We note here 
that strong ellipticity is just the Legendre-Hadamard condition that the matrix 

Q(~) = / *  I1~112 1 + (/* + 2) ~ Q (2.5) 

of quadratic functions of ~ E R 3 is positive definite (cf. 1.3) and hence the general 
results discussed in I apply. We also make the restriction that /* + 2 =1= 0 through- 
out the paper; otherwise the Euler-Lagrange equations decouple into separate 
Laplace equations for the components of u. The structure of  the symmetries and 
conservation laws for Laplace's equation are well known (cf. [12], [16]), and we 
need not further elaborate on this case here. 

B. Conservation Laws in Three Dimensions 

The complete classification of all first order conservation laws 

Div B = V �9 B(x, u, Vu) = 0 (2.6) 

for Navier's equations is presented here in tensor notation. Note that if A(x, u, Vu) 
is a tensor density, then 

D ivA = 7 �9 A = 0 

gives three different conservation laws. 
For /*(/* + 2) (2/, + 2) =~ 0 and 7/, + 32 @ 0, any first order conservation 

law is a linear combination of the 16 conservation laws with densities 

s - / ,  Vu + (/, + 2) (V. u) 1, 

P = / ,  VurVu + O* + 2) Vur(V �9 u) - �89 [/, IlVull = + O + 2) (V .u) z] 1, 

R = x A P - k u A S ,  

r = x~e + �89 u~S, 

Q =/,(2/* q- 2) 7u (V.  u) q-/*2 Vu(Vu - Vu r) q- �89 (/* q- 2) (2/* q- 2) ( 7 .  u) 2 1, 

I . 2(/, T ----- (# + 2) x A Q q- #(3/* + 2) u A S + -~/~ -F 2) [(u/x 7u) r - tr(u A 7u) 1], 

and the infinity of densities 

K, = erS -- ur(/* Ve + (# + 2) (V.  e) 1) 

parametrized by solutions e(x) of Navier's equations. 
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If  7/* q- 32 = 0, then the additional seven densities 

I =  2(x | x) P - -  [xl 2 P q- (x | u -- 2u | x) S + 2(x. u) S - -  2#u | u 

- � 8 9  1,  

Z : xrQ + # u r S  + /*2[ (7"  u) u - (7u)  u] r, 

J :  2(x | x) Q - Ixl  ~ Q + # ( 2 x  @ u - u | x) S + /*(x " u) S 

+/.212x | (u V . u .  (7u)  u) + ur(Vu) x 1 - (Vuru) | x 

+ x ^ ( 7u  r ^ u) - tr(u ^ 7u )  Sc], 

arise. (Expressions for these densities using indices can be found in theorems 3.1, 
3.2.) 

Here S is the stress tensor associated with the deformation u, and reflects the 
fact that Navier's equation are in divergence form. P is the energy-momentum 
tensor of ESHELBY, [5], and R the corresponding angular momentum tensor. 
The vector Y arises from scale invariance; P, R and Y were found by KNOWLES & 
STERNBERG, [10], from elementary invariance properties of (2.1). The conservation 
laws K~ are manifestations of Betti's reciprocal theorem; cf. [8, w 30]. (This 
contradicts a statement of CHEN & SHIELD, [2], that Betti's theorem cannot be 
derived from NOETHER'S theorem.) The remaining densities are new. 

C. Symmetry  Groups in Three Dimensions 

Let Bx, 0, be "vectors" with entries O/8x i, B/Ou i respectively, so that we may 
perform tensorial operations to derive new triples of tangent vectors. Such a 
triple will be a symmetry of (2.2) if each component is. 

For /*(/* + 2) (2/* + 2) @ 0 and (7/* + 32) @ 0, the Lie algebra of infinite- 
simal symmetries of Navier's equations is spanned by the Lie symmetries 

/7 = 8x (translations), 

= x A Ox -- u ^ 8, (rotations), 

~'1 = x ~ 0x 
(scalings), 

"s2 = u r O. 

and 

= e(x) O, (addition of solutions) 

for e an arbitrary solution of (2.2), together with the six generalized symmetries 

= / *  Vu" 0u + (2/* 4- 1) (V �9 u) ~., 

t ' =  (/* + 2) x A ~ +/*(3/* + 2) u A t~,, 

~ =  V u ^ ~ . .  
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If  7# + 32 = 0, then the additional vector fields 

]" = l xl 2 ox - 2(x | x) ox + (x | u - 2u @ x) o, + 2(x.  u) 0., 

F = xr~" + #u r 0., 

f - -  2(x | x) ~ - I xl 2 ~ + #(2x | u - u @ x) 0, + # ( x .  u) ~., 

-J = 2x~ + u A O,, 

b ~= Ix?  ~ + xr(u ^ oD, 

are also symmetries. (See theorems 4.1, 4.2 for the corresponding expressions 
with indices.) 

Of these vector fields, if, 7, ; =  71 +7~ k., F,7, ~,~,]are variational symmetries 
and yield, via NOETrIEa'S theorem, the conservation laws, P, R, Y, K~, Q, T, I, Z, J 
respectively. The remaining symmetries are non-variational, and will only yield 
"conserved one-forms"; cf. [15]. 

The vector fields P,  7, ; ,~exponent ia te  to form a 10-dimensional conformal 
subgroup of the full symmetry group. It is interesting that only in the special case 
7# + 3;t = 0 are the inversions admissible. 

For a generalized symmetry 

0 

the corresponding one parameter group arises as a solution of the evolutionary 
system 

Ou i 

0---2 = V)i(x, u, Vu). 

If  the initial data u~(x, 0) is a solution of (2.2), then so is u(x, e) for any e. In parti- 
cular, for the vector field ~, we have 

Ou t ~u j 

0e eOk 0--~" 

This system can be easily solved in Fourier transform space 

SO 

~(k, e) = 1 f e,k. x ui(x ' e) dx, 

a~ 
aT = k ^ ~,(k, e). 

This is just the infinitesimal version of a rotation with axis k, so we have the 
"solution" 

~(k, e) -~ Rk(e) ~t(k, 0), 
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where Rk(e) denotes the rotation through angle e with axis k. I am unsure as to 
the precise interpretation of this group in the physical variables u(x), or its geo- 
metrical meaning for elasticity. The other generalized symmetries can be treated 
similarly, but the formulae are more complicated. 

D. Further Identities 

Although the extra conservation laws valid in the special ease 7# + 32 = 0 
do not remain conserved in general, the densities do provide interesting divergence 
identities. Specifically, we can express both [[ Vu l[ 2 and (V �9 u) 2, and their moments, 
in divergence form. 

To obtain this result, first note that the densities Z, /, J have divergences 

V.  Z = �89 (7# + 32) (2# + 2) (V. u) 2, 

V.I---- -- (7# + 32) (V " u) u , 

V- J = (7# + 32) [(2# + 2) (V.  u) 2 x + #(V- u) (Vu T -- Vu) x], 

as can easily be verified. Next note that 

v .  (u~S) = # IIVutl 2 + (# + 2) ( v .  u)2; 

hence, in conjunction with Z, we can express both [] VuJ[ 2 and (V �9 u) 2 in divergence 
form (provided 7# + 32 =t= 0.) 

Let 

U =  u | Srx  - (u.  x) S + #u | u, 

V =  x |  1 - ~-# lul ~ 1. 

Then 

v .  u = 0 ,  + 2) ( v .  u) (Vu - Vu ~) x + 2(2~, + 2) ( v .  u) u, 

v .  v = [# HVull 2 + (# + 2) ( v .  u) 2] x + (# + 2) ( v .  u) u. 

From these it is easy to express the moments x s [[ Vurl 2 and xi(7 �9 u) 2 in divergence 
form. Let 

A = 2#(2# + 2)(# + 2 ) 1 +  (# + 2) 2 J + # ( #  + 2) (7# + 32) U, 

B ---- (2# + 2) (22 - -  #2)  I - -  (#  -q- 2) 2 J - -  # ( #  d- 2) (7# -}- 32) U 

+ ( # + 2 ) ( 7 # + 3 2 ) ( 2 # + 2 )  v. 

Then 

v . .4 = (7# + 3a) (2# + 2 ) ( ~  + 2)2 (v  .u )2x ,  

v .  ~ = (7# + 32) (2~, + 2 )# (#  + 2)I[Vujl' x.  

Applications of these interesting identifies will be discussed elsewhere. 
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E. Higher Order Symmetries and Conservation Laws 

For systems of linear partial differential equations, it is well known that sym- 
metries and conservation laws appear not singly but in infinite families, [1], [9], 
[16]. Specifically, a linear symmetry is one of the (standard) form ~'~ with 

---- ~ u ,  

where ~ is a matrix of differential operators, b~ is a symmetry if and only if 
is a symmetry operator for the linear system in the sense of MILLER, [12]. If  9 ,  
~ '  are two such operators, so is ~ �9 ~ ' ;  hence any linear combination of power 
products of symmetry operators is again a symmetry operator. 

The first order symmetries of the equations of linear isotropic elasticity thus 
provide a number of first order symmetry operators. Any operator in the envel- 
oping algebra of these operators is a generalized linear symmetry, although some 
of these may be trivial, i.e. vanish on all solutions of the system. The problem of 
whether or not all symmetries arise this way is open (as is the same question for 
Laplace's equation!) 

For conservation laws, it may be shown that if ~ is a skew-adjoint matrix of 
differential operators, then b~v gives rise via NOETHER'S theorem to a conservation 
law, [16]. A second mechanism of finding conservation laws is that ifA is a conserved 
density and b'r a symmetry, then b~r(A) (evaluated component-wise) is conserved, 
[1, p. 83]. Thus there are an infinite number of conservation laws for Navier's 
equations, whose densities depend on higher and higher derivatives of u. We shall 
not attempt to classify these laws here, but refer the interested reader to [16] 
for the basic techniques used to compute them. 

3. Derivation of Three-Dimensional Conservation Laws 

The derivation of the conservation laws discussed in the previous section is, 
basically, an involved calculation using the general formulae of paper I. For 
reasons discussed there, it is easier to work with the conservation laws to begin 
with, and, subsequently, use these to find the corresponding symmetries, inverting 
the usual methods in NOETHER'S theorem. 

First we find all x, u-independent conservation laws. We begin by deriving 
those which are quadratic in Vu, but subsequently prove that (in three dimensions) 
all such laws are quadratic (or lower order) polynomials. These can be separated 
into trivial and nontrivial laws. The conservation laws which depend explicitly 
on x and/or u are then found using theorem 1.4.5. For the convenience of the 
reader, we begin by summarizing the relevant constructions, specialized to the 
current equations of linear isotropic homogeneous elasticity. In this section all 
calculations and results are for the three-dimensional case. 
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A. Equations for Conservation Laws 

As discussed in full detail in I, a (first order) conservation law for (2.2) will, 
in general, be equivalent to one of the form 

Div A = ~,. g ,  (3.1) 

where A, ~p depend on x, u, Vu. As stated in theorem 1.4.5, if we know all the x, u 
independent conservation laws A ~ . . . .  , A N, then general conservation laws can 
be found as linear combinations 

A : xcoi(x, u) A i -~ ~w.Oi(x, u) i f ,  (3.2) 

where B ~ . . . . .  B ~t form a "complete set" of trivial conservation laws depending 
on Vu; cf  [17]. Moreover, the conditions on the coefficient functions ~o ~, 0 ~ are 

~(Djo) i) A~ + ~(DjO i) Bj = O, (3.3) 

where Dj denotes total derivative with respect to x j, so Dj = ~/~xJ+ u k ~/~u k, 
and A~., j = 1, 2, 3 are the components of A i. 

B. x, u-Independent Conservation Laws 

The first step is the calculation of  all x, u-independent conservation laws. The 
main result to be proved is the following: 

Proposition 3.1. Let /z(# + 2) (2/z + 2) ~ 0. Suppose Div A = 0 is a con- 
servation law for (2.2) depending only on Vu. Then A is a linear, constant coeffi- 
cient combination of  the following laws. 

a) NontriviaL quadratic 

- -  UkUt), (3.4) ut + (# + 2) k 

Q~ = (2# + 2)tzuju~ z i t (3.5) q- tt ut(u) u~) + -~ (# + 2) (2# + 2) si. k. t --  WUkUl, 

b) NontriviaI, linear 

c) Trivial quadratic 

d) Trivial linear 

e) Constants. 

(3.6) 

B !~ , = utu , (3.8) 

(3.7) ./'lj eiknF~flmUl Urn, 
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Note that (3.4-6) are just the conservation laws P, Q, S described in Section 2, 
but now written out in full detail without the aid of tensor notation. The trivial 
quadratic laws are all forms of the Jacobian identity 

0(u, v) 0(u, v) ~(u, v) 
Dx + D, + Dz = 0 ,  

while the trivial linear laws are identities of the form 

Dx(uy) + Dy(--Ux) ---- O. 

The form of these trivial laws follows from the general characterization given in 
[17]. 

The basic equations for an x, u independent law A for the equations of linear 
isotropic elasticity can be written as follows: 

i 

AI = (2# + 2) ~p,, (3.9a) 
] 

A} = #~p,, i =t=j, (3.9b) 
i ] .  

.4]+ AI= ~ + 2) y,, i @ j,  (3.9c) 
i k 

A~ + At = O, i,j, k distinct. (3.9d) 

In these equations, and for the remainder of this subsection we have dropped 
the summation convention. The components of the conservation law A have 

J J.  J 
now been written A, and the notation A'k = 8A/Su~, has been used. The equa- 
tions (3.9) come from the basic equations (3.1), or, more specifically, equations 
(I.4.10) for our specific stored energy function. 

The proof of proposition 3.1 amounts to finding the general solution to equa- 
tions (3.9). This proceeds in three steps: First, all linear solutions are easily com- 
puted and shown to be linear combinations of (3.6,8); this we leave to the reader. 
Second, the quadratic solutions will be computed; this is the hardest computa- 

i 
tional step. Finally, we show that all third order derivatives of the A with respect 
to u], vanish, and so there are no other solutions to the equations. 

To analyze quadratic solutions, we differentiate (3.9) to obtain relations among 
i i i 

the second derivatives A~lm = 9 2 i / ~ u ~ 8 / / / o f  the A's. These fall naturally into two 
classes, those in which only two distinct indices appear and those in which all 
three indices appear at least once. 

Eliminating derivatives of the v A, for the former class we have the following 
relations: for any i =~ j. 

i y. .  i �9 

#(# + ;t) A~ : (2# + ),) (#+).) A)~ = #(2,u + ,Tt) (A~ + Alia), 
(3.10) 

_ + ,u(# + 2) A}~ = (2# + 2) (,u + 2) A), -- #(2/z + 

#(4 u + - ,  - ; i  • (2/z + ).) (~ + 2) a,J{ = #(2# -}- 2) -}- A,'~ . 
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The first two sets of  equations result from eliminating W~ from (3.9a--c) and 
i and u~ respectively, the second two from inter- differentiating with respect to ui 

changing i and j in (3.9a--c), eliminating % and differentiating with respect to 
uj and u] respectively. For each i =~ j there are (assuming 2, # and 2/z + 2 do 
not vanish) eight different equations in ten unknowns, resulting in two inde- 
pendent solutions. These are: 

i 
i i  A,., -- (2# + 2) (Pi + (3/z q- 2) qi), 

i 
A)~. = - t , (p ,  + 2t, q3, 

t 
A j  ij = ~2qi , 

i 
A i  jj = ~Pi,  

i 
A~ ---- (2/~ + 2) 2 q,, (3.11) 

i 
Aj:--- - (2/z  q- 2) (p, - (p q- 2) qi), 

J i i  A o --/z(p~ -1- (3# q- a) q,), 
) 

Ai  q =  (#  -~- 2)p i --/~2qi , 
) 

Ajj = (2# + 2)/~q,, 

J 
a~ = (2# + ~)pi, 

where pg, qi are arbitrary, independent of j. 

The second derivatives A~m for which all three indices 1, 2, 3 appear fall into 
two subclasses. : First consider the case when two indices appear twice. The 
relevant equations are: 

i Jt" i 
(2# + ~)(A~ + A~i) = (~, + ~1,41~ = (~ + ~) (2~, + ~)p~, (3.12/ 

i U _ _  k it' 

The first two equations follow from (3.9 b, c) (differentiated with respect to u~), 
(3.9a, c) (differentiated with respect to u~,) and (3.11). The third equation comes 
from (3.9d), and serves as the definition of  tk- The general solution of (3.12) is 
easily seen to be 

i 
Agj = (~ + ,~)pk - tk, 
k 

A~ = (/z q- 2) (2# q- 2) qk -- (# q- 2)Pk q- tk. 
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The last case is when all three indices appear, but one index appears three 
times. The claim is that all such second derivatives necessarily vanish. To prove 
this, first we compute, using (3.9), 

k ~ 

+ 2) : ' ,  2) + a~/) .Oik : / ~ ( 2 / z  q- 

k 1 
2) Aik -t- p(2/t + 2) jk ---- --/z(2/~ + jk A i i ,  

i l 
= --(2/* + 2 )  2 jk .4. +/z(2~ + 2) a{~, 

i 
= --(2# q- 2) (/z q- 2) a i  k. 

The last term is symmetric in j ,  k, hence (assuming/~(# § 2) ~= 0) 

i i 
q _ _  ik 

A i k -  A i j .  

On the other hand, 

SO 

i k 
~i _ 2) A~k /~ A i g -  (2# + 

t k 
i~(# -t- 2) Aii{,= (2# -k 2) (# -k- 2) A~k, 

�9 ~,~ 
= #(2/z q- 2)( ,~k § "tTtkJ]' 

k i 
= --/~(2# + ~k " 2) Ajk + ~,= A~J', 

# ' 
= --(2# + 2 )  2 .q_ i/~2 Aij,--ik 

i i 
ik 2 ~ i k  = --#(2p + 2) Aij + # & j ,  

i 

= - . f ~  + 2)A~) .  
i 

Therefore AiUk = 0, and all other second derivatives in which i occurs three 
times, j ,  k once, can, by the above calculations, be seen to vanish. 

Thus the second order derivatives of any conservation law A are given by 
(3.11-13) with Pi, qi, ti arbitrary. Setting Pi = ~ ,  qi = O, ti = 0 we recover 
the momenta (3.4). Similarly qi = ~ ,  P~ = ti ---- 0 gives (3.5), while ti = OJi, 
Pi = qi = 0 recovers the Jacobian identities (3.7). 

It remains to show that A can be at most a quadratic function of  Vu, in other 
i 

words show that all the third order derivatives, denoted ,~l, vanish. There are ."X kmp~ 
a large number of  possibilities for the seven indices i, j ,  k, l, m, n, p, but these 
can be reduced as follows. If  only two distinct indices occur, then the third deri- 
vative must by (3.11) be a linear combination of derivatives of the p~ and q~. 
However by (3.12) these can in turn be replaced by linear combinations of third 
order derivatives in which all three different indices 1, 2, 3 occur at least once, 
so we restrict our attention to such derivatives. 
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Next note that if we choose five indices consisting of  two of the columns 
(j, k) or (/, m) or (n, p) plus the index i, and among these five indices one number 
appears thrice, the other two appearing once each (e.g. 1, 1, 1, 2, 3) then by the 
above results for second order derivatives, the corresponding third order derivative 
vanishes. For  instance, if among the seven indices i , . . . , p  one number occurs 
five times, the other two occurring each once, then, by the preceding remark, 
the derivative must vanish. 

To investigate the remaining cases, we use the notation 

ilj l n] (3.14) 
[kmp] 

to denote the above derivative. To save space, this notation may also mean third 
i 

order derivatives with the columns reversed, e.g. Akt~. Equivalence -~ between 
such symbols will mean equality up to a nonzero multiple between the corres- 
ponding derivatives. 

If  one number occurs four times amongst i . . . . .  p, then the only derivatives 
not covered by the remark in the preceding paragraph are 

(] iij~ [ . l i j j ]  
i[ ik jJ  "~ kJ j k j )  = 0 ,  

by (3.9a, b) and the remark. Thus the only third order derivatives standing any 
chance of not being zero are those in which all numbers occur at least once, but 
no more than thrice. 

The following types of derivatives are not covered by the above remark: 

( . l i i j~ [ . l i j j~  
' j j  t j j j  kJ : o, 

since j occurs 5 times. The equivalence is based on the fact that second order 
derivatives with only two indices occurring can all be expressed in terms of  Pi 

J J 
and qi, which in turn by (3.11) can be expressed in terms of Aj~. and A~j. (Thus in 
the above equation we are implicitly using the ambiguity of our symbol in the 
ordering of  the indices of  the first column; the right hand side actually denotes 
a linear combination of two different third order derivatives, both of which vanish 
for the same reason.) Also 

l i i i \  ( j  i i i~  
k j j j) ~- j j k ]  

by (3,9d), hence this reduces to the previous case. Several other types of third 
derivatives are also covered by an application of this result. 

The only remaining derivatives are those given by symbols of the type 
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and those obtained by switching the column entries. Now we need to be careful 
as to which order the column entries are written. The easiest such derivative to 
treat is 

J l j k i )  "~ i k j  = 0 ,  

by (3.9d). The same argument holds if the first or second column has its indices 
reversed. Next 

i i  

by (3.9d), which reduces to the previous case (with j and k interchanged). Here 
we still have freedom in the order of the second column. Finally, by (3.9b, c), 

l i i  i] JljkkJ 
can be written as a linear combination of 

(jl~ikik) and (il~ikik) 

both of which have been shown to vanish. This completes the verification that 
all third order derivatives with three different numbers occurring in the indices, 
and hence all third order derivatives, vanish. 

C. General Conservation Laws 

We now turn to the investigation of conservation laws which are allowed to 
depend explicitly on x and u. 

Proposition 3.2. Suppose Div A = 0 is a nontrivial conservation law for 
Navier's equations (2.2). Suppose /z(# + 2) (2# + 2) =~ 0. If, in addition, 
7# + 32 ~= 0, then A is a linear combination of the laws (3.4-6) in proposition 3.1 
and the following additional laws: 

R~ = ~,kl(xkP l + u~Sj),l (3.15) 

yj xkp~c-  1 k~k = -t-~u~), (3.16) 

i 1 2( ~- 2) (~jkluku~ 27 i l k 7"; = ~,~,((~, + 4) x~a~ + ~,(3~, + 4) u~sJ} + -~# # ~ , m u  urn}, 

(3.17) 
[ O e  k k~el \  ~ = ~(x)  s~ - u~ ~ ~ + (~ + 2) ~; ~ ) ,  (318)  

where e(x) is an arbitrary solution of (2.2). 
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If  7# q- 32 = 0 then A is a linear combination of all the preceding laws as 
well as the additional 7 laws 

1j = 2x'x~e)  -- x~x~ej + (xiu k -- 2x~u ') S~ + 2 x ~ u k S j -  2#u'uJ -- �89 # ~uku ~, 

(3.19) 

Zj :-- xkQ k q- #ukS k q- #2(uJu~ -- ukuJk), (3.20) 

gj----- 2x'x~a) - xkxkaj  q- #(2x'u k --  xku ') S~ q- #xkukSj 

_~ 2#2xi(uJuk k __ ukuJk) _~ #=(gijkglm n Jr_ g,knS,mj ) xkulu m .3f_ #2(~ffxkulul __ xJulul). 

(3.21) 

To prove the proposition, we use the representation (3.2) in the form 

.4 = ocip i -}- fliQi _}_ 7iAi  _}_ eiSi  _}_ OikBik _~_ tO, (3.22) 

where ~, fl, y, e, 0, tO are functions of x, u, subject to conditions (3.3). To find 
the general solution, we must look at the coefficients of the various monomials 
in Vu. 

Lemma 3.3. I f  (3.22) is a conservation law, then o~, fl are independent o f  u, and 

~r ~yi/Sui = 0. (3.23) 

Proof. By use of the formulae in proposition 3.1, the coefficient of (u~) 3 in 
(3.3) can be written as. 

[&d Off] 
(2#-+-2) ~ + ( 3 # q - 2 ) ~  = 0 .  (no sum) 

The coefficient of u[(u~-) 2 is 

# [~- ~ + (2# + 2) aui) = 0. (no sum) 

Therefore od and fli do not depend on u i. The coefficients of (u~) 3 and J ~ = ui(uj) are, 
respectively, 

f &~i ofli} 
�89 (2# + 2)(Tu'  + (# + 2)TuuJ = 0; 

hence o~', fli cannot depend on u j. Finally, the coefficient of  u[u~u k (i, j ,  k distinct) 
yields the condition on ),. 
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Lemma 2.4. / f y  satisf ies  (3.23), then there is locally a trivial  conservation law 
C such that  

Div (TiA i + C) = Div (OikBik) (3.24) 

f o r  f unc t ions  ~ik. 

Proof. (Sketch). If  f ( x , u )  is a function, define the differentials 
d x f  = S Of/Ox i . d x  ~, d u f  = _r 8f/~u t �9 du i and d f  = d J +  d , f  : 2 D~ f  dx  i. Let 

so that 

CO = eijk~ 'i d u  j A dR k , 

do = Div (7iA i) dx  1 A dx  2 A dx  3 . 

The condition (3.23) implies that 

d, co = O; 

hence, by Poincar6's lemma, cf. [22], there exists (locally) a one-form 

0 = 0 i du i 

with 

Then 

s o  

duO = o ) .  

dco = dd~O = d(dO - -  dxO) = --d(dxO),  

~0 i 
dxO = -U/xidxJ A du i 

is of  the required form. 
Thus for nontrivial conservation laws we can let y ---- 0 in (3.22) without loss 

of  generality. 

Lemma 2.5 I f  (3.22) is a conservation law, then the vector f i e l d  

~" = ~ ' - - .  (3.25) 
Ox ~ 

generates  a one p a r a m e t e r  group o f  con formal  t ransformat ions  in x .  I f  7# + 32 =b 0, 
then 

= fli O/~x i (3.26) 

generates  a one-parameter  group o f  Euclidean motions,  f f  7# + 32 = 0, then 
generates  a conformal  group. 

Before proving the lemma, first recall, [16], that the conditions on (3.25) that 
it generate a conformal group are 

t3Lx i 0a ] 
c~x---- 3 + ~x ~ ~]q0, (3.27) 
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for some function % In R 3, the Lie algebra of conformal vector fields is spanned 
by the ten vector fields 

. ~ 0 i ~ ~xx" ~X----~, eijk X't ~xk , X k Oxk , 2X X * ' - ~  --  x kx  k , (3.28) 

which generate groups of translations, rotations, dilatations, and inversions 
respectively. The subalgebra of Euclidean vector fields is spanned by the trans- 
lations and rotations only; it is specified by (3.27), but with the additional con- 
straint that ~v = 0. 

To prove lemma 2.5, we look at the coefficients of quadratic monomials in 
Vu. For i 4= j, the coefficient of (uj) 2 is 

{ ~k ~Ob k O f f .  Oei t = 
/* ((~]c - -  -~-) - - ~  - - /*  -~x i --{- ~u/] 0 (no sum on i) 

from which we conclude 

&d &i  ~fli 
eX i --  (19, eU i __ 19) -~- /*-'~X i (no sum). (3.29) 

The coefficient of i i u)u k (i, j ,  k distinct) is 

/* [~xk + 0Xj/ = 0; (3.30) 

hence (3.27) is satisfied, and the 0d are conformal. The coefficient of (ul) 1 is (using 
(3.29)) 

{ a f t ,  ~3fl k 2 &' } 
(# + ~-it) 2/*-~-x, -t- (/* + it) ~ ~ + au-- q -- ~0 = 0 (no sum). 

Comparing this with (3.29), we see that 

~fli aflk 
4/*-~-xi + (/* + it) ~Y' ~----- 0 (no sum on i); 

hence, since r / =  O, 

with ~p-----0 unless 

~ x i -  r (no sum) 

7/* + 32 = 0. Moreover 

1 ~u i - -  ~ o  -t- #~o (no sum). (3.31) 

Next, the coefficient of UikUJk shows that 

/* [~x '  gx'] = ~ + Ou "---> 
(3.32) 
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while i i uiu) shows 

O~ Off 2 Off i &~ &J 
(~ + ~) ~ + ~,(2/~ + ~) Ox--- ~ --/~ ~ + (2~ + ~) ~ + ~ ~ = O. 

Combining this, (3.30) and (3.32), we see that both sides of (3.32) must vanish, 
so fl is Euclidean (or conformal) and e satisfies (3.31) and 

[ Od Oo& , ~flJ 
(/z -I- 2) \-ff-~u j + v~-/-Z~l + / ~ ( 3 #  -I- 2) -~-x' = O. (3.33) 

i j  i ]  i j  Finally, the remaining monomials, i.e. uiuy, ujui, uiu k and u~u{ yield the further 
relations 

~0 ik 
~.e ei~q ~ = 2/zzW, 

i,j,k 

~oik 2 ~fli 

Z ~J~'TJ~' = *' VxxJ" k,l 

(3.34) 

To complete the equations that must be satisfied by o~, fl, e, O, we look at 
the linear and constant monomials in Vu, giving the further conditions: 

~e i ~e k ~0 ki ~09 i 

&~ ~0 k~ &M 

I ~ ~X j -~- Zk,l 8jkl ~x''~ Jr- --~U i ~- O, 

8a) k 

~--~xk--o .  

(no sum on i) 

(3.35) 

Note that differentiating the first two with respect to x i and x j respectively and 
adding, we find that for each fixed u, e(x, u) must be a solution to the original 
equations (2.2). 

Given a conformal vector field ~x i O/Sx i, or an orthogonal (conformal) vector field 
fli g/Ox ~, it is a straightforward computational exercise to find specific solutions 
e, 0, o~ to (3.31, 33, 34, 35). For brevity, we omit all of the intervening computa- 
tions, except for the case when 

od = 2xix  j - -  djxt 'x k ( j  fixed) 

is an inversion. Then (3.31, 33) implies that 

e i = xJu i - -  2 x i u J +  26jxku k. 

However, since fl = ~p = O, (3.34) implies 

90 ik ~oil 

~u l - -  ~U k �9 
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Differentiat ing (3.35a) with respect  to u j, and  (3.35b) ( interchanging i, j )  with 
respect  to u i and subtract ing,  we find tha t  the above  equat ions reduce to 

7g + 3a=0,  

hence if  o~ is an inversional symmetry ,  a consistent conservat ion law can be found 
only when 7# + 32 = 0. 

We summar ize  our  results as follows: 

1) s-rotat ions  

2) o~-dilatation 

3) fl-rotations 

Ob i : 8 i jkX k ,  I~ i = 8ijkbl k ,  f l=O=o~=O.  

O~ i :  x i ,  8 i ~ - ~ - u i ,  ~ :  0 = f.O : O .  

~i = (~ + ~) <jkx ~, 

o '~ = � 89  + ~) (~)u ~ - ~u~),  

e i = #(3/~ + 2) eokU k, 

0r ~--~ fD = 0 .  

~ = 0 = 0 ,  

e i = ~ U  i, 0 ik =- # 2 8 i j k u J  , O; = fO = O .  

f l i  = 2x ,x  j _ ojxkxk, e' = /x(2xJu ' - -  x 'u j + 6~xkuk), ~X = to = O, 

o~k = #2[ejkl((1 + ~)  X~U t __ X~U ,) + eOk( 1 + Or) X~U, ]_ O~eam(1 + r x l u r n ] .  

I t  is also s t ra ightforward to check tha t  these formulae  give rise to the conservat ion 
laws (3.15-21). 

Finally, i f  ~ = fl = 0, then  f rom (3.20, 22), e must  be independent  o f  u, 
so e(x) is an arbi t rary  solution of  (2.2), with corresponding conservat ion law i f ' .  
Fo r  e = 0, any fur ther  solutions in O, co yields only trivial conservat ion laws. 
This completes  the p r o o f  of  proposi t ion  3.2. 

5) fl-dilatation 

l i  = X i, 

6) fl-inversion 

For  7/~ + 3;t = 0, we fur ther  have 

4) or 

O~ i ~ _ _ .  2xix  j __ O~xkx k, e i = XiU j - -  2XJU i -}- 2Ojxkx k, 

co i : - -  2 ~ u i u  j - -  # (~l, l k u  k �9 
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4. The Two-Dimensional Case 

The procedures for classifying conservation laws for the two-dimensional 
Navier equations is the same as in three dimensions, but the results and intervening 
computations are of a completely different character. Here analytic function tech- 
niques are essential, and infinite families of nontrivial conservation laws arise. 
As before, though, the basic strategy is to first compute x, u-independent conserva- 
tion laws, and then proceed to the general case. The notation is the same as before, 
only now indices just have values 1, 2. 

Define the complex variables 

z =  x 1 + i x  2, w = u  t + iu 2, 

with corresponding complex derivatives 

0 __ 1 ( ~  ~ ) ,  __0 = - - 1  ( ~  x ~ )  
0z 2 -- i 05 2 + i , 

etc. We further define the following complex combinations of  deformation gra- 
dients: 

Ow 
~: = ~1 + i e2 = 2 ~ -  ---- (ul -- u~) + i(u~ + uZa), 

7~ ~-- 71 + dr/2 = #(ul 2 --  u 1) + i(2# + 3.) (u[ + u~). 

We call ~1 the complex stress, since Navier's equations take the compact form 

D,~/= 0 (4.1) 

in this notation (Dz being the complex total derivative). 
In terms of MUSKHELISHVIKI'S complex potentials, [13], 

~r : --092 = --z  ~0'(z) + ~p(z), ~7 : 2i(2 + 2#) fiO(z)/(3. + #). 

A conservation law 

has complex conserved density 

and hence can be rewritten as 

D1A 1 + D2A 2 = 0 

A = A 1 + / A  2, 

Re (2O, a) = O, (4 .2)  

whenever (4.1) holds. With this notation, the x, u independent laws can be de- 
rscibed as follows: 

Theorem 4.1. Suppose #(# + 3.) (2# + 3.) + 0. The complex function A(Vu) 
is a complex density for the two dimensional Navier equations i f  and only i f  there 
exist analytic functions B, C of ~ with 

~B 
A = 2#(2# + 2) ~ x77__ + (# + 2) iB + C. (4.3) v.q 
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Thus, in contrast to the three-dimensional case, there are infinitely many x, u 
independent conservation laws, which can be as nonlinear in the deformation 
gradient as desired. (Compare TSAMASPHYROS & THEOCARIS, [21].) 

Proof. First note that although the basic equations (3.9) for a conservation 
law remain the same, there are no conditions (3.9d) as only two different indices 
are involved. Change variables from uj to ~i, ~/j (i, j = 1, 2) in (3.9a-c) and eli- 
minate Wi. This leads to the system 

~ A  1 ~ A  2 [~A 1 ~A2\ 
(~ + 2) o--g- = (~ + 2) a-/P- = ~,(2t, + 2)~-0-  + 1 a- rj, 

aA 1 ~A 2 laAl ~A2'~ 

or, equivalently, in complex notation, 

OA 
~ 0 ~  

OA ~A 
2/~(2# q- 2) ~ -  = i(# q- 2) -~-. 

Differentiating the latter with respect to ~" shows that 

hence 

with 

~B' 
0, 

Thus B' is analytic in 7. Set 

with B analytic. Then 

~2 A 
~ 2  - -  0 ,  

A = B ' ~ + C ' ,  

~C" 
2/*(2/* q- 2) ~ = i(u q- 2) B'. 

~B 
B' = 2/~(2# q- 2) "g7_, 

v71 

c ' = i O + 2 ) ~ +  c 

for some analytic C, and the theorem is proven. 
Turning to the more general case, the special "conformal" restriction 

3/* -J- )l ---- 0, when many more conservation laws arise, is left aside to begin with. 

Theorem 4.2. Let tZ(l~ + 2) (2/z + 2) =~ 0, and assume also that 3# + 2 ~ O. 
Then any complex conserved density A(x, u, Vu) of the two-dimensional Navier 
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equations is equivalent to a linear combination of  the following conserved densities: 

OB 
a) 2/z(2/z + 4) ~-~ + (/z + 2) iB, 

where B(z, 7) is analytic in both variables 

c G  7) ,  hi) 
where C is analytic 

b2) 

h3) 
where ff~ = ~1 + i~2 

[4~,(2t, + 4) w - (~ + 4) izT] ,7, 

i(ff~q -- w~), (Betti reciprocity) 

is an arbitrary solution of Navier's equations with corres- 
ponding complex stress ~. 

Proof. In accordance with the results of I, all such densities must be of the 
form (4.3), with B, C allowed to depend on x 1, x 2, u 1, u 2. (Note that (4.3) includes 
all trivial x, u-independent densities, which in this case are all linear in Vu, [17].) 
This ensures that the coefficients of all second order derivatives in (4.1) vanish, 
so we are left with the condition 

where 

OA OA aA } 
Re 2T;z + ~5-7w +~?- ~ = 0 ,  

= 2 Ow/az = (2/z + 4)-17 2 + i~-171 . 

Substituting (4.3), we find 

2 c~2B [ c~2B ~B '~ 
Re{2#(R/z q- 4) 1~1 a-7-b-g + 2t*(2~ + 4) ~ [2a-7~+ r ~w! 

( + 2 T ; + ~  ( / ,+4) iTw+Tw =0.  

~eparating the coefficients of the various powers of ~ leads to the basic equations 

02B 
Re 07 0~ = 0, (4.4) 

( /~+ 4) i ~ + ~ + 2 # ( 2 # + 4 )  2 ~ +  ~ )  = 0 ,  (4.5) 

Re 2 ( / , + ; 0 i - ~ - z + 2 ~ - z + ~  ( # + 4 )  i ~ w + ~ u  = 0 .  (4.6) 
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At this point it is helpful to consider how trivial conservation laws look in 
this complex notation. If 

A 1 = - -D2T , A 2 : D IT  , 

where T = T(x, u) is real, then 

gT OT 
A = 2 i D ~ T - - - - i  2 ~ -  z + ~ w w  + ( ~  " (4.7) 

Using the formula 

i[(# + 2),7 + (3# + 2)7] 
= 2#(2# + 4) ' (4.8) 

we see that (4.7) has the representation (4.3) with 

8T 
2#(2# + 2) B = i,~ "Uww' 

gT 3# + 2 ~T 
C ---- 2i~-ff + 2#(2# + 2 )  ~ ~---~v" (4.9) 

Also, the following easy lemma is crucial. 

Lemma 4.3. Let z, w be independent complex variables and suppose f is ana- 
lytic in w. Then 

Re (~-~) = 0  (4.10) 

i f  and only i f  

f = g(z, w) + i8~h, 

where g is analytic in both z and w, g(z, O)-~ O, and h(z, z-) 
independent of  w. 

Proof. Condition (4.10) is equivalent to 

= o .  

Differentiate with respect to w: 

0~: gw O, 

is real-valued, 

g__r 
OB _ B(x, y, w, ~?) q- i Ow 
&7 

hence 8f/gw is analytic in z, w, from which the lemma follows easily. 
Returning to the proof  of  theorem 4.2, we see by the lemma, (4.4) implies 
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for/~ analytic in w, r/,/~In=o ---- 0, and T(x, u) real valued. But T corresponds to 
a trivial conservation law, so can be ignored. Moreover, without loss of generality 
B[,=0 = 0, hence B itself is analytic in w, 7, satisfying 

Bin=0----0 : ~-~ I ~=o. (4.11) 

Next, differentiate (4.5) with respect to ~ and then ~" to find 

c~3B 
(3/, + 2) i 0r/2 co w = 0, 

hence, as 3/* + 2 @ 0, B can be assumed independent of w, analytic in r/, and 
hence, again from (4.5), C is analytic in w, r/. 

Next differentiating (4.6) with respect to ~7 and ~, using (4.8), we see 

02C 
Im -- 0; 

~w ~ 

hence 

C = k(x) W,l + D(x, ~) + E(x, w) 

with k real and D[,=o = 0. Set ~7 = 0 in (4.6), to find Re OE/Oz ---- 0, so by the 
lemma and the expressions (4.9) for trivial densities, E = E(z, w) is analytic in 
both ~,, w. 

Next set 

h = D(x, ~) + iff,(x)~, 

with 

151 =o = o = 

Differentiate (4.6) with respect to r/ and set r / =  0: 

~ ~E OE 
4/~(2# + 2) ~-z + (# + 2) ~ -- (3/* + ;t) ~ ---- 0, 

from which we conclude 

E = w ,  

where ~ is the complex stress associated with ~(x). (The terms in E independent 
of w are easily seen to be trivial densities.) Furthermore, since E is analytic in F, 

co /ez = 0 ,  

hence ~ is a solution of Navier's equations, cf. (4.1). 
The remaining terms in (4.6) are 

{ OB ~/) ~k ( # + 2 )  } 
Re 2(~u + 2) i--~- z + 2--~- z + 2wr/~- z + 2#(2/~ +; t )  ir/2k = 0, 
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since 

The only term with w gives Ok/Sz = O, hence k is a constant. Set 

F = 2(# q- 2) iB q- 2D -k } (# q- 2) [#(2# q- 2)1 -a ikz~7 2, 

so the above condition is just 

~F 
R e ~ -  z = 0; 

hence by the lemma F is analytic in ~, ~/ (modulo trivial densities). Putting to- 
gether the above information completes the proof of the theorem. 

Now suppose 3/z + ;t = 0. The complex stress is now ~7 = i# 8w/&, so 
Navier's equations have the elementary form 

with general solution 

t92W 
Oz 2 -- O, 

w = f(z-) z + g(~), 

for arbitrary analytic functions f ,  g. The conservation laws are then given as 
follows: 

Theorem 4.4. Suppose 3kt § ;t = 0, # =1= 0. Then every complex conserved 
density of  Navier's equations is equivalent to a linear combination of the following 
densities: 

a) 

where 

o I w <  w~-~w~ ~ +  ~ aw! - ~ + w , ~  + a~' 

K(z, "~, w, Wz) = z f F(~, w -- zwz, wz)dwz + f C(~, w -- ZWz, wz) dwz, (4.12) 

where F, G are analytic in their arguments. 

b) C(z, w -- zwz, w~), 

where C is analytic. 

Proof. We use the representation (4.3), in the slightly different form 

~B 
A = w ~ 7 -  g +  c ,  

VWz 
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where B, C are analytic in w~. As above, (4.2) leads to the conditions 

Also, as in (4.11), 

~32B 
Re ~3w~ c9-'"~ -- 0, (4.13) 

82B ~2B ~B 6q(~ 
8z 8w--'---~ + Wzaw8w2 ~w + ~--ww : 0, (4.14) 

Re ~z ~z +w*  ~ ----0. (4.15) 

without loss of generality. Thus from (4.12) B = B(z, ~, w, w,), analytic in w, w,, 
hence (4.14) implies ~C/a-~ is independent of w~, and hence, on setting w, ---- 0, 
C = C(z, ~, w, wD. 

Let v --- w - -  zw,, B = B(z, 5, v, w,) = Ol<(z, ~., v, w,)/~z. Then (4.14) is 

= 0 .  

Thus / ~ =  K(z,~, w, w2) is of the form (4.12). Also (4.15) implies 

86 

~z --  t~zSZ, ' 

C = C(z, ~, v, wz). The theorem now follows from elementary manipulations on 
these latter two equations. 

The conservation laws in theorem 4.4 provide divergence identities in case 
3# + 2 =1= 0, but these appear to be of little value, and are not discussed here. 

5. Symmetry Groups 

This section provides a brief discussion of the symmetry groups of the equa- 
tions of linear isotropic elasticity. Applications of these symmetries to finding 
group-invariant solution, separation of variables, etc. are, for reasons of space, 
not treated here (but are certainly well worth investigating). 

Recall first from section 1.2 that a vector field 

O 

is a generalized symmetry of Navier's equations (2.2) if and only if the basic 
symmetry equations, which in our case are 

+ + •) = 0, (5.1) 
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hold whenever u is a solution of the original system, cf. theorem 1.2.2, lemma 1.2.3. 
Here, for simplicity, we restrict our attention to first order symmetries, so ~p 
depends only on x, u, Vu. (Higher order symmetries can be generated by the 
methods of section 2E.) 

If  7, has the special form 

= % . -  uj J, (5.2) 
where ~0, ~ depend only on x, u, then b'r is the standard form of the Lie symmetry 

= ~J-~xj + ~~ (5.3) 

whose associated group transformations can be realized geometrically on x, u 
space, as detailed in section 1.2A. 

Finally, recall that if A is the conserved density of a first order conservation 
law for (2.2), then ~ with ~p~ given by (3.9) is automatically a variational symmetry. 
We can thus immediately write down all variational symmetries. Nonvariational 
symmetries require the detailed solution of (5.1). For the three-dimensional case, 
these are discussed in subsection 5B. 

A. Three-dimensional Variational Symmetries 

Proposition 5.1. Consider the system (2.2) with #(# + 2) (2# + 2) =4= O. If  
7p + 32 @ O, then the Lie algebra of variational symmetries is spanned by the 
following vector fields: 

a) Lie symmetries 
0 

Ox i translations, 

X J ~ _ _  U J - -  euk ~x k c% k -- rotations, (5.5) 

�9 0 1 0 
X ~ - - - - .  _ _  i ~x' -~-u --~-ui --  dilatations, 

b) Linear symmetries 

ei(x) ~ -- addition of solutions, (5.6) 

where e(x) is an arbitrary solution to (2.2), 

c) Generalized Symmetries 

[ ~ui t~uk\ 0 (5.7) 

( 0) U 1 -  . eok (/~ + 2) xJ~'k + ~(3/~ + 2) Ou k 
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If 7/z-k 32 = 0, then the symmetry algebra is spanned by the above vector 
fields and the following additional vector fields, 

d) Inversions 

k ~ , ~ , . r x~x -~x ~ --  2x'xk-~xk + (XiU j --  2X'U')-~Uj q- 2xkxk-~u~, (5.8) 

e) Further generalized symmetries 

uk 0 , 

2x'xk q~ --  XkXk q' q- t~( 2X'Uk --  XkU') ~ q- pX~U ~'~u"" (5.9) 

The proof of this theorem follows directly from the application of (3.9) to 
the conservation laws derived in propositions 3.1 and 3.2. For brevity we omit 
the details. Before discussing the symmetry group generated by the above vector 
fields, we turn to a discussion of non-variational symmetries. 

B. Three-Dimensional Non Variational Symmetries 

Proposition 5.2. For # ~  q- 2) (2/z + 2) ~ 0, if b'~ is a symmetry of (2.2) 
with ~o ---- W(x, u, Vu), then b'~ is a linear combination of the (standard forms of) 
the variational symmetries listed in proposition 4.1 and the nonvariational 
symmetries 

-~ = Sui--~u i' (scaling) (5.10) 

= ~ij~u~ ~u k ,  (5.11) 

unless 7/z q- 32 = 0, in which case the following 

2 x ~  + e~jku j ~u k' 

xkxk~ + eukxiu j ~u k 

are also included. 

(5.12) 

(5.13) 

Proof. We need to solve the symmetry equations (5.1) for ~o. This is simplified 
by the techniques in section 1.4, especially proposition 1.4.1 and (I.4.6). Thus, 
the first step is to find all x, u independent symmetries, of which the translations 
,~i = u~ 8/Su j (now taken in standard form) and the generalized symmetries ~,. 
constitute the variational ones. According to theorem 1.5.2, in view of the form 
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(2.5) of Q(~) in our case, the nonvariational x, u independent symmetries v'~ 
are all found as solutions to 

~UJk -- Ceuk , 

where c = c(Vu). It is easy to show c is constant; hence all such symmetries are 
multiples of ~. 

The second step is to substitute the general form 

V~ : oci(x, U)Pi "Ai- fli( x, U) qi Jr- 7( X, U) W .dr_ ~i(x ' U)-~U l 

into the symmetry equations (5.1). The solution of the resulting system of  equa- 
tions for ~i, fli, F, 6i is another tedious computation in the spirit of those in sec- 
tion 3. For brevity, we omit the details, noting that the proposition gives the final 
results. (Our prior knowledge of all the variational symmetries does help here.) 

C. Two-Dimensional Symmetries 

The calculations here are analogous. If  ~'~ = ~o 1 0ul 4- ~0 2 ~u 2, we write 
~p = ~pl 4_ i~v2 in complex form. Then from (3.9) all variational symmetries are 
given by 

m 
1 t3A 0A 

~P -- 2# 4- 2 a~ 1 q- ~ 2 '  

where A is a complex conserved density. From (4.3), we have 

~2B OB . c~C 
~o = 2/~(2# 4- 2)i~ ~ 4- (3# 4- 2) - ~  q- , -~ - ,  

where B, Care given in theorem 4.2, or, in case 3/~ + ;t = 0, theorem 4.4. (There 
are also symmetries corresponding to the othen cases b2), b3) in theorem 4.2.) 
The geometry of  these symmetries looks very complicated in general. 

Nonvariational symmetries will not be treated for lack of  space. 
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