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1. On page 133, formula (2.1) should be 

: = f{~z 11�89 (Vu + Vur)]l 2 + �89 u)2}dx, 
Q 

i.e. a factor of �89 was left out of the first term in the stored energy. 

2. On page 134-135, and subsequently, there is an unfortunate error in the 
identification of the tensor 

S = ~ Vu + (~ + 4) (V.  u) 1 (*) 

with the stress tensor a, whose correct expression is 

a = ~ ( V u  + V u  r )  + , t (V �9 u)  1 .  

The confusion arises because both S and a determine the self-same system of 
Navier's equations: 

e [ u ]  = V �9 s = V . a  = ~Au + (~ + ~.) V ( V  �9 u) = 0 .  

However, S and a are not the same tensor. They differ by a trivial conservation 
law 

z ~ a -  S = / ~ ( V u  r -  ( V ' u )  I ) ,  

where "trivial" means that the divergence of z vanishes identically for all functions 
u(x): 

V " ~ 0 .  

(In terms of  the notation for trivial conservation laws introduced on page 139, 

4 = EHm Blm') (**) 

How does this affect the results in the paper ? From a mathematical standpoint, 
the results as stated are all correct; each of  the densities listed on pages 134-5 
(or, equivalently, on pages 139 and 144-5) does give a mathematical conservation 
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law of Navier's equations in the sense that each of their divergences vanishes on 
solutions. However, from the point of view of physical interpretation, one should 
be using the stress a to represent the linear conservation law equivalent to the 
system, rather than the unphysical tensor S. It is important to note that each o f  
the conservation laws which explicitly involves S is equivalent to a conservation law 
which involves cr instead. The two laws will merely differ by a trivial conservation 
law or null divergence. 

For  example, consider the reciprocity relations which correspond to the con- 
served density K, on page 134. Suppose u and fi are displacements with corre- 

sponding stress tensors a and b. Let S and S be the corresponding tensors defined 
by fomula (*). The standard Betti reciprocal theorem states that 

V �9 ( u .  ~ - ~ . ~ )  = u .  ~ [ ~ ]  - ~ -  g [ u ] ,  

where 8[u] denotes the left hand side of Navier's equations. The conserved density 
K~ leads to the equivalent reciprocity relation 

V . ( u . S -  ~ . s ) =  u - ~ [ ~ ]  - ~ . ~ [ u ] .  

Both of these laws are mathematically valid identities, but the former has the 
more immediate physical interpretation. These two reciprocity relations are equi- 
valent in the sense that they differ only by a "trivial reciprocity relation", which 
takes the form 

v .  (u .  (~ - s )  - ~ .  (~ - s ) )  ~ 0, 

and which vanishes for all displacement fields u and h. 
Note also that the formula for the energy-momentum tensor P on page 134 

is more usually written in terms of the stress ~ as 

P = V u  r . a -  W ' I ,  

where W =  # [I 1 (Vu + Vur)ll 2 + �89 �9 u) 2 is the stored energy function. The 
reader can verify that the two expressions are, in this case, identical. (Here, there 
is no need to add a null divergence!) 

In general, then, to pass to an equivalent conservation law involving a rather 
than S, we can replace the expression (3.22) for the general form of a conserved 
density by an equivalent expression 

A = octP ~ + t3iQ t § •iAi § 8i6 i § ~kBik § CO, 

which is related to (3.22) by 

6i~ = Oik _ ei~me m, (+) 

cf. (**). (Unfortunately, the notation here has become slightly confusing: eikm 
represents the alternating symbol, while e m is the coefficient of a '~ in the density 
A.) Thus the coefficients of S and ~ are the same, and only the lower order terms 
in the two conserved densities differ. The explicit formulas for these equivalent 
conservation laws can easily be determined from the formulae on page 149 
using (+) .  
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The important point, then, is that for any conservation law or reciprocity 
relation, there are many different, but equivalent forms which it can take. But, 
as was pointed out to me by Professor R. K. KAUL, there are often good phy- 
sical reasons for preferring one particular formulation over the others. For  ex- 
ample, for a body in equilibrium, it is natural to impose the condition that the 
resulting moment of the conserved tensor density be zero. However, these physical 
restrictions on the forms of allowable conserved densities must be imposed after 
the mathematical analysis has been completed, and do not restrict the mathematical 
form that they may take. Presumably, each of the conservation laws in the paper 
has a preferred"physical" form, but I have not pursued this question. An interesting 
open problem is which physical restrictions serve to define uniquely conserved den- 
sities and how one incorporates these restrictions into the original search for con- 
servation laws. 

3. On page 150, in the formula on line 21, the tr should be a 2, conforming 
to the usual Muskhelishvili complex notation. 

4. On page 152, line 2 should be read 

a) 2/~(2/z + 2) ~ ~ + (/~ q- 2) i B + z , 

i.e. the last term was inadvertently omitted. Also, on line 1 it should perhaps be 
emphasized that the complex conserved density is a real linear combination of  
the conserved densities a) (as corrected above), bl), bz) and b3). 

It is a pleasure to thank Professors R. K. KAUL and T. A. PAI~KA for helping 
to bring these matters to my attention, and for their useful comments on my pre- 
vious papers. 
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