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Abstract 

The first order conservation laws for an arbitrary homogeneous linear planar 
elastic material are completely classified. In all cases, both isotropic and aniso- 
tropic, besides the standard Betti reciprocity laws, there are two infinite-dimensio- 
nal families of conservation laws, each depending on an arbitrary analytic function 
of two complex variables. 

1. Introduction 

In the first two papers in this series, [4], [5] (see also [7]), the general structure 
of the conservation laws for linear isotropic elasticity in both two and three di- 
mensions was completely determined. The purpose of the present paper is to ex- 
tend those results to linear anisotropic elastic materials in the plane. The main 
theorem to be proved is that, as in the case of planar isotropic elasticity, for a 
general linear, homogeneous elastic material, there are three infinite families of 
conservation laws depending on material coordinate, deformation and deforma- 
tion gradient. One of these is the familiar Betti reciprocity relation; the other 
two each depend on an arbitrary analytic function of two complex variables, 
which are certain linear combinations of the material coordinates and the defor- 
mation gradient. The precise structure of these families of conservation laws 
appears in Theorem 12. 

This result is based on a new theory of change of variables of quadratic 
variational problems, and the resulting canonical elastic moduli in the plane, [9]. 
The main result of this theory is that every anisotropic planar material is equi- 
valent, under a linear change of variables, to an orthotropic material. Thus the 
problem of determining conservation laws for general anisotropic materials re- 
duces to the simpler problem of determining conservation laws for orthotropic 
materials, a problem that is solved in Section 4. Section 5 is devoted to an imple- 
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mentation of the explicit change of variables and the resulting structure of the 
space of conservation laws. 

Unfortunately, these computations only work in two dimensions, and the 
classification of conservation laws for general three-dimensional anisotropic 
elastic materials remains open. I hope to return to this problem in a future paper 
in this series. 

2. Linear Elasticity 

We let x denote the material coordinates, u the deformation, and Vu the 
deformation gradient. In the absence of body forces, the equations of homogeneous 
linear elasticity are the Euler-Lagrange equations for the variational problem of 
m i n i m i z i n g  

f~'[u] = f W(Vu) dx, (1) 
~2 

5" 
where the stored energy function W(~Tu) is a symmetric quadratic function of the 
strain tensor e = �89 (~Tu + Vur), 

W ( V u )  -~- S Cijkleijekl.  (2) 

The constants ci~kt are the elastic moduli which describe the physical properties 
of the elastic material of which the body is composed. The symmetry of the strain 
tensor implies that we can assume, without loss of generality, that the elastic mo- 
duli obey the basic symmetry restrictions 

Cijkl = Cjikl = Cijlk, CijkI = r 

Thus in planar elasticity there are 6 independent elastic moduli. Additional sym- 
metry restrictions stemming from the constitutive properties of the elastic material 
may place additional constraints on the moduli. 

Following [9], we define the symbol of the quadratic variational problem (1) 
to be the biquadratic polynomial 

Q(x, u) = W(x | u) 

obtained by replacing Vu by the rank one tensor x | u,  i.e. we replace e,.j 
in (2) by �89 ( x j  + xjui). Note that the symbol Q is symmetric, i.e. 

Q(x, u) = Q(u, x). 

The Legendre-Hadamard strong ellipticity condition requires that the symbol Q 
be positive definite in the sense that 

Q(x, u) 3> o whenever x =? 0 and u =~ O. (3) 

We will assume that our quadratic variational problem (1) satisfies this condition 
throughout this paper. 
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3. Reciprocity 

As discussed in [8; Proposition 5.45], any linear self-adjoint system of  partial 
differential equations A [u] = 0 always possesses a reciprocity  relation, which 
is a divergence identity of the general form 

v-  d [u] -- u .  d [v] : Div P[u ,  v] ,  (4) 

where P is some bilinear expression involving u and v. (P is not  uniquely deter- 
mined since there are trivial reciprocity relations Div Po ~- 0; see [6].) If  v is a 
solution to the system, then P[u,  v] forms a conservation law of the system. For  
a linearly elastic material (2), one explicit form of the Betti reciprocal theorem is 

P[u ,  v] : e[v] . S[u] - -  e[u] . S[v] ,  (5) 

where S[u],  with components Sii = _r Cuktekt ' is the stress tensor associated with 
the deformation u;  cf. [2; page 98]. 

The following simple result is of  use in classifying conservation laws. It says 
that for a general self-adjoint linear system, any conserved density P which depends 
linearly on u and its derivatives is actually equivalent to a reciprocity relation. 

Proposition 1. Suppose A [u] = 0 forms a n th order self-adjoint linear system 
of partial differential equations, which is totally nondegenerate, cf. [8; Definition 
2.83]. Suppose Div Q[u] = 0 is a conservation law such that the p-tuple of func- 
tions Q[u] depends linearly on u and its derivatives. Then Q is equivalent to some 
version of  the standard reciprocity relation (4), i.e. 

Q[u] : P [ u ,  v] d- Co[u], 

where v is a solution to the system, and Po[u] is a trivial conservation law. 

(The total nondegeneracy condition is quite mild; indeed a theorem of NIREN- 
BERG, [3; p. 15], implies that any elliptic system of partial differential equations 
is totally nondegenerate.) 

Proof. According to [8; page 270], the given conservation law is equivalent 
to one in characteristic form 

Div Q'[u] = v . A [ u ] ,  

in which, owing to the linearity of  Q, and hence Q', the characteristic v depends 
only on the independent variable x. Now let 

R[u]  : a ' [ u ]  - P [ u ,  v] 

be the p-tuple obtained by subtracting off the reciprocity conservation law (4). 
Then 

Div R[u]  : u �9 A [v], 

so the expression u �9 A [v] is a total divergence. Moreover, it is easy to see that 
this is possible i f  and only if u �9 d [v] is identically 0. Thus A [v] = 0, and R 
is a trivial conservation law. This proves the proposition. 
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4. Orthotropic Materials 

Definition 2. A stored energy function of the form 

2 2 + ocu~ + 2/3uxvy + o~vZ~ + Vy, (6) W(V u) = Ux 

where x : (x, y), u : (u, v) are both in R 2, is called an orthotropie Lagrangian, 
and the parameters o~ and/3 the corresponding canonical elastic moduli for such an 
orthotropic elastic medium. 

In conventional elasticity, an orthotropic elastic material is one that has three 
orthogonal planes of reflectional symmetry, c f  [1; page 159]. In two dimensions, 
it is characterized by the conditions 

C l . l l  2 = C 1 2 2 2  = 0 

on the elastic moduli. In [9], it was shown how a simple rescaling of both x and u 
will convert the stored energy functin of a general orthotropic elastic material 
into one of the form (6). The Euler-Lagrange equations corresponding to the 
orthotropic Lagrangian (6) are a "generalized" system of Navier's equations 

Eu = Uxx + o~uyy q- flVxy = O, Ev : flUxy + avxx q- Vyy = O. (7) 

Strong ellipticity requires that the canonical elastic moduli o~ and fl satisfy the 
inequalities 

1/31< + 1. (8) 
The special case 

o~ -1-/3 : 1, (9) 

corresponds to a (rescaled) isotropic material; another exceptional case is when 

o~ -- /3 : 1, (10) 

which is easily seen to be equivalent to an isotropic material under a simple re- 
flection. The remaining anisotropic cases naturally fall into two classes. The 
strongly orthotropic Lagrangians are those whose elastic moduli satisfy the more 
restrictive inequalities 

11>/3" (I1) 

Any other anisotropic, strongly elliptic, orthotropic Lagrangian can be changed 
into a strongly orthotropic one by a simultaneous rotation of x and u through 
45 ~ The basic result of [9] is that any strongly elliptic planar Lagrangian is equi- 
valent to either a unique strongly orthotropic Lagrangian or to a unique isotropic 
Lagrangian, both restricted to 0 < o~ =< I,/3 ~ 0; see Section 5. 

In [5], a complete analysis of the conservation laws depending on x, u, and the 
deformation gradient Vu of a planar isotropic Lagrangian was carried out. The 
goal of this section is to provide the corresponding analysis of the conservation 
laws of a strongly orthotropic Lagrangian. In accordance with the general proce- 
dures of [4], we begin by looking for x, u-independent conservation laws 

DxA + DyB = 0, (12) 



Conservation Laws in Elasticity 171 

where A and B depend only on the deformation gradient Vu = (ux, uy, v~,, vy). 
For simplicity, we denote the derivatives (ux, uy, v~,, vy) by (p, q, r, s) respectively. 
Now if (12) is to hold on all solutions of the generalized system of Navier's equa- 
tions (7), and the lefthand side depends on at most second order derivatives of u, 
we must have the identity 

D ~  + D ~  = ~E~ + v, Ev, (13) 

holding for all x, u. Here % ~p are certain coefficient functions, which themselves 
can only depend on Vu. Equating the coefficients of the various second order deri- 
vatives of u in (13), we find that A, B must satisfy the following version of the 
"vector conformal equations", cf. [4; (4.10)], 

A . = %  A~ = oqo, 

Aa + Bp = t~V,, A~ + B~ = / ~ ,  

B. = o , %  Be = v,. 

Let VA = (Ap, Ar A,, A,) denote the "gradient" of A with respect to the 
deformation gradient variables. Eliminating % y) from the vector conformal equa- 
tions, we find that A and B satisfy the system of differential equations 

VA = M .  VB, (14) 

where M is the following matrix: 
m 

M = 

0 

--1 

0 

0 
m 

1 
0 0 

o o ,e 

0 0 ,x 

--1 0 
0 r  

m 

(15) 

The analysis of the gradient equation (14) is based on the next lemma, which is 
an elementary exercise in linear algebra. 

Lemma 3. Let ~, fl be the canonical elastic moduli o f  a strongly orthotropie 
material Define the constants 

o~ 2 -k 1 --~2 
~-- > 1 ,  

2~x 

and 

= t / ~ + t / ~  2 - I  > 1 .  

Then the matrix M has four simple purely imaginary eigenvahles at -L ~i, ~ v-ai, 
with corresponding complex eigenvectors 

a -~ a t Jz ia2, b = bl ~ ib2, (16) 
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where 

L i i2 i i 0 o~3. 2 0 o~3r [ 
a t  = a 2  = b t  = b 2 

0 o 
- -  O C T  3 

Interestingly, the characteristic equation for M is 

J,4 -~  20"~. 2 -~- 1 =- 0, 

which is exactly the same as the discriminant (see Definition 10 below) of the ortho- 
tropic Lagrangian (6). In the isotropic cases (9), (10), M has a pair of double eigen- 
values at z~i, while in the remaining strongly elliptic cases not satisfying (l 1), 
the eigenvalues lie on the unit circle 121 = 1. (The cases when (6) is not strongly 
elliptic correspond to the cases when M has real eigenvalues.) 

If  a = (at, a2, az, a ,)  is any vector in C 4, we define 

a "  \Tu  : alUx + azuy  + a3v x + aaVy ~- atp + a2q + aar + a,s. 

Theorem 4. Let o~, fl be strongly orthotropic elastic moduli. Let a and b be the 
eigenvectors of the matrix M defined by (16). Define the complex deformation 
gradients 

: ~ l  -~  i~2 = a"  Vu, ~ = ~/1 -~- i~2 ~--- b" Vu.  (17) 

Then the pair of  functions A, B form the components of an x, u-independent conser- 
vation law for the Euler-Lagrange equations (7) i f  and only i f  

A = F1 + G1, B = r -1 F2 + zG2, (18) 

where 

F1 + iF2 : F($) and Gt + iG2 = G(~) 

are arbitrary analytic functions of their complex argument. 

Proof. Define the matrix 

C : [ a l ,  a 2 ,  b l ,  b2]  , 

which places M into real canonical form 

0 

-- ' t"  

C . M . C - 1  = 

0 

0 0 -  

0 0 0 

1 
0 0 7Y 

1 
0 - - ~  0 

7; 
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If  we perform a linear change of variables in (14), replacing (p, q, r, s) by (~t, ~2, 
r/l, ~2), then we have the simpler system 

At, = ~B~, A~2 ~- --~B~,, 

1 1 (19) 
A.. = ~ B~., An. -- z Bn.  

Cross-differentiation shows that all the mixed ~, ~/partial derivatives of  A and B 
vanish; for example 

which must therefore vanish since z =4= 4-1 in the strongly orthotropic case. There- 
fore, 

A = Al(~t,*~) + A~(~t, ~D, B = a t ( ~ ,  ~ )  + B~(~I,,~D, 

and (19) decouples into a pair of Cauchy-Riemann equations for the complex 
functions 

F(~) = As + irBt, 

From this the theorem easily follows. 
Define the complex coordinates 

z :  x + izy, 

i 
G07) = A2 + T B 2 .  

i 
w : x + T y (20) 

with corresponding complex total derivatives 

( D , : � 8 9  D x - - T D y  , D w : � 8 9  (21) 

We note that the strongly orthotropic Navier equations have two alternative 
simple expressions in terms of the complex coordinates and corresponding com- 
plex deformation gradients; either 

Dz,~ : 0, or DwB : 0, (22) 

are both equivalent to the full system (7). We also note that the two types of con- 
servation laws (18) can be written in the compact forms 

Re {D~F) : 0, when A : F1, B ---- v - t  F2, (23a) 

and 

Re (D.,G} = 0, when A = Gi, B : z G 2 . (23 b) 

From these observations, we easily find the most general conservation law depend- 
ing on the material coordinate x and the deformation gradient Vu: 

Lemma 5. Let A(x, Vu), B(x, Vu) form the components of  a conservation law 
(12) which does not explicitly depend on u. Then 

A = F1 + G1 + Ao, B : 1 ''-1 F2 + zG2 + Bo, (24) 
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where 

F~ + iF2 = F(~, ~), and Ga + iG2 : G(~, ~) 

are arbitrary analytic functions of their complex arguments, and Ao, Bo depend only 
on x, and form the components of a trivial conservation law. 

The easy proof is omitted. 
It remains to investigate those conservation laws which depend explicitly on 

u ----- (u, v). Before doing this, we must finally deal with the trivial conservation 
laws, meaning those in which 

A = DyQ, B = --DxQ, 

where Q(x, u) is an arbitrary smooth function of position and deformation. (See 
[5] for a proof that these are all the trivial conservation laws in this situation.) 

Lemma 6. Suppose 

A : F 1 -]- G1,  B = "K -1 F 2 -~  "uG2, (25 )  

where F(x, u, ~) and G(x, u, ~/), are analytic in ~, ~1 respectively, form the compo- 
nents of  a trivial conservation law. Then 

F : [iT(T 2 -- 0r Qu q- flz2Qv] ~ -~ Q~ - izQy -q- 1-11 + ivH2, 
(26) 

c = [ i ( ~  2 - 1 ) .  Q .  - / ~ Q v ]  ,~ - / 4 1  - i r  -~ n 2 ,  

where Q, H~, HE are arbitrary smooth functions of x, u. (Here the functions 1-11, H2 
reflect the slight ambiguity in the "'definition" (25) o f f  and G, and contribute nothing 
to the conservation law itself.) 

Theorem 7. Let A(x, u, Vu), B(x, u, Vu) form the components of a conserva- 
tion law for a strongly orthotropic elastic material. Then 

A : 171 + G1 -[- AR + Ao, B : v -1 F2 q- ~G2 + BR + Bo, (27) 

where 

FI + iF2 : F(~, ~), and GI q- iGz : G(~, ~) 

are arbitrary analytic functions of  their complex arguments, AR, BR form the com- 
ponents of  the reciprocity law (5), and Ao, Bo form the components of  a trivial 
conservation law. 

Proof. From the basic Theorem 4.5 of [4], we know that any conservation law 
of the required form has to be written as in (25), with 

D~A -[- DyB = Re {DzF-k DwG} = 0 

now holding as an identity in x, u, ~, B. Expanding and using the definition (17) 
of ~, % we find that F and G must satisfy the identity 

Re (F~ -}- UzFu q- v~F,, -k Gw q- u.,Gu -b vwG,,} ----- 0, (28) 
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where 

( i ) 2 3 ( ' t ' 2  - -  00"~ -~ (Z2 - -  1) (~Xl'2 - -  1) ~1 -~- (32 -~- 1) (O~'t'2 - -  1) ~ 
u: = �89 Ux --"~'Uy = 2~xfl'r2('r 4 - -  l) ' 

( i ) 2z'~-q--('r2-- 1 ) ~ - - ( v 2 q -  1 )~  
Vz ' :  �89 Vx - - - T v y  : i 2o~3(34"- 1) ' 

(3 a - o,) ( ~ 2 , _  1) # + (32 - o0 (35 + 1) ~ +  23(~3 ~ - 1) 

uw = �89 (ux -- #:uy) --  2oq33(* 4 --  1) ' 

( 3 2 -  1 ) ~ q - ( 3 2  q- 1 ) } - - - 2 3 ~  
Vw = �89 (Vx - -  ivvy) = i 2or 4 - -  1) 

The following elementary lemma is now of  use: 

Lemma 8. Let A, B, C, D, E, F, G, H be complex analytic functions of  a single 
complex variable, and let ~, ~ be independent complex variables. Then 

Re {A(}) + ~-B(}) q- ~C(}) + ~O(}) q- EO?) q- ~F(~) q- ~G(~) + -~H(~)} = 0 

i f  and  only i f  

B(~) = ia# + 6, 

c(#)  = 2~ + c, 

O(~) = ,,~ + O, 

E(O = - F  - (~ + -6 + ~ n,  

F(~) = ibm? -k qJ, 

G(B) = --2~ -k 10, 

H(~) = - - ~  -k Z, 

where y, 6, e, O, % % Z are complex constants, and a, b are real constants. 

Applying Lemma 8 to (28), we see that  F and G must  satisfy the following 
differential equat ions:  

or 4 - -  1) F z ---: Y --  (5 q- ~p q- Z-) ~, 

~ 3 5 ( ~  , - 1) cw = - F  - (~ + 0 + ~),~, 
23(Z "2 --  0~) F. q- 2iflT;2Fv -~ ia~ q- 6, 

2z2(ocz 2 --  l) G~ -- 2iflvaGo = ibm7 q- q~, 
(29) 

(r2 _ 1) {(o,~ 5 - 1) ru + i~3rv} = ~ + ~, 

(32 - -  1) {3(35 - -  0,) Git + i#~2Cv} = --a,~ + V', 

(32 q- 1) ((0r 2 - -  1) Fit - -  iflvFv} = tz~ q- O, 

(~2 + ~) (3(~5 _ ~) tit + if135G,} = - i , ~  + z .  

The first conclusion is that  F and G must  be of  the form 

F = F'(z, ~) q- f (x ,  u) ~ q- fo(X, u), G = G'('w, *1) q- g(x, u) ~ q- go(X, u) 
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i.e. all the u-dependence is in the linear and constant ~ and ~/ terms. Since by 
Lemma 5, F '  and G' already constitute a conservation law, we can ignore them, 
and concentrate on the functions f ,  fo, g, go. 

The third and fourth equations in (29) show that the combinations 

(72 - -  oO fu + iflrfv and (0(/K 2 -- 1) gu - -  ifl~:go 

must both be purely imaginary functions. A straightforward computation shows 
that this requires f and g to be of the forms, 

f =  iv(& - -  o~) . Qu + flv2Qv g ----- i(o~& -- 1)- Ru - -  flzR~, (30) 

for real-valued functions Q(x, u) and R(x,  u). However, the fifth through eighth 
equations in (29) show that, except for terms that do not depend on u, we can take 
Q -- R. But this implies that the ~, r/terms in the representation (30) are the same 
as the ~, ~/terms in the form (26) of a trivial conservation law. Subtracting off the 
trivial conservation law, we are left with F, G of  the special form 

F = f t ( x )  ~ + f ~ ( x ,  u), G = gl (x)  ~7 + go( x, u),  

to be analyzed. However, (29) easily shows that fo and go are at most linear in u. 
Thus we are left with a conservation law which is linear in u and Vu. According 
to the general result in Proposition 1, this latter conservation law must be equivalent 
to the Betti reciprocity relation (4). This completes the proof  of Theorem 7, and 
hence the classification of conservation laws of  orthotropic elastic materials. 

5. Change of Variables 

Before discussing changes of variables, we note that in any variational problem, 
one can always add any nullLagrangian or total divergence to the integrand without 
affecting the Euler-Lagrange equations, cf. [8; Chapter 4]. For  example, in the 
planar quadratic case we can add in any constant multiple of the Jacobian deter- 
minant 

UxVy - -  UyVx : Ox(uvy) + Dy(--uvx) 

to the stored energy W(ux, Uy, Vx, vy) without affecting the Euler-Lagrange equa- 
tions. Thus, the Lagrangians UxVy and uyv x and �89 [uxvy + uyv~] all have exactly 
the same Euler-Lagrange equations, and are considered to be equivalent Lagran- 
glans. 

The basic method employed to determine conservation laws for a general 
linearly elastic material is to t ry  to simplify the stored energy function as much 
as possible through the use of specially "adapted"  coordinates. Since we are re- 
stricting our attention to symmetric quadratic variational problems, we will only 
consider linear changes of  variables of the special form 

x = A x ' ,  u = A - 1  u ' ,  (31) 

in which A is a nonsingular p •  matrix; this ensures that the new stored energy 
remains a function of the new strain tensor e'. In terms of the new variables 
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x', u', the variational problem has an analogous form 

~'[u ']  = f w'(Vu') dx', 
.O, 

where the new stored energy function W' has the same form (2), but with new 
elastic moduli e;jkl. We will call two such functions W and W' equivalent if there 
exists a nonsingular matrix ,4 and a null Lagrangian N such that 

W'(Vu')  : (W(Vu)  + U(Vu)} Idet .4 [, 

under the transformation (31). 
The fundamental theorem of  [9] states that every planar linear elastic medium 

is equivalent under a linear change of  variables to an orthotropic elastic medium. 
Specifically, we have the following: 

Theorem 9. Let W(Vu)  be a first order planar quadratic Lagrangian which 
satisfies the Legendre-Hadamard strong ellipticity condition. Then W is equivalent 
either to an isotropic material, or to a strongly orthotropic Lagrangian (6), where 
the canonical elastic moduli o~ and fl satisfy the inequalities (11). 

In other words, for planar elasticity, while the general planar elastic problem 
in a general coordinate system has 6 independent elastic moduli c0kl, Theorem 9 
shows that if we choose a special adapted coordinate system, there are in reality 
only two independent moduli. 

An important feature of  this result is that the construction of the linear trans- 
formation (31) which places a general elastic stored energy function into canonical 
form is completely explicit. To describe this, we introduce an important quartic 
polynomial associated with any quadratic planar Lagrangian. 

Definition 10. Let W(Vu) be a quadratic planar Lagrangian, and let Q(x, u) 
be its symbol. We write Q as a homogeneous quadratic polynomial in x, 

Q(x, u) = A(u)  x 2 q- B(u) xy q- C(u) y2, 

where A, B, and C are homogeneous quadratic polynomials in u. Set a(z) : 
A(z, 1), b(z) = B(z, 1), c(z) = C(z, 1). Then the discriminant of W is the quartic 
polynomial 

A(z) ---- b(z) 2 -- 4a(z) c(z). (31) 

The structure of  the roots of the discriminant A provides the key to the construc- 
tion of  the required linear transformation. According to the Fundamental Theo- 
rem of  Algebra, there are, counting multiplicities, precisely four complex roots, 
which we denote by zl, z2, z3, z4, so d(zi) ----- 0, i ~-- 1 . . . . .  4. The Legendre- 
Hadamard condition (3) implies that the roots cannot be real, and hence zx, z2 
and z3, z4 are complex conjugate roots. There are then two distinct cases: 

1. The Isotropic Case. I f  there is a single complex conjugate pair of  double 
roots, so zl ~ Za, z2 ---- z~, then the material is equivalent to a unique isotropic 
material satisfying 0 < ~ ~ 1, fl = 1 -- o~. 



178 P.J. OLVER 

2. The Anisotropic Case. If  the roots are simple, then the material is equivalent 
to a unique strongly orthotropic material satisfying 0 < 0~ -< 1, 0 ~< t3 < 1 -- ~. 

The explicit form of the change of variables (31) is found from the roots zj 
as follows, cf. [9]: Define the matrix 

r w cosqo -sing~ ] 
B = l r *  c o s  (0 - -  q0 r sin (0 - ~o)J " (33) 

Here (r, 0) are the polar coordinates of the first root zl. The quantity --2q is 
the angle between the vertical line through the first pair of complex conjugate 
roots zl and z2 and the circle passing through the four roots z~, z2, za and zr 
(In the isotropic case, ~ = 0.) See Figure 1. 

zl 

L .  

Fig. 1 

Also, the quantity �9 is given by 

S 1 -~- S 2 
T 

l / S 3  �9 S 4  

where sl, s2, s3, s ,  are the lengths of the four indicated line segments in Figure 2. 

z3 

S- 

Z2 

Fig. 2 
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Theorem 11. Let W(Vu) be the stored energy function for a linearly elastic 
material. Let zl, z2, z3, z4 be the complex roots of  the discriminant A(u). Let B 
be the matrix determined by (33). Then the linear transformation 

X : B - 1  �9 x ' ,  u : B "  u ' ,  

will convert W into a scalar multiple of  either an isotropic or a strongly orthotropic 
stored energy function. (The scalar multiple can be eliminated by a simple rescaling 
of  x and/or u.) 

Although isotropic and more general orthotropic materials have similar look- 
ing Lagrangians, the structure of their associated conservation laws is quite dis- 
similar. 

Theorem 12. Let ~//'[u] be a strongly elliptic quadratic planar variational prob- 
lem, with corresponding Euler-Lagrange equations E(W) = O. 

1. The Isotropic Case. I f  W is equivalent to an isotropic material, then there 
exists a complex linear combination z of  the variables (x, y), a complex linear com- 
bination ~ of  the variables (u, v), and two complex linear combinations ~, ~ of  the 
components o f  the deformation gradient (Us, uy, vx, vy) having the properties: 

a) The two Euler-Lagrange equations can be written as a single complex differ- 
ential equation in the form 

D ~  = O. 

b) Any first order conservation law is equivalent to a real linear combination of  
i) the Betti reciprocity relations, 

ii) the two families o f  complex convservations laws 

and 

Re [DzV] = O, 

Re {D~[(~ + z) C~ + G]} = 0, 

where F(z, ~) and G(z, ~) are arbitrary complex analytic functions of  their two 
arguments, 

iii) the extra conservation law 

Re [Dz{~o,~ -- iz~12}l = O. 

2. The Anisotropic Case. I f  W is equivalent to a strongly orthotropic material, 
then there exist two complex linear combinations z, w of  the variables (x, y), and two 
corresponding complex linear combinations ~, ~ of  the components of  the deformation 
gradient (Us, uy, vx, vy) with the properties: 

a) The two Euler-Lagrange equations can be written as a single complex differ- 
ential equation in either of  the two forms 

Dz~ = 0, or Dw~/= 0. 
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b) Any first order conservation law is equivalent to a real linear combination of  
i )  the Betti reciprocity relations, and 
ii) the two families of complex conservation laws 

Re [DzF] = 0, and Re [D~G] = O, 

where F(z, 2) and G(w, ~) are arbitrary complex analytic functions of  their two 
arguments. 

Thus the striking result is that in both isotropic and anisotropic planar elasti- 
city, there are three infinite families of conservation laws. One family is the well- 
known Betti reciprocity relation. The other two are determined by two arbitrary 
analytic functions of two complex variables. However, the detailed structure of 
these latter two families is markedly different depending upon whether we are in 
the isotropic or truly anisotropic (orthotropic) case. The two orthotropic families 
degenerate to a single isotropic family, but a second family makes its appearance 
in the isotropic case. In addition, the isotropic case is distinguished by the 
existence of one extra anomalous conservation law, the significance of which is 
not at all clear. 

The details of the proof of this theorem in the isotropic case have appeared in 
[5; Theorem 4.2] (although there is a misprint, corrected in [6]). The strongly 
orthotropic case follows immediately from Theorems 7 and 11. Indeed, using the 
matrix B determined by (33) and the vectors a and b determined by (16), we set 

z = O ,  i r ) . B . x ,  

and 
-- a . (B -~ ~TuB-l), 

In the isotropic case, we have 

z : ( 1 ,  i ) ' B ' x ,  

and 

where 

w = (1 ,  i t - l )  �9 B .  x ,  

= b .  (B -~ VuB-~). 

to = (1, i) .  B -1 �9 u ,  

: a .  (B -1 VuB-I) ,  ,? --- b .  (B -1 W,/uB-1), 

a = (1, ion, --ion, 1), b = (1, i, i, --1), cf. [5; w Then the general an- 
isotropic or isotropic conservation law takes the form prescribed in Theorem 12. 

We hope to return to the application of these families of conservation laws in 
a future publication. 
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