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1. Conservation laws

For a system of partial differential equations, the existence of appropriate conser-
vation laws is often a key ingredient in the investigation of its solutions and their
properties. Conservation laws can be used in proving existence of solutions, decay and
scattering properties, investigation of singularities, analysis of integrability properties
of the system and so on. Representative applications, and more complete bibli-
ographies on conservation laws, can be found in references [7], [8], [12], [19]. The
more conservation laws known for a given system, the more tools available for the
above investigations. Thus a complete classification of all conservation laws of a given
system is of great interest. Not many physical systems have been subjected to such
a complete analysis, but two examples can be found in [11] and [14]. The present
paper arose from investigations ([15], [16]) into the conservation laws of the equations
of elasticity.

We begin by recalling the definition of a conservation law. Let x = (a;1,..., zp) be the
independent and u = (it1, ...,uq) the dependent variables in the system. The notation
#"« is an abbreviation for the collection of all with order partial derivatives of the u's
with respect to the x'a, for which we use multi-index notation

for 1 < v < q, 1 < jK < p. For 1 ^ i < p, the operator

where

when applied to functions of x, u, du,..., (Pu, is the total derivative with respect to xi.
It is defined so that, given P(x,u,...,

for any smooth function u = f(x). For example,

du~\ _du du

Higher order total derivatives are written using multi-index notation:

Consider a system of nth order differential equations

= 0 (K=1 1), (1-2)
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where the AK are smooth functions of their arguments. A conservation law for this
system is a divergence expression

DivP = f; D^ = 0, (1-3)
i = l

which vanishes for all solutions u =f(x) of (1-2). The p-tuple P = (Pv ...,PP) are
functions of x,u,du,...,dku for some k, and consist of the conserved density and
corresponding fluxes. Under mild nondegeneracy assumptions on (1-2) (see the
appendix), the fact that (1-3) vanishes on solutions of (1-2) can be replaced with the
more explicit condition

DivP = Q = XQj,KD'\, (1-4)
J,K

holding for all values of x,u, du,..., S^u, for nonvanishing functions QJtK{x,«,...,d^u)
to be determined. Thus the classification problem for conservation laws amounts to
determining all functions Piy QJpK depending on x, u and derivatives of u for which the
identity (1-4) holds.

Example 1-1. For the wave equation

the divergence expression

is a conservation law, since

- uxut) = ut(utt - uxx).

The first component \%% + \u\ is the conserved density, and, for solutions u
sufficiently rapidly as |a;| -> oo, we deduce the conservation of energy:

j: + \ux dx = constant.

In the general search for conservation laws, one usually begins by bounding the
order m of partial derivatives on which the Qj K in (1-4) can depend. It is then extremely
helpful to know an a priori bound on the order k of derivatives on which P can depend.
Proving such a result is one of the main goals of this paper.

2. Null divergences

One must always distinguish between trivial and non-trivial conservation laws.
There are two types of triviality which automatically imply the vanishing of (1-3). The
first, which will not concern us here, is when the p-tuple P itself vanishes for all
solutions of the system (1-2); for A nondegenerate, this is equivalent to

^ S , ^ ^ ( , , p ) ,
for certain PjtK.

The second type of triviality is when DivP vanishes identically, no matter what
system of equations u =f(x) satisfies. These P will be called null divergences:

Definition 2-1. A nvXl divergence, is a p-tuple of functions P(x,«,..., dht) such that

DivPsO, (21)
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for all x, u,..., 8k+1 ii. (It should be required that u e Ck+1, but, as in [2], it really suffices
to assume (2-1) holds distributionally.)

Example 2-2. A trivial linear null divergence is P = (uy, — ux) (x = x1, y = x2), since

DivP == Dxuy + Dv(-ux) = 0,

Example 2-3. Less trivial is the three dimensional quadratic example (x = x1, y = a;2,

I8(u,v) 8{u,v) 8(u,v)\
\d(y,z)'8(z,x)'8(x,y))'

the entries being Jacobian determinants, e.g. 8(u, v)/8(x, y) = uxvy — uyvx. I t is easy to
check that

In Section 3, we describe higher order versions of this null divergence, and prove that
these are essentially the only null divergences depending exclusively on first order
derivatives of u.

The term 'null divergence' is in analogy with the concept of a null Lagrangian,
investigated in detail in [2]. By definition, L(x,u,8u, ...,8ku) is a null Lagrangian if
the Euler-Lagrange equations

SI/8W = O, ( I / = 1 , . . . , J ) , (2-3)
for the variational problem

I[u] = f L{x,u,...,8ku)dx,

vanish identically. Clearly, if L = DivP is a divergence, by the divergence theorem /
depends only on the boundary values of u, so SI/Su" s 0, and L is a null Lagrangian.
The converse is also true:

THEOREM 2-4. Let L(x,u,..., 8ku) be smooth. Then L is a null Lagrangian if and only if

L = DivP,
for somep-tuple P(x,u,..., S^u).

There is an analogous result for null divergences.

THEOREM 2-5. A p-tuple P(x, u,..., iPu) is a null divergence if and only if there exist
functions Q^x.u c^u), i,j = 1, ...,p satisfying

(i) Qn = -Qn'

v(ii) P
(2-4)

Moreover, if P depends smoothly on parameters, Pt(x,..., d^u, A), A e R1", so do the corre-
sponding Qij(x,..., cPHi, A).

In fact, these two theorems are just the last two terms fh a long exact sequence,
similar to the de Rham sequence in differential geometry, of great importance in the
calculus of variations, but only recently discovered. Avoiding the introduction of
differential form notation, this result can be stated as follows.
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Definition 2-6. Let s/1 denote the vector space of (f )-tuples of functions:
P(x,u,...,dnu) = (...,Piiitil(x,u,...,dnu),...) (n arbitrary) with 1 ̂  iv ^ p, and

where the functions P^...^ are smooth and skew symmetric in their indices:

Pti...iv...in...il = ~ Pii.-i^—U—if

Define the generalized total divergence operator

Div:
so that

O = DivP
means

v
Qh...it-X = 2 Djpi

Thus, for I = 1,

coincides with the usual total divergence, while for I — 2,

Div: JI/2-*-^/1

agrees with the operator in (2-4) (with the roles of P and 0 reversed). These total
divergence operators form an exact complex:

THEOREM 2-7. Given I #= 0, p, and Pes/1, then

DivP=0 ins/1-1 (2-5)
if and only if

P = DivQ (2 6)

for some Q esf+1. For I = p,the statement holds with (2-6) replaced by the condition that P
be constant (independent of x,u,...,8nu). For 1 = 0, the conclusion holds with (2-5)
replaced by the condition that Pbea null Lagrangian. If P = P(A) depends smoothly on
parameters A e Ur, then Q = Q(A) does likewise.

Detailed developments of the theory and applications of Theorem 2-7, including
proofs, can be found in [1], [20], [21], [23] and (in the polynomial case) [18].

3. Homogeneous null divergences

A function (orp-tuple) P is called homogeneous of order k if it depends-exclusively on
k-th order derivatives of u: P = P(dku). We first consider the problem of explicitly
classifying homogeneous null divergences; the more general case will be taken up in
Section 4. (The term ' homogeneous' should not be confused with ' algebraically homo-
geneous' which refers to polynomials in all variables u, ...,3%).

The companion problem of classifying homogeneous null Lagrangians has already
been solved by Anderson and Duchampfl] and Ball, Currie and Olver [2]. (In [1], the
result is not explicitly written down, but can be inferred from theorems 2-1 and 4-1
therein.) Another proof of the classification can be inferred from Vasilenko [22], using
results in [2].

To state the basic classification, we use the notation of [2] for Jacobian determinants:

J% = ^ - -
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forK = (k1,...,kr), a = {v^I^,...; vr,Ir). The Jacobian J ^ i s homogeneous of order k
provided each multi-index 7; in a is of order k — 1 (and, in any case, algebraically homo-
geneous of degree r.) It is easy to check that each Jacobian determinant is a null
Lagrangian; the classification theorem states that these are essentially all the homo-
geneous null Lagrangians there are.

THEOREM 3-1. Let Lbea homogeneous function ofcfiu. Then the, following are equivalent.
(1) L is a null Lagrangian.
(2) L = BivPfor some P.
(3) L is an affine combination of homogeneous Jacobian determinants, i.e.

L = C°o+ Z C*KJ°K, (3-2)
a, ft

for suitable constants C^- (In particular, L is a polynomial function of
Now suppose P is a homogeneous null divergence. By Theorem 2-5, each component

Pi is a divergence, and hence by Theorem 3-1 an affine combination of Jacobian deter-
minants. However, the Pi are, of course, not independent, so more work is needed to
completely classify all such P.

To accomplish this, we first write down some basic homogeneous null divergences
generalizing the identities in Examples 2-2 and 2-3. Given a as above, and

L = (h *r+l). 1 < *i < *a < — < lr+l < P>

define N% to be the p-tuple whose i-th entry is

Here L; = (l1,---,lK-\,lJC+\ ZP+i)- It is not too difficult to check directly that
is a null divergence, i.e.

r + l

(However, the proof of our characterization theorem will also provide a compu-
tationally simpler proof of this identity.) The basic theorem to be proved is that the
N% provide a complete list of homogeneous null divergences:

THEOREM 3-2. Let Pbea homogeneous p-tuple of functions of fru. Then the following
are equivalent:

(1) P is a null divergence: DivP = 0.
(2) P{ = U>tQti with Qti = -Q } i .
(3) P is an affine combination of the above ' Jacobian null divergences':

P = Co+ S GIN% Co = (05 Off), (3-5)

for suitable constants O£.
The proof of this theorem relies on the transform theory developed in [2], [18]. We

therefore defer the details until Section 6.
I t should, however, be remarked that the proof does not follow immediately from

Theorems 3-1 and 2-5 owing to identities among Jacobian determinants stemming from
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the quadratic P-relations among (ordinary) determinants, cf. ([2]; p. 155). For
instance, the null divergence

8(x,z) "'

can be changed into an identity of the type discussed in Example 2-3 using the
relations

8(ux,uz) d(ux,uw) = 8{ux,uy)
8(y,w) 8(y,z) 8(z,w) '

8(uw,ux) _8(ux,uv)
8(x,y) d(w,x)

More complicated examples can easily be constructed.

4. Low order divergence expressions

More generally, we can ask the question as to how a null divergence (not necessarily
homogeneous) depends on its highest order derivatives ff'u. For null Lagrangians,
Anderson and Duchamp [1] generalized theorem 3-1 to show that if L(x, u, ...,fi%) is
a null Lagrangian, and we fix x, u,..., 5*~x u to be constant, then the resulting function
of d% is also a null Lagrangian, and hence an affine combination of Jacobian determi-
nants. An analogous statement holds for null divergences. We state this result in more
general form.

PROPOSITION 4-1. Suppose P depends on x,u,...,8ku, and DivP also depends on
x,u,..., 8ku (but not 3*+1 u). Then for any fixed x = c,u = c0 d*-1 u = ck_v the p-tuple
P(c,c0, ...,ck_1,8

ku), as a function of c^u, is a null divergence, hence of the form (3-5). In
particular, P(x, u,..., 8ku) is a polynomial in dku.

To prove this, we first break the total derivatives (1-1) up into homogeneous pieces:

Di = 8i+ 2 -Dim>» 8i = d/8xi, (4-1)

where Z)Jm) denotes the sum of all terms in (1-1) with multi-indices J of order m.
Similarly, let Div = div + S Div<m>.

Now if P depends on x,u, ...,8ku, then the only terms in DivP which depend on
8k+1u are those in Div<fc)P. Thus if P satisfies the conditions of the proposition, then

Div<*>P = 0. (4-2)

For Q(x,u,..., (flu) any function, let Q\c denote the homogeneous function

for fixed c, ...,ck_1. To complete the proof of the proposition, it suffices to note that
for any 1 ^ i ^ p,

DdQl) = (DPQ)l- (4-3)
Thus (4-2) implies that Div(P|c) = 0, hence the proposition.

More generally, the same method of proof yields:

PROPOSITION 4-2. Suppose Pes/1 and Div P e sf-1 both depend onx,u,..., 3*«. Then,
for each fixed x = c, u — c0,..., dk-hj, = ck__x,
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is a generalized null divergence:
Div(P|c) = O,

and is (by Theorem 3-1) a polynomial in ifiu.
(There is a generalization of the classification Theorem 3-2 to these generalized null

divergences, but we will not require this result.)

5. Order of derivatives in conservation laws

Return to the problem of classifying conservation laws for a given system of
differential equations. In the identity

DivP = Q,

where Q is given by (1*4), it is often necessary to specify in advance the order of
derivatives on which Q can depend, i.e. to assume Q = Q(x,u,..., #*«). One would also
like to assert that P can depend on at most k-th order derivatives, but it is conceivable
that P depends on derivatives up to order I > k, but terms in DivP involving deriva-
tives of order higher than k cancel out. A typical example would be a null divergence.

The aim of this section is to prove that, except for the trivial possibility of adding
a null divergence, P can be assumed to depend on derivatives of order < k if Q does.
This result is fundamental in the systematic classification of conservation laws,
especially those of bounded order. See also Anderson and Duchamp [1].

THEOBEM 5-1. Suppose
DivP = Q,

where Q = Q(z,u,..., 3*+1 u), and depends linearly on the highest order derivatives ifi+hi,.
Then there is a null divergence N such that Ps P — N depends only onx,u,...,3% and
also satisfies

Div P=Q.

If Q(A) depends smoothly on parameters A e Rr, so does f*(A).

Proof. Actually, we will prove the more general result that if P e sf1, Q e sf1'1,

DivP = O,

and 0 = Q(%, u #*«; A) is a polynomial of degree m in the highest order derivatives
d%, then there exists P(x,u, . . . ,c%; Xjestf1 with P a polynomial of degree at most
m — 1 in the highest order derivatives, and

also. This will be proved by reverse induction on I.
For I = p the result is easy to see. Indeed, P consists of a single function

and Div can be identified with the 'total gradient',

Its easy to see that if P depends on dPu, then DiP must depend (linearly) on 3n+Lu, so
the result follows, with 0 at most linear in its highest order derivatives.
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Turning to the induction step, we assume the result is true for / +1 and prove it for I.
Thus suppose P = P(x,u, ...,8*11; X)es/1, and Q = Q(x,u dku; A)e^~1 is as
above, with n > k. By Proposition 4-2, P is a polynomial in iPu, hence

where each P* is an algebraically homogeneous polynomial in d^u of degree j . If n = k
and j ^ r o - l f f e are done. Otherwise, note that if we break up

= div + ZDiv<"»,
as in (4-1), then

Div<n)P> = 0, j=l,...,s. (5-1)

Also, the only terms in Div P which are polynomials of degree 8 + 1 in SPu are

Div<n-1)Ps = 0, (5-2)

which holds since 0 is either independent of SPu (n > k) or of lower degree (n = k).
Now, if a; = c, u = c0, ...^'hi = cn_2 are fixed, then (5-1) and (5-2) imply

DivP8(c,c0( ...,cn_2,8"-H,&"u; A) = 0.

By the induction hypothesis, there exists R = R(c,c0, ...,cn_2; x,u, ...,&"•%; \)ej/l+1,
a polynomial of degree ^ s — 1 in d"w, depending smoothly on all its arguments, with

V°{c)...,cn_z,d»-hi,&»u; A) = DivR(c cn_2; «,...,#•»; A). (5-3)

Given yeW, veU9, consider the functions K(y,v,...,8n-iv;x,u,...,8nu;X). Let
Div", Div* denote the total divergences with respect to y and x respectively, treating
v as a function only oiy and u as a function only of a;. By the chain rule, when x = y,
u = v,

DivR(a;,M, ...,^~hi; x,u,...,&>-u; A)

Further note that (5-3) can be rewritten as

Pa(x,u,...,8nu;A) = DivxR(x, ...^-hi; x, ...,d"u; A).
Now set

N = DivR(x,...,8n-hi;x d^u; A).
Then

P" = P" -N = Div«'R(a: fr-hi; x, ...,d"u\ A)

is a polynomial in d'Hi of degree at most 3 — 1. Thus

P = P - N
satisfies

DivP = DivP = O,

and is of degree at most s — 1 in
We now continue this process to reduce the degee s and the order n of the highest

order derivatives entering into P until we reach P depending only on x,«,..., d*w,
and of degree at most m — 1 in dku. This completes the induction step, and hence
proves the theorem.
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In [16], this result will be of key importance in the classincation of conservation laws
for linear, isotropic elasticity. However, its potential range of applicability is much
wider.

6. Classification of homogeneous null divergences
The proof of Theorem 3-2 uses the same transform techniques as developed in [2]

to prove the classification Theorem 3-1 for homogeneous null Langrangians. We thus
begin by briefly reviewing the transform, which maps differential polynomials to
algebraic polynomials, thereby reducing questions about the former to problems in
ordinary commutative algebra, to which the powerful methods of algebraic geometry
can be applied. For the most part, the notation here is the same as in [2], although with
the slight modifications introduced in [13].

Let J£T = SCr(p, q, k) denote the space of all differential polynomials L(u, 8u,..., 3%)
with complex coefficients, which are algebraically homogeneous polynomials of degree
r in their arguments. Thus, for example,

uuxe^, uhtxuxvveSCi, etc.

(In [2], SCr denoted the subspace &\ of homogeneous polynomials L(Sku) depending
only on k-th. order derivatives). Let Zr be the space of algebraic polynomials
^(o1, b1; a2, b2; ...; ar, br), with a* 6 R«, ¥ e Up, which are linear in the ai. Here ZT is the
direct sum of its homogeneous subspaces Zr' *, consisting of those polynomials homo-
geneous of degree k in the &*, as defined in [2]. The symmetric group of permutations
of {1, ...,r} acts on Zr by

nt(al,bl; ...; ar,b") = 0(a»« &»»; ...; o"«,6"<r)),

for n a permutation. Let ZJJ denote the subspace of symmetric polynomials in Zr; in
other words <p e ZT

Q if and only if7r$ = $ for all permutations n. Let

denote the natural projection, so a[<j>] is the 'symmetrized' version of <j>.
Define the transform

3F:&'^Z%,

to be the linear map whose action on monomials is given by

#•(«}}...«Jfj) = <r{a\ 6},...oJr6Jr). (6-1)
Here for 1 ^ v < q, I = (i±, ...,ik), u} denotes the I-th partial derivative of u", as
defined in Section 2. Also, b^ = 6^,6^...6^, with b\,a[ denoting entries of b1,of
respectively. See [4], [18], [2], [13] for more details.

THEOREM 6-1 [2], [13]. The. transform!?gives a linear isomorphism between SCrand Zr
Q.

If fl>: &T -> HP" is a linear map, then 6: Zr
Q -> Z% denotes its transform defined by

LEMMA 6-2 [i3], [18]. The transform of the total derivative D{: SF^-Se* is

Atia1 &••) = (61+•••+«) # » V ••,&••). (6-2)

We also need the formula for the transform of a Jacobian determinant as given in [2].
For K = (kx kr), and a = (vlt 1^, ...; vT, Ir) collections of indices and multi-indices
as in (3-1), define BK to be the rxr matrix with entries 6jL and (A ® B)a to be the rxr
matrix with entries a*bj .
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LEMMA 6-3. [2]. IJJ'k denotes the Jacobian determinant (3-1) then

?K)det(A®B)a. (6-3)

Turning to the proof of Theorem 3-2, note first that by Theorems 3-1 and 2-5 each
component Pt of the homogeneous null divergence P is a polynomial in flu. Clearly,
each algebraically homogeneous summand of P is separately a null divergence, since
Div preserves the algebraic homogeneity of each monomial. Thus, without loss of
generality, assume that Pe2nr

0'
v <= 3>r<v, where &*'v denotes the p-fold Cartesian

product of JSP1". Let &v: &T<V -> ZT
Q

<P be the Cartesian product transform, Zr
a'

v being
again a^-fold Cartesian product of Z%, and let 0 = ^P(P). Thus from Lemma 6-2
and the fact that ^ is an isomorphism, we conclude that P is a null divergence if and
only if

( lW* 1 . - • • .&' ) = <>. (6-4)(

Let ye W, and define the polynomial

ijr(a\b1;...;a',b'>y) = f) y,ft(a», ...,&). (6-5)

From (6-4) we see that \jr = 0 whenever bl + ... +br+y = 0. Moreover, since P is
homogeneous, 0f is a homogeneous polynomial of degree k in b1 b*; hence \jr is
homogeneous of degree k in ft1,..., br and degree 1 in y. Thus for Alt..., Ar+1 e C,

(A,... A,.)*Ar+1^(ai,6i; ...; a',6'; y) = ^{aW^; ...; a ' .A^ ; ^ y ) = 0,

whenever A16
1 + . . . +Ar6

r + Ar+1y = 0. By continuity, we conclude that ijr = 0 when-
ever b1,...,br,y are linearly dependent.

Given a multi-index L with 1 < lt < l2 < ... < lr+1 ^ p, let YL denote the
(r+ 1) x (r+1) matrix with (i,j)-th entry b\, for 1 ̂  i ^ r, or y^ for i = r+1. Then
b1, ...,br,y are linearly dependent if and only if det 3^ = 0 for all such multi-indices L.

At this point we require some deep results from algebraic geometry. Let J denote
the polynomial ideal generated by the determinants det YL; J is known as a deter-
minantal ideal. By the Hilbert Nullstellensatz (cf. theorem 4-6 in [2], or [6]; p. 254),
since rjr vanishes whenever detT^ = 0, some power of rjr must be in the ideal J'. More-
over, by a theorem of NorthcottflO] and Mount [9] (see also theorem 4*7 in [2]) the
determinantal ideal J is prime, hence this power can be taken to be one. In other words,
there exist polynomials \jrL such that

(6-6)

(Compare the proof of lemma 4-8 in [2]). Expanding the determinants along the last
row,

r+l
detYL = 2 (- l j ' + ^ d e t ^ , (6-7)

where we are using the same notation as in (3-3). From (6-5, 6, 7), we see that

<f>i= 2 (-l)K^+1r/rLdetBLi. (6-8)
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Finally, we use the fact that each 0,- is symmetric. Thus applying the symmetrizing
map cr to both sides of (6-8) we have

det BL~, (6-9)

where \jrL = - £ (sign n) n(i/rL).

In particular, for any permutation n,

Lemma 4-9 in [2] then implies that

(6-10)
a

for suitable constants C£. Inserting (6-10) into (6-9) and using the formula for the
transform of a Jacobian determinant, we conclude that

where N%ti is given by (3-3). This completes the proof of Theorem 3-2.

Appendix. Nondegeneracy conditions
Let &K(z,u,...,Sfmu) = 0 (K=l,...,l),

be a system of partial differential equations, the A, assumed to be C00 functions. If
u =f{x) is a C°° solution, then u also satisfies all the 'prolonged' equations

DJ\ = 0, (Al)

for all multi-indices J. The system is of maximal rank if for each n the Jacobian
matrix of DJ A* for all | J | < n with respect to all variables z, u,..., d^^u is of maximal
rank whenever the equations are satisfied. For polynomial systems, this is equivalent
to the statement that the A, generate a radical differential ideal, cf. [17]. (In [17] an
example of a single prime ordinary differential polynomial whose differential ideal is
nevertheless not radical is discussed!) For linear systems, or evolutionary systems, this
condition is easy to verify.

A system is locally solvable if for any n and for each fixed x0, u0,..., 8
n+mu0 satisfying

the prolonged equations (A 1) for \J\ ^ n, there is a C°° solution u =f(x) defined in a
neighbourhood of x0 satisfying initial conditions u0 =f(x0),...,S"*"1^ = &n+mf(x0).
(These initial conditions should be contrasted with the usual Cauchy problem where,
except for ordinary differential equations, the initial data must be specified along an
entire submanifold of W.) For analytic systems, the Cauchy-Kowaleski theorem [3]
ensures local solvability. However, counter-examples such as that constructed by
Lewy (cf. [5]) show that this question is more delicate in general.

A system is nondegenerate if it is both of maximal rank and locally solvable. The
importance of nondegeneracy for symmetry group theory is discussed in [12], where
a proof of the following basic result is outlined. This provides the connection between
(1-3) and (1-4).

THEOREM. / / A = 0 is nondegenerate, and Q{x,u,...,&eu) = 0 whenever u=f{x) is
a solution, then

for suitable nonvanishing functions Qj K(x,u,..., ff'u).
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