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Abstract
It is shown that P, depending on x, u and derivatives of u, satisfies DivP ^ 0 for all

such x, u, if and only if DivP = <f>(x) ~& 0 where <f> is independent of u. Applications to
theories of continuum thermomechanics are discussed.

1. Introduction

In the foundations of the theory of continuum thermodynamics, significant
restrictions on the constitutive relations of materials can be deduced from the basic
laws of thermodynamics through a procedure popularized by Coleman and Noll in
their seminal paper [3]. In this procedure, one postulates certain balance laws, such
as those of linear momentum or energy, together with certain thermodynamical
inequalities such as the Clausius-Duhem inequality reflecting the imbalance of
entropy. The local forms of these laws and inequalities usually involve divergences of
certain process fields, such as internal energy, entropy, Cauchy stress and so on. The
underlying constitutive hypotheses of the theory require these process fields to depend
on certain 'fundamental' variables, usually including material coordinates x, time t,
temperature 6, and deformation u, and their derivatives or gradients up to some
prescribed order. Thus, for instance, entropy 7 might be postulated to be a function of
temperature 6, deformation gradient F = V« and temperature gradient V0,

For a higher grade material, rj could also depend on higher order gradients, e.g.
VF = V2M, V20,... as well as temporal derivatives 6, F = Vw, etc. At this stage, the
basic axiom of Coleman and Noll comes into play. They postulate that the resulting
balance equalities or inequalities must hold for all possible sufficiently smooth values
of the fundamental dependent variables, i.e. all smooth functions 6{x,t), u(x,t), etc.
determining temperature, deformation, etc. This relative freedom in the specification
of the 'processes' available has the net effect of significantly reducing the possible
dependence of the process fields on the fundamental variables themselves. For example,
in the classical theories of continuum thermomechanics, the Coleman-Noll procedure
requires that the free energy be a function of deformation gradient and temperature
alone, so no higher order gradients or temporal derivatives can occur, and be related
to the entropy, energy and stress as a 'potential' for them. (See [3], [4].) More recently,
Dunn and Serrin, [4], [5], have introduced additional process variables, (the 'inter-
stitial work flux') in an attempt to circumvent this restriction, with a view towards the
Korteweg theory of phase transitions.
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In any analysis requiring some version of the Coleman-Noll procedure, one is
required, eventually, to deal with the following types of complicated algebraic
problems: Given independent variablesx = (x1,...,xv) and dependent (field) variables
u = (u1, ...,uQ), suppose P = (Pl5 ...,Pp) is a p-tuple of smooth functions depending
on x, u and derivatives of u, Uj = dnua/8xil... dx>n up to some order n. The problem is
then to characterize all those P's which satisfy either

DivP ^ 0 (1)
for all smooth u = u(x), or

DivP = 0 (2)

for all smooth u = u(x). The second question, characterizing all null divergences, was
extensively studied in the companion paper [6] to the present one, and we assume that
the reader is familiar with the results and notations therein. Effectively, [6] provides
a complete characterization of all null divergences P(x, «(n)) as ' generalized curls' of
functions Q(x, u(rC)). Moreover, the dependence of P on the highest order derivatives
occurring therein was completely determined, being given as linear combinations of
certain special types of' Jacobian null divergences' whose entries are given in terms of
Jacobian determinants of the variables u.

The purpose of the present paper is to demonstrate that the more general problem (1)
of characterizing non-negative divergences actually reduces to the previously analysed
problem (2) of characterizing null divergences. Specifically, we will prove the following:

THEOREM 1. Let P(x,u(n)) be ap-tuple of smooth functions ofx, u and derivatives of u
up to order n. Then P is a non-negative divergence,

Div P(x,uW) ^ 0,

if and only if D i v P(x, u<w>) = </>(x) ^ 0, (3)

where <j>(x) is a smooth, non-negative function ofx alone. In particular, ifP vanishes when
u and all its derivatives vanish,

P(x,0) = 0, (4)

or ifP = P(tt(n)) does not depend on x, then <fi(x) = 0; hence Pisa non-negative divergence
if and only if it is a null divergence.

In the more general case, by choosing any ̂ j-tuple \jr(x) = (i/r^x),..., i/rp(x)) such that
div i/r = <f>, the slightly modified^J-tuple P = P — xjr becomes a null divergence. Thus, in
all cases, we reduce the study of divergence inequalities (1) to divergence equalities (2),
the latter having been investigated in full detail in [6].

In contrast to the direct analysis of the Coleman-Noll procedure, which requires
exceedingly complicated and intricate algebraic manipulations owing to the appearance
of determinantal expressions, (see [4], [5]), Theorem 1, when coupled with the previous
results on null divergences, will lead to a significant simplification of these problems.
Applications of this method appear in the revised version of the work of Dunn and
Serrin, where a far wider class of materials is open to analysis by this method.

The proof of Theorem 1 is surprisingly simple using the techniques presented in the
earlier paper [6]. The key point is to concentrate on the divergence

L = DivP (5)

rather than P itself, since this will eliminate any extraneous null divergence com-
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ponents in P which would only complicate the analysis. Recall ([6]; theorem 2-4) that
L is a divergence (5) for some P if and only if L is a null Lagrangian,

E(L) = 0

for all x, u, where E is the Euler-Lagrange operator or variational derivative for the
variational problem Ji?[u] = JLdx. The key lemma is the following:

LEMMA 2. Suppose L(x, «.<n)), depending on nth and lower order derivatives of u, is a
null Lagrangian. Then L is an affine function of each nth order derivative

so L = Auj + B, (6)

where A, B are independent ofuaj {but may depend on other nth order derivatives.)
The proof of Lemma 2 is immediate from the more general characterization of the

dependence of null Lagrangians on nth order derivatives, ([1], theorem 4-3) (see also
section 4 of [6]). Alternatively, this can be proved by direct analysis as in ([2]; theorem
3-4).

It is important to remark that L is not affine in all the highest order derivatives
simultaneously. For instance

uxvy -uyvx = Dx{uvv) - Dy{uvx)

is affine in ux, uy, vx and vy individually, but not an affine function of the 4-tuple
(ux,uy,vx,vy)! The best that can be said is that L is a 'multi-affine' (as in 'multi-
linear') function of the highest order derivatives.

Once this has been established, the proof of Theorem 1 becomes elementary. Namely,
if L = Div P > 0 depends on nth order derivatives of u, then L is affine in each nth
order derivative. Since u is arbitrary, for any nth order derivative Uj, the only way an
affine function (6) can be non-negative for all u is if the coefficient A of Uj vanishes,
requiring L to be independent of Uj. Thus L is, contrary to our assumption, independent
of all nth order derivatives uaj. We conclude that L must be independent of u and its
derivatives entirely, so

L = <j>(z) = D i v P ,
and we have proved (3).

The other statements in Theorem 1 are easily established. If P(x, u(n)) vanishes
whenever u and all its derivatives vanish, the same is clearly true of the total divergence
L = Div P. Thus L = <j>{x) = 0 for all x, and we have proved the first of these results. If
P = P{u(n)) does not depend on x explicitly, the same is true of DivP = <j>. Thus
<j)(x) = a is a nonnegative constant, with

DivP(«<n>) = o ^ 0 .

Now set M and all its derivatives to 0, so

DivP(O) = a

also. But P(0) is constant, so DivP(O) = 0 and hence a = 0. This completes the proof
of the second statement.

This paper arose in conversations with Ernest Dunn during a seminar on phase
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transitions held at the Mathematics Research Center of the University of Wisconsin.
It is a pleasure to thank him for sparking my interest in the applications of these results
to thermodynamics.
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