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Synopsis
The system of differential equations V/ = A/Vg, where Mis a given square matrix, arises in many
contexts. A complete solution to this problem in the case when M is a constant matrix is presented
here. Applications to continuum mechanics and biHamiltonian systems are indicated.

1. Introduction

In this paper we consider the elementary system of partial differential equations

V/ = MVg, (1.1)

in which f(x) and g(x) are scalar-valued functions on an open domain in an
n-dimensional vector space, either real or complex, and M(x) is a given nXn
matrix of functions. Thus, (1.1) constitutes a system of n linear partial differential
equations for the functions / , g, and we are interested in its general solution. The
basic equation (1.1) arises in many different contexts, including the study of
conservation laws in elasticity [4,6], phase transitions [1], and biHamiltonian
systems [7]. Despite its seeming simplicity, the general equation (1.1) is not well
understood, and we are unaware of any systematic treatments in the literature. In
this paper we shall exclusively consider the case when M is a constant matrix: our
main result is a complete classification of all solutions in this case. Except for
some interesting special cases, cf. [7], the case of non-constant matrices M of size
larger than 2 x 2 is, to our knowledge, unstudied and completely open.

As a first step, we note that, when M is constant, the integrability conditions
for (1.1) are the system of second order equations

MV2g = W2gMT. (1.2)

The goal then is to describe the general solution to this system. We shall be
primarily interested in (real or complex) analytic solutions to this system,
although we shall make some remarks on less differentiable solutions in the final
section, which also includes the motivating problem from Ball and James' work
on phase transitions. The basic line of attack is to perform a linear change of
variables so as to place the matrix M in as simple a form as possible. Because the
linear transformation x = Ax transforms M into the similar matrix M = A~TMAT,
we can choose coordinates so that M is in Jordan canonical form, or, in the real
case, real normal form. Then, to simplify matters, we work our way up to the
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342 Max Jodeit, Jr and Peter J. Olver

most general case, finding the general solution to (1.1) in the cases when:
(i) M consists of a single Jordan block - the irreducible case;

(ii) M has only one eigenvalue;
(iii) M is a general complex matrix in Jordan canonical form; and, finally,
(iv) M is in real normal form.

2. The irreducible case

We begin our study of (1.1) by assuming that M is an irreducible complex
matrix, which means that it has only one eigenvalue, and its Jordan canonical
form consists of a single Jordan block. We are interested in complex analytic
solutions f(x), g(x). Choosing an appropriate basis of our underlying complex
vector space V, we have

M = kl+U, (2.1)

where A is the eigenvalue, / is the (n + 1) X (n + 1) identity matrix, and U is the
(n + 1) x (n + 1) upper triangular matrix with l's on the super-diagonal and O's
elsewhere, so n equals the number of l's in U. Vectors in V are written as

X = [X0> X\> X2> • • • > Xn\

relative to the Jordan basis of M. (All vectors are column vectors, the superscript
T denoting transpose.) We call x0 the major variable for the Jordan block; the
other variables Xi, . . . , xn are called minor variables. Let t be a scalar parameter.
Define the scalar variable

xo + tx1 + t2x2 + ...+tnxn, (2.2)

corresponding to the single Jordan block M.

THEOREM 2.1. Let / (x), g(x) be analytic functions on a convex domain in the
complex vector space V. Then f, g satisfy (1.1) where M is a single Jordan block
(2.1) if and only if there exist smooth scalar-valued functions
ao(s), ax(s), . . . , an(s) and a constant c such that

f(x) =/0(x) +/i(x) + . . . +fn(x) + c, g(x) = go(x) + gl(x) + . . . + gn(x),

where

(2.3)
( = 0 ( = 0

3 k"k\^\*>> > (2-4)
at ,=o

w/iere §(f) « given by (2.2).

EXAMPLE 2.2. We illustrate what these formulae look like for small values of k.

k = 0:

/0(x) = Ago(x) = Aao(^o)-
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On the equation grad/ = M grad g 343

Thus any function of the major variable x0 provides a solution to (1.1), (2.1).

k = l: gi(x)= — a1(x0 + txl + t2x2 + ... ) | ,= 0

= xxa[{x0) (2.5-1)

/ i (x ) = Agi(x) + fll(jc0 + tx, +t2x2 + ... ) | t_o

= kxxa[{x0) + a^xo)
a2

k = 2: g2(x) = —2 a2(x0 + txt + t2x2 + ...) |,_0

s (2-5-2)

/2(x) = Ag2(x) + 2 — a2(x0 + txt + t2x2 + . . . ) | , = 0
at

= Xx\a'2{x0) + 2kx2a2(x0) + 2xxa'2{x0).

K — i. g3W — ^.3
a3(,Jco + tXi+ t x2 + . .. )\t=o

at
= x\a'3{x0) + 6x1x2a3(x0) + 6x3a3(x0)

/ 3 (x ) = Ag3(x) + 3—J a3(x0 + txl + t2x2+... ) | , = 0
at

= Ag3(x) + 3xia'i(x0) + 6x2a'3(x0).

Thus, according to Theorem 2.1, the general solution to (1.1) when M is a 4 x 4
Jordan block with eigenvalue A is

f(x) = Ag(x) + 3xfa^(j:0) + 6x2a'3(x0) + 2x,a2(xQ) + «,(*„) + c,

g(x) = xla'&xo) + 6x^205(^0) + 6x3a'3(x0) + x2a'i(x0)

+ 2x2a2(x()) + xxa[(x0)

where c is a constant, and a0, au a2, a3 are arbitrary analytic scalar functions of
the major variable x0. Note that in particular the solution is necessarily a
polynomial function of the minor variables.

More generally, it can easily be seen that the solutions (2.3), (2.4), of (1.1),
(2.1) must be certain polynomial functions of the minor variables, whose
coefficients are derivatives of arbitrary functions of the major variable. It can be
shown that these polynomials are well known in combinatorial theory. Indeed,
the solutions (2.3), (2.4), have the explicit form

j
7=1

k-\

fk(x) = Xgk(x) + k 2 Pk-i,j(xu x2, . . . , xk^a

where ak'^ is the ;'th derivative of ak. The polynomials PkJ are essentially the
partial Bell polynomials which arise in the Faa-di-Bruno formula for the
derivatives of the composition of two functions; using the notation in Comtet [2],
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344 Max Jodeit, Jr and Peter J. Olver

we find that

Pkj(xi, x2, . . . , Xj) = BkJ(xu 2x2, 6x3, . . . , / ! x,).

See [2] for a table of these polynomials for k Si 12.
We remark that any solution of (1.1) for an (n + 1) x (n + 1) Jordan block with

eigenvalue A is obviously also a solution for any larger sized Jordan block having
the same eigenvalue. Correspondingly, if we have a solution / , g which does not
explicitly depend on the highest order minor variable xn, then it is also a solution
to the same problem for the smaller n x n Jordan block with the same eigenvalue.
For instance, in Example 2.2, if we set a3 = 0, then we recover the general
solution for the 3 x 3 Jordan block. This remark will be the key to our inductive
proof of the theorem. Conceptually, it is often helpful to replace the parametrised
variable §(f), cf. (2.2), by a formally infinite power series

%(t)=xo + tXl + t2x2 + ... , (2.6)

corresponding to an "infinite Jordan block". This does not change any of the
formulae (2.3), (2.4), and avoids having to keep track of the precise number of
terms in £ at each stage.

Proof of Theorem 2.1.

In outline, the proof of this result, and our subsequent more complicated
versions, always proceeds in two steps. We first demonstrate, by direct computa-
tion, that the explicit formulae (2.3), (2.4) always give solutions to (1.1), (2.1).
Then, to demonstrate that these are the only solutions, we use a simple reverse
induction on n, the size of the Jordan block. Indeed, by a direct analysis we
determine the dependence of a general solution to our problem on the highest
order minor variable xn. Convexity of the underlying domain will imply that we
can find a particular solution of the form (2.3), (2.4) with the same highest order
terms. We then use the linearity of (1.1) to subtract off our particular solution,
resulting in a solution to (1.1), (2.1) which does not depend on xn, which, by the
above remark, is then a solution to the problem for the next smaller size Jordan
block. Induction will then complete the proof.

We can further simplify matters by defining

Mx)=/(x)-Ag(x). (2.7)
Then h, g satisfy the system

Vh = UVg, (2.8)

which is just (1.1) in the case when M is a single Jordan block with eigenvalue 0.
Written out in detail, (2.8) reads

f = ̂ , / = < > , . . . , „ - 1 , (2.9)
dx dx
dxj dxJ+1

£r°- <21O>
The following elementary lemma is the key to proving the first part of the
theorem.
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On the equation grad/ = M grad g 345

LEMMA 2.3. Let a(s) be any smooth scalar function, let %(t) be defined by (2.6),
and let

dk

(2.11)

Then

k\

(k-j)\dtk-

where a'(s) denotes the derivative of a(s).

Thus, if gk is given by (2.11), and we set

(2.12)

t=O
(2.13)

then (2.12) and the corresponding formula for hk immediately proves that gk, hk

solve (2.9). Moreover, hk will also satisfy the final condition (2.10) provided
k^n. Thus, recalling (2.7), and setting a = ak, we have verified the solution
(2.4), (2.5).

We now need to prove that there are no other solutions. To this end, we work
by induction on n, the scalar case n = 0 being trivial. Let g, h be an arbitrary
solution to (2.8). By (2.10) h does not depend on xn. Differentiating (2.9) with
respect to xn, we deduce that dzg/dxjdxn = 0 for all ; > l on the domain of
definition of g. Since our domain is convex, then this implies that g must have the
form

g(\) = b(xo)xn+g(xo, xu . . . , xn_x),

where b depends only on the major variable. Define the function an{s) to be any
first integral of b(s), so that a'n(s) = b(s), and let gn(\), hn(\), be the functions
given by (2.11), (2.13) with k = n, a = an. Note that, according to (2.12),

= a'n(x0)xn +gn(x0, xn_i) = b(xo)xn + gn(x0,

as desired. By linearity, the functions g = g — gn, h = h — hn satisfy (2.8), and,
moreover, depend only on x0, xx, . . . , *„_!• Thus, by the above remark, g, h
must also be a solution to (2.9), (2.10) with n replaced by n — 1. Now we can use
our inductive hypothesis to complete the proof.

Finally, we remark that, as a consequence of the deRham Theorem [11], we
can readily extend Theorem 2.1 to any simply connected domain Q, although the
precise statement is a little more tricky. The functions ak(x) will satisfy
dak/dxj = 0 for j = 1, . . . , n. This means that locally they will still be functions of
the major variable x0 alone; however, globally this may not be the case. For
instance, if, over a point c the subset £2C = {x e Q: xo = c} consists of several
disconnected pieces, the function ak, while constant on each connected com-
ponent of Qc, may attain different values on different components.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500031541
Downloaded from https://www.cambridge.org/core. University of Minnesota Libraries, on 13 Apr 2020 at 19:36:32, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500031541
https://www.cambridge.org/core


346 Max Jodeit, Jr and Peter J. Olver

3. The reducible case - one eigenvalue

We now turn to the case when M, complex, still has only one eigenvalue, but
there are several Jordan blocks. This means that there is a direct sum
decomposition of the underlying vector space into a sum of invariant Jordan
subspaces

V = Vl@V2®...®Vm,
where

dim Vt = «, + 1,

«, indicating the number of off-diagonal l's in the corresponding Jordan block of
M. We can also assume that we have arranged the Jordan subspaces in decreasing
size:

n* = «j =̂  n2 = n3 ^ . . . ̂  nm > 0,

and we use n* = max {«,} to indicate the size of the largest Jordan block in M.
Relative to this decomposition, the matrix M then has Jordan form

M = dmg[MuM2,...,Mm], M, = A/, + f/,, (3.1)

where, for each i, /, denotes the (n, + 1) x (n, + 1) identity matrix, and Ut is the
upper triangular matrix of the same size with l's on the super-diagonal and 0's
elsewhere. Each vector xeVcan be written as

x=[xx,x2, ...,xm]T, where x'r = [4, x\, . . . , < f .

We call the variable x'o the major variable for the subspace Vt; the other variables
are called minor variables. Note that a diagonalisable matrix does not have any
minor variables.

As in the irreducible case, for each subspace Vt we define the parametrised
scalar variable

r ( 0 = 4 + tx[ + t2x'2 + ... + r < . (3.2)

Further, for each 0 ^ k ̂  n*, set

fik = max {i\rii^k},

so that fik is the number of Jordan blocks in M of size at least k + 1, which, by
our ordering hypothesis, are the first \ik blocks. Note that no = m is the total
number of Jordan blocks, and /i* = 0 for k>n*. For each k^n*, we define a
/^-dimensional vector of parametrised variables:

§<*>(*) = [?(t), §2(0,. • • , §"<r)]- (3-3)

THEOREM 3.1. Let / (x), g(x) be analytic functions on a convex domain in V.
Then f, g satisfy (1.1) where M has only one eigenvalue, and is in Jordan block
form (3.1) if and only if there exist smooth scalar-valued functions

. . , « „ , ) , k = 0, . . . , n * , (3.4)

such that

f(x) = / 0 (x ) + / t ( x ) + . . . + / n . ( x ) + c, g(x) = go(x) + gl(x) + ...+ gw.(x),
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where c is a constant, and

dk

AW A^flfc(

g*W=j£«*($

equation grad/ = M gradg

•r*m a*-1 w
,=o dt

=n

347

(3.5)

(3-6)

where t-w(t) is given by (3.2), (3.3).

Proof. The proof is similar to the single Jordan block case. Define h(x) =
/(x) - Ag(x), so (1.1), (3.1) become

dh ds
T l ~ T~j > ] — u, . . . , n, — i , W-'J

^ - = 0- (3.8)
dxn.

Now, if a* is given by (3.4), and gk by (3.6), then a chain rule computation as in
Lemma 2.3 shows that

u • (3-9)
otherwise.

There is a similar formula for the derivatives of h, and it is easy to verify that / , g,
as given by (3.5), (3.6), solve (1.1), (3.1).

To check that there are no other solutions, we again work inductively, this time
using n*, the maximal size Jordan block, as our inductive integer. The case
n* = 0 is trivial, being the case of a diagonalisable matrix, so M = XI; here (1.1)
reduces to V/ = A Vg, so / = Ag + c for some constant c. In general, the solutions
fk, gk given by (3.5), (3.6) only depend on x) for j^k^n^ i = 1, . . . , (ik;
therefore, fk, gk also solve (1.1), (3.1) for any M whose first ftk Jordan blocks
(arranged in order of their size) have size at least k. Now suppose g, h are any
solution to (3.7), (3.8). Suppose n* = nl = . . . = nr >nr+l. According to (3.8), h
does not depend on the "top order" minor variables xl

n-, . . . , xr
n.. Differentiating

(3.7) with respect to these variables, and using the convexity of the underlying
domain, we conclude that

g(x) = X bi(xh, • • • , xZ)x'n. + g(x). (3.10)

is an affine function of the top order minor variables, with coefficients depending
on all the major variables. Here x denotes all the "lower order" variables x) with
j<n*.

The integrability conditions for (3.7), (3.8) are given by (1.2), which, written
out in components, reads
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348 Max Jodeit, Jr and Peter J. Olver

Consequently, using a simple induction, we find

a&, d2g d2g db± h . k<
3x1 dx'n.dxZ dx'odxk

n. dx'o
while

i t r ^ t r 0 whenever '*'>*>'•
This means that the functions blt . . . , br can only depend on the "top order
major variables" (xj, . . . , XQ), and, moreover, are the coefficients of a closed
one-form

a) = bx(xl, . . . , xr
0) dx\ + . . . + br{x\, . . . ,xr

0) dxr
0

in these variables. Here (3.11) is equivalent to the closure condition da> = 0.
According to the Poincare lemma [5,11], since our domain is convex, there is a
function an.(x\, . . . , XQ) whose differential is a» = dan*; therefore

-rJY=bi(xl,.. . ,xr
0).

OXQ

Now we can match the top order terms of our general solution (3.10) with those
of one of our known solutions. Let gn«(x), hn*(x) =fn.(x) — Agn.(x), be the
corresponding solution given (3.5), (3.6) with k = n*. It is easy to see that

r

gn'{*) = 2 l>i(Xo, • • • , Xo)x'n. + gn.(\)
i = l

has the same leading order terms as g. Therefore, the differences g=g—gn-,
h = h — h* satisfy (3.7), and, moreover, depend only on x. Thus, by the above
remark, g, h must also be a solution to (1.1), but where M has been replaced by a
matrix M obtained from M by deleting the last row and column of each maximal
sized Jordan block in M. Therefore, M will have Jordan blocks of sizes
Wj — 1 = . . . = nr — 1 = nr+1 =. . . = nm > 0. In particular, the maximal sized Jor-
dan block of M has size n* — 1, and we can use our inductive hypothesis to
complete the proof. •

4. General complex matrices

Next we treat the case when M is an arbitrary complex matrix. Let M have
eigenvalues kx, . . . , kp. Break the underlying vector space into a sum of invariant
subspaces

V = Vl®V2<$...®V, (4.1)

where the generalised eigenspace Vk corresponds to the eigenvalue Xk,

Vk = ker(M-XkI)
N, N»0.

Each Vk in turn is the direct sum of irreducible invariant subspaces Vk

corresponding to the distinct Jordan blocks of M. Introduce a basis of V so that M
is in Jordan form

M = diag [M1, M2, . . . , Mp],
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On the equation grad/ = M gradg 349

where each submatrix Mk is a qk x qk matrix with just one eigenvalue kk, and
where qk is the multiplicity of the eigenvalue kk.
expressed as

Each M can in turn be

Mk = d i a g [Mi, Mk,..., Mk
mk],

where each Mk is a single Jordan block of size (nf + 1) x (nk + 1), with the sizes
arranged in decreasing order: nk^nk^nk^. . . . Note that Mk gives the
restriction of M to the generalised eigenspace Vk, and Mk its restriction to the
irreducible subspace Vf.

Relative to this basis, the vectors x in V are written as x = [x1) x2, . . . , xN]T. It
is helpful to introduce some terminology to distinguish which of the Jordan blocks
and sub-blocks the various indices on the variables xt correspond to. The
sequence of row numbers corresponding to a large block Mk will be called a
macrointerval; the corresponding smaller block Mk will determine a
microinterval. Thus, each eigenvalue determines a single macrointerval, which
can consist of several smaller microintervals. We shall also describe the variables
JC, corresponding to our Jordan basis as belonging to such intervals when their
index i belongs to the interval. We let x w denote the column vector of variables
Xj belonging to the kth macrointerval, so x = [x(1),. . . , x(p)]T corresponds to the
decomposition (4.1) of V into generalised eigenspaces. This pattern of macro- and
microintervals breaks any square matrix of the same size as M up into large
blocks, which we call macroblocks, each having size qk x ql, each of which in
turn is broken up into smaller microblocks, corresponding to the Mk, each of size
nk x n).

EXAMPLE 4.1. If

2 1 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 5 1 0
0 0 0 0 0 0 0 5 1
0 0 0 0 0 0 0 0 5

so that M has two eigenvalues, 2 and 5, the first corresponding to four Jordan
blocks of sizes 2, 2, 1, 1 and the second to a single Jordan block of size 3, the first
macrointerval consists of the indices (1,2,3,4,5,6) and the second of the
remaining indices (7, 8, 9). The microintervals have indices (1,2), (3, 4), (5), (6),
(7,8,9), respectively. Thus, relative to this basis, x3 belongs to the first
macrointerval and the second microinterval.

The key lemma that allows us to reduce this general case to the case of a single
eigenvalue comes from the general structure of the (symmetric) solutions to the
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350 Max Jodeit, Jr and Peter J. Olver

matrix equation MX = XMT, satisfied by V2g, which follows from the general
result on the solution to the matrix equation AX = XB discussed in [10, p. 148].

LEMMA 4.2. The off-diagonal macroblocks of V2g are all zero.

Using this result, and the convexity of our underlying domain, we deduce that
the function g breaks up into a sum of functions, each depending on just the
variables in a single macrointerval. It is not hard to see that this implies that /
must also break up in the same manner. We can therefore apply Theorem 3.1 to
each summand, which now is a solution to (1.1) in the case when M has a single
eigenvalue to conclude the general solution to our problem in the complex case.

THEOREM 4.3. For complex matrices M, the general solution to (1.1) is given as
a sum of solutions to the corresponding single eigenvalue problems:

f(x) = / V ) + / ( x ) + . . . + / ( i ) ,

g(x) = g(1)(x(1)) + g(2)(x(2)) + + g w ( x w ) ( ' ]

Here x w denotes the variables in x corresponding to the &th macrointerval, i.e. to
the kth generalised eigenspace, and / ( t ) (x( t )) . g w (x w ) , is a solution to the same
problem for the submatrix Mk. This latter matrix has just one eigenvalue, and
therefore the formulae for /^'(x(*'), g(fc)(x(^) are given explicitly in Theorem 3.1.

5. Real matrices

We now turn to the case when the matrix M is real, and we are interested in
real solutions to (1.1). We are just allowed to perform real linear changes of
coordinates, so we can only reduce M to real normal form. The Jordan blocks
corresponding to real eigenvalues are the same as before. Therefore, the
statements and proofs of Theorems 2.1 and 3.1 hold without change. In fact, we
can relax our smoothness hypothesis on / and g, and assume that /, g are C°°
functions for the theorem to go through without change. Even more, if ak is a
Ck+1 function, then (3.5), (3.6), determine a solution to (1.1) which is only C1 in
the major variables, but is a polynomial, and hence analytic, in all the minor
variables. This indicates that it is possible to relax the differentiability hypothesis
still further, a question we deal with in Section 7.

Turning to the complex eigenvalues, let us begin with the irreducible case. For
any complex conjugate pair of eigenvalues a ± i/5, /3 ¥= 0, we have irreducible
2n x 2/i real Jordan blocks of the form

/A / \
A /

A /
A .

\ 7
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where / is the 2 x 2 identity matrix, and

_ / a p
P

is the canonical 2 x 2 with eigenvalues a ± ifi. Relative to the Jordan basis of V,
the variables will be written as x0, y0, xit ylt . . . , xn, yn. Let z, — xt + iyj? zt =
Xj - iyjt and introduce the associated complex derivatives

It is easily seen that the real system (1.1) in which M has the form (5.1) is
equivalent to the complex system of differential equations

; = 0 ,

dzj dZj dzj+1 dzn Bzn

From this, a straightforward calculation shows that the system (1.1), (5.1) can be
placed into a convenient purely complex form.

LEMMA 5.1. Given real functions f, g, define the complex function

F=f-(a-iP)g, (5.2)

which depends on the complex variables z, = Xj + iyJt z,- = xt — iyn j = 0, . . . , n.
Then f, g satisfy (1.1), (5.1) if and only if F is a solution to the system

)'#-. ' - • - <5-3>
/ dz

THEOREM 5.2. Let F(z, z) be a complex C2 function defined on a convex domain
in V. Define the parametrised complex variable

£(f) = zo + tzx + t2z2 + . . . + t"zn. (5.4)

Then F satisfies the system of partial differential equations (5.3) if and only if there
exist complex analytic scalar functions aQ(s), a^s), . . . , an(s) such that

F(z, z) = F0(z, z) + F,(z, z) + . . . + Fn(z, z),

where

(5.5)

Proof. The basic method of proof is the same as always. We begin by showing
that (5.5) really does determine a solution to (5.3). Note that the first term on the
right-hand side of (5.5) is an analytic function of z0, . . . , zk, whereas the
summation terms are analytic in the complex conjugate variables z0, . . . , zk

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500031541
Downloaded from https://www.cambridge.org/core. University of Minnesota Libraries, on 13 Apr 2020 at 19:36:32, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500031541
https://www.cambridge.org/core


352 Max Jodeit, Jr and Peter J. Olver

Therefore, using Lemma 2.3, we find

(=0

which, by a similar computation, is readily seen to agree with the right-hand side
of (5.3).

Secondly, to check that every solution has this form, we analyse the leading
order behavior, which, for (5.5), is given by

F n ( z , z ) = a'n{z0)zn + . . . , (5.6)

where the omitted terms depend on z0, z0, . . . , zn-U zn_t, but not on zn or zn.
On the other hand, the leading order terms in the general solution to (5.3) can be
analysed as follows. According to (5.3) when k = n, we find that F satisfies the
Cauchy-Riemann equations 9F/dzn = 0, and so F is an analytic function of zn.
Moreover, if we differentiate the remaining equations in (5.3) for k<n with
respect to zn, we find that

= 0, k = 0, . . . , n - 1.
dzk dzn

Finally, we differentiate (5.3) with respect to zn and use a simple induction to
deduce that

a2F
= 0, k = 1, . . . . n.dzk 9zn

Together, these imply that the general solution to (5.3) has the leading order
terms

F n ( z , l ) = b(zo)zn + . . . , (5.7)

where b is an analytic function of z0 and the omitted terms depend on
z0, z0, . . . , zn_i, £„-!• Thus, using convexity of the domain, we can set a'n = b,
and subtract off the solution (5.5) corresponding to an to lead to a solution
depending only on the remaining variables z0, z0, . . . , zn_x, zn_x. Induction, as
usual, completes the proof. •

One point of interest is that, although we only need to assume that the
functions/, g are C2, the system (1.1), (5.1) automatically requires them to be
real-analytic functions of x, y.

EXAMPLE 5.3. Consider the case of an 6 x 6 real Jordan block with two
complex eigenvalues ±i, associated with two irreducible 3 x 3 complex Jordan
blocks. Here

where A (_^

If we let F=f + ig, then according to Lemma 5.1, the real system (1.1) is
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equivalent to the system of complex partial differential equations

3F _13F_ ld£ 3F__ldF dF _

9z0 2 dz1 4 dz2' dzx 2 dz2' dz2

According to Theorem 5.2, the general solution/, g to (1.1) in this case is a sum

f + ig = F = F0 + Fl + F2

of the following three "complex solutions":

F0(z) = ao(zo),

Fx(z) = zla[(z0)

F2(z) = z\a'{{zo) + 2z2a2(z0) + Zj

where a0, ax, a2 are arbitrary analytic functions of the complex variable

The next case to consider is when M is reducible, but has just one complex
conjugate pair of eigenvalues. The real canonical form of M then consists of
several blocks of the form (5.1). The corresponding solution to (1.1) in this case is
entirely analogous to the complex case given in Theorem 3.1, but with formulae
like those in Theorem 5.2. Thus, corresponding to each block, there is a
parametrised complex variable £'(f), and for each k up to the maximal sized
block, one forms parametrised vectors of complex variables £(Ac)(f). whose entries
are determined by the number of blocks of size at least 2k, cf. (3.3). Finally, the
fcth solution Fk, as given by (5.2), will have the same expression as in (5.5), but
where ak now depends on the vector £w(0- We leave it to the reader to supply
the missing details.

Finally, for a general real matrix M, we break it up into macro- and
microblocks as in the complex case, each macroblock corresponding either to a
single real eigenvalue, or to a complex conjugate pair of eigenvalues. The general
solution to (1.1) then decomposes into the sum of individual solutions for each
macroblock, cf. (4.2), which are given either by Theorem 3.1 or by the analogous
result from the previous paragraph. The statement of this result is then the same
as that of Theorem 4.3. Interestingly, we conclude that, for the real case of (1.1),
the system implies that /, g are analytic functions of all variables except the major
variables corresponding to the Jordan blocks with real eigenvalues.

6. Examples

We now illustrate our general results with a couple of examples arising in
applications. We begin with a relatively simple example, which originally arose in
the study of conservation laws in planar, anisotropic elasticity [6]. Let

/ 0 i 0 o\

/

1 o
1

0

—
a
0
0

P

0

0
0

- 1

0

p
a

0
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354 Max Jodeit, Jr and Peter J. Olver

where the parameters a, P are related to the elastic moduli of an orthotropic
elastic material. The characteristic equation for M is

A4 + 2CTA2 + 1 = 0,

where
a2 + 1 - /32

o = 2a

Strong ellipticity imposes the condition that a>0, \f}\< a + 1, so that a > 0 ,
hence the eigenvalues of M are all complex. If 1 — a = /3, then (7 = 1, and the
elastic material is isotropic, with a = jxlilfi + A) in terms of the standard Lame
moduli. In this case M has a single complex conjugate pair of eigenvalues at ±i,
with corresponding eigenvectors

a+ =

Thus M is irreducible, so we are in the case covered by Theorem 5.2, when n = 1.
We define the complex variables

£ = (* i - x4) + i(x2 + x3), ri = {xx+ xA) + ia(x2 - x3).

Then, according to Theorem 5.2, the general solution to (1.1) for this particular
matrix can be written as

f(x) + ig(x) = ao(r,) + g-p+ _!£«,(,,),

where a0, ax are arbitrary complex analytic functions of the variable rj.
The other case we consider explicitly is when o> 1, so the matrix M has four

simple purely imaginary eigenvalues at ±xi, ±r~li, where

T = yo + Vcr2 - 1 > i,

with corresponding complex eigenvectors

0 \ / 0T2 \ / 0

0

0 J±fL»T-«T'
T 2 - a / \ 0

As a direct consequence of Theorem 5.2, we deduce that every solution / , g to
the basic equation (1.1) for this particular matrix M has the form

= ~a2+rb2,

where
ax + ia2 = a(t;) and
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On the equation grad/ = M grad g 355

are arbitrary analytic functions of their complex arguments

This recovers the results in [4, Theorem 4.1] on conservation laws in linear
isotropic elasticity, and [6] in the anisotropic case.

We next consider a more complicated example from the theory of
biHamiltonian systems [7,9]. A system of first order ordinary differential
equations is called a biHamiltonian system, cf. [5, chapter 7], if it can be written
in Hamiltonian form in two different ways. Here we look at the case when both
Hamiltonian structures are symplectic, and simultaneously linearisable. The
system takes the form

i=/ 1 V/ / 1 =/ 2 V/ / 2 , (6.1)

where Jx, J2 are nonsingular invertible matrices, which determine the two
Hamiltonian structures, and Hx(x), H2(x) are the corresponding Hamiltonian
functions. Given the two Hamiltonian matrices, then the classification of all
corresponding biHamiltonian systems reduces to our basic equation (1.1), i.e. we
must solve

(6.2)
where

M = JTl.J2- (6.3)

The classification of pairs of Hamiltonian matrices reduces to the classification
of skew-symmetric matrix pencils, a problem solved by Weierstrass in the
nonsingular case, and Kronecker in the singular case, cf. [10]. The general case
decomposes into a direct sum of irreducible Hamiltonian pairs, corresponding to
the Jordan block decomposition of the matrix M. Owing to the skew-symmetry of
the matrices / , each eigenvalue and associated Jordan block(s) of M always
appear twice. Here we look at the case of a single irreducible, nondegenerate
pair; the general reducible, nondegenerate case is discussed in [7]. Under a
complex change of basis, we can place the Hamiltonian pair in canonical form

. (0 -A , / 0 -U-UT\
/l = l/ oh J* = (u + u o )' (6"4)

where the notation is the same as in (2.1). In particular, Jx is in the well-known
canonical matrix from classical mechanics. We write x = (p, q) =
(p0, . . • , pn> <7o> • • • > <ln) according to the matrix block decomposition (6.4), so
that the p's and the q's are the canonically conjugate variables for the standard
symplectic structure on R2" as determined by the matrix /x.

The matrix M, (6.3), is given by

which would be in Jordan canonical form if we were to reorder the q's in reverse
order. Therefore, we are in the case of a single eigenvalue, having two associated
Jordan blocks. Theorem 3.1 immediately implies the following:
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356 Max Jodeit, Jr and Peter J. Olver

THEOREM 6.1. Let Hx{x), H2(x) be smooth functions on a convex domain, which
satisfy (6.2) where M is given by (6.5). Then there exist smooth scalar-valued
functions ak{slt s2), k = 0, . . . , n, such that

//i(x) = tf?(x) + H\(x) + . . . + H?(x),

H2(x) = i^(x) + H\(x) + ...+ Hn
2(x),

where
3k

Hi(x) = A —k ak(7i(t), m(t))

3k

^-gjkak(jt(t),ur(t))

where

m(t) = qn + tqn_x

,=o+ dt

y

0

t2p2 +...

+ t2qn_2->

— 1

+ t"Pn,
- . . . +t

(0,

"qo.

m(t)) y (6.6)

(6.7)

An important consequence of this result is the complete integrability of any
irreducible biHamiltonian system (6.1). To see this, consider first the subsystem
governing the time evolution of the major variables, which are (p0, qn). A
calculation shows that these are

dp0= 3H1= Xn[dan

dt Sq° "''I"' (6.8)
dqn _dH1_ dan

dt dpn dp0

This is just an autonomous two-dimensional (one degree of freedom) Hamil-
tonian system, with Hamiltonian function A n\ an(p0, qn), and is easily integrated
by quadrature, cf. [5]. Thus we can determine the time evolution of (p0, qn)
explicitly. (Curiously, the canonically conjugate variables p0, qo for the standard
symplectic structure determined by Jt are not the canonically conjugate variables
p0, qn for the reduced system (6.8), nor do they coincide with canonically
conjugate variables for the second symplectic structure determined by J2.)

We now show how the time evolution of the minor variables can also be
determined by successively solving a hierarchy of two-dimensional forced linear
Hamiltonian systems in the conjugate pairs pk, qn-k. Consider first px, qn-\- A
straightforward computation using (3.9) shows that their time evolution is
governed by the system

- T - = - T =-A(n-l)!— n\[-—— px +-—I

dt 3qn^ dqn \dpQdqn dq%
dq,,-! dHi ^,dan-i , . (32an , d2an

Substituting the known solution po(t), qn(t) to (6.8) reduces this to a forced,
linear, non-autonomous two-dimensional Hamiltonian system. Integrating this
linear system allows us to determine the time evolution of (p1( qn-\) explicitly. It
is not hard to see that this recursive procedure continues, so at the &th stage, to
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determine the time evolution of {pk, qn-k) we need only solve a time-dependent
two-dimensional linear Hamiltonian system

dt

rB_t .tdlan 32an

dt \dpo dp0oqn

where Gk, Gk are certain explicit functions of (p0, . . . ,pk-i, qn, . . . , qn-k-i),
whose time evolution has thus already been determined. Therefore, we have
explicitly demonstrated that any biHamiltonian system relative to the irreducible,
constant eigenvalue Hamiltonian pair can be integrated by solving a single
two-dimensional (one degree of freedom) autonomous Hamiltonian system, along
with n forced linear, nonautonomous two-dimensional Hamiltonian systems. In
this way, we can call such a biHamiltonian system completely integrable.

7. The issue of smoothness

In case all the eigenvalues of M are real, the change of variables that brings M
to Jordan form is real, so the arguments of Theorems 2.1 and 3.1 go through
without change—all that is needed is for the partial differentiations in each
variable to commute with each other, and for a Poincare lemma to hold; see [8,
chapter II, §6, Th6oreme VI and chapter IX, §3, Theoreme I].

Here is an example, in which H(x) denotes the Heaviside function, which is 0
for x negative, and 1 for x positive. Consider the 2 x 2 real matrix

Let gi(x, y) = yH'(x), where the derivative is taken in the distributional sense.
From formula (2.5-1) in Section 2, the distributional solution to V/i = MVgj is
given by

This can be verified through a straightforward computation using the definition of
derivative of a distribution.

A question of John Ball and Richard James [1], arising in their work on phase
transitions, which was originally mentioned to us by Robert Hardt, contributed to
this work. They asked whether the following result (for B a box or a ball) is true.
The proof now follows from our basic results.

THEOREM 7.1. Let B c R " be a convex open set. Let E and F be measurable
subsets of B. Then the following two statements are equivalent:

(i) for all test functions tp (i.e. C°° functions with compact support in B)

I V<p(x) dx = 0 if and only if \ V<p(x) dx = 0;
•>E JF

(ii) E = F or E = B\F.
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358 Max Jodeit, Jr and Peter J. Olver

Proof. The fact that (ii) implies (i) is trivial. Conversely, if (i) holds, then we
use the following theorem, cf. [3, Theoreme 1, p. 109].

THEOREM 7.2. Let L, L1} . . . , Ln be linear functionate on a vector space V.
Then L e span {L1; . . . , £„} if and only if ker L s ker Lx D . . . fl ker Ln.

This result implies that there exist real constant matrices M, N such that

and VXF

where XE denotes the characteristic function of the set E. The proof of the
theorem follows by checking the various possibilities for M. If M is a multiple of
the identity, it must be ±7, and the result follows. If M has only complex
eigenvalues, then E and F must be either empty or all of B since solutions of the
system must be real-analytic. If M has some real and some complex eigenvalues,
there is a coordinate system in which M has a direct sum decomposition in which
one part has all complex eigenvalues, and the other has all real eigenvalues. In
this case, they must be of the form (2.5-0) in Section 2, since characteristic
functions cannot have non-constant polynomial form. But this gives the desired
result.
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