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The Equivalence Problem and Canonical Forms 
for Quadratic Lagrangians 

PETER J. OLVER* 

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 

The general equivalence and canonical form problems for quadratic variational 
problems under arbitrary linear changes of variable are formulated, and the role of 
classical invariant theory in their general solution is made clear. A complete solution 
to both problems for planar, first order quadratic variational problems is provided, 
including a complete list of canonical forms for the Lagrangians and corresponding 
Euler-Lagrange equations. Algorithmic procedures for determining the equivalence 
class and the explicit canonical form of a given Lagrangian are provided. Applica- 
tions to planar anisotropic elasticity are indicated. 0 1988 Academic PESS, IX. 

1. INTR~DuCTI~N 

The basic problem of the calculus of variations is to determine the 
minima of a variational integral 

Here the integral is over a subdomain P of the space W P of independent 
variables x = (x,, . . . , xp), and the solutions u = f(x) are restricted to be in 
some appropriate space of vector-valued functions from II3 P to R 4, the 
space of dependent variables u = (ul,. . . , ~4). The Lagrungian L[u] is a 
function of x, u, and the derivatives of u, which, for simplicity, we take to 
be smooth in its arguments. The smooth minima of this variational problem 
are known to be solutions of the associated Euler-Lagrange equations 
E(L) = 0. 

Since the process of minimization does not depend on any particular 
coordinate system in use, it makes eminent sense to try to simplify the 
Lagrangian, and hence the associated Euler-Lagrange equations, as much 
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as possible through the introduction of “adapted” coordinates. More 
specifically, consider a change of variables 

x = Q@,a), u = +(z,e), 

where cp and \I, are smooth, invertible functions. (More restrictively, one 
might require that cp only depend on 5, so the new independent variables 
do not depend on the old dependent variables. although this would exclude 
interesting changes of variable like the hodograph transformation of gas 
dynamics.) In the new variables W,li, the variational problem has an 
analogous form 

The minima of the two variational problems 9 and .5? are in one-to-one 
correspondence under the change of variables (1) so from a coordinate-free 
standpoint, they are essentially the same problem. 

Once we allow ourselves the freedom of changing variables in the 
treatment of variational problems, we are immediately confronted with two 
problems of fundamental importance. The first is to determine when two 
variational problems are really the same under some change of variables: 

EQUIVALENCE PROBLEM. Given two Lagrangian functions L[u] and 
@i], when does there exist a change of variables (1) taking L to i? If so, 
how does one explicitly construct the change of variables? 

Perhaps even more important from the point of view of analyzing the 
solutions to a given variational problem is the problem of determining a 
change of variables which has the effect of simplifying the integral as much 
as possible. Thus one is led to the problem of determining lists of simple 
“canonical forms” for variational problems, so that any other variational 
problem of a given type is equivalent to one of these canonical forms. 

CANONICAL FORM PROBLEM. Find a complete list of canonical forms 
for Lagrangians with the property that any other Lagrangian of a given 
type (e.g., first order, planar, etc.) is equivalent to precisely one of the 
canonical forms on the list. 

In the above general formulation, there is a powerful method due to 
Cartan [l] which will algorithmically solve the general equivalence problem. 
However, to date, it has only been implemented in the special cases of 
first-order Lagrangians on the line (p = 1) [2, Section 61 and scalar first- 
order Lagrangians in the plane (p = 2, q = 1) [3]. The extension to the 
truly vector-valued case (p > 1, q > l), which includes the equations of 
nonlinear continuum mechanics, has yet to be done. Once Cartan’s program 
has been implemented in this case, there will, I believe, be profound 
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applications to the study of variational problems in elasticity and con- 
tinuum mechanics. The canonical form problem, however, appears to be 
quite a bit more difficult, and Cartan’s method is not as directly useful. 

In the present paper, we tackle a much more modest version of the above 
problems, namely the equivalence and canonical form problems for homo- 
geneous quadratic Lagrangians. Thus, we make the assumption that the 
Lagrangian L is a quadratic function of just the kth order derivatives of 
the dependent variables u. The corresponding Euler-Lagrange equations 
then form a 2kth order self-adjoint system of linear partial differential 
equations, the special case k = 1 being of especial interest as it includes the 
equations of linear elasticity, cf. [5]. Since we have restricted the Lagrangian 
to be quadratic, we will only allow linear changes of variable 

x=A+Z, u = BB, (2) 
in which A and B are invertible p X p and q X q matrices, respectively. 
We thus have restricted versions of the equivalence problem to determine 
when two quadratic Lagrangians are equivalent under a linear change of 
variables (2), and the closely related problem of finding canonical forms for 
quadratic Lagrangians of a given order. The motivation for the study of 
these problems was the author’s continuing studies on conservation laws in 
linear elasticity [8] and more specifically, attempts to extend the results on 
linear isotropic elasticity to the anisotropic case [9]. It was found that 
without some kind of elementary canonical form, the intervening computa- 
tions for symmetries and conservation laws are just too complex to effec- 
tively analyze in the case of general linearly elastic materials. 

In this paper, the equivalence and canonical form problems for first-order 
planar quadratic Lagrangians ( p = q = 2), which include the case of planar 
anisotropic elasticity, are completely solved. Here the independent variables 
x = (x, y) and the dependent variables u = (u, u) are both in W *, and the 
Lagrangian is a constant-coefficient quadratic function of the four first-order 
derivatives u,, y,,, u,, uu. A preliminary classification into 15 different 
canonical forms is provided by our first main result. 

THEOREM 1. Any planar first-order quadratic Lagrangian is equivalent to 
a “canonical ” kgrangian from precisely one of the following classes: 

(1) -+u; * ZJ; + a(u,z + u,‘) + 2pu,u,, ff, /3 constants, 

(2) +u; * u; f u; + 2BUXUY, B constant, 

(3) *u: f u; + uxuy, 

(4) +u: f u,” + u,u),, 

(5) +u: + U& 

(6) yf - II,’ + u,uy + u&,, 
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(7) 4 - u; + uxux + uyuy, 

(8) +<u; + 0,‘) + 2u,u, + uyuv, 

(9) *u; + uyuy, 

(10) +u; + u&,, 

(11) u,uy + u,u,, 

(12) +-u: f u;, 

(13) +u,’ * u,‘, 

(14) IN;, 

(15) 0. 

In each of these canonical forms, one can take any desired combination of + 
or - signs. Also note that one has the extra freedom of adding in a multiple 
of the basic quadratic null Lagrangian uXu,, - u,,u, without aflecting the 
Euler-Lagrange equations. Consequently, there are Jifteen canonical forms for 
a self-adjoint system of second-order linear Euler-Lagrange equations in the 
plane, each of which corresponds to one of the above canonical Lagrangians. 

Included in this classification is the important case of anisotropic linear 
planar elasticity, so our analysis provides canonical forms for elastic moduli 
under general linear changes of variable. In fact, it is easy to see that of the 
above fifteen canonical forms, only one satisfies the Legendre-Hadamard 
strong ellipticity condition (see Eq. (6) below) required of an elastic 
problem. 

THEOREM 2. Let L[u] be a first-order planar quadratic Lagrangian which 
satisjies the Legendre-Hadamard strong ellipticity condition. Then L is equiu- 
alent to an orthotropic Lagrangian 

24; + u; + a( u; + u:) + 2puxuy, 

where the “moduli” a and fi nre constants, satisfying the inequalities 

a > 0, IpI < a + 1. 

The corresponding Euler-Lagrange equations are thus equivalent to a “gener- 
alized ” system of Nauier ‘s equations 

U xx + auyy + /h,, = 0, /3uxy + au,, + uyv = 0. 

In other words, for planar elasticity, once we allow arbitrary linear 
changes of variable, there are in reality only two independent elastic 
moduli. The name “orthotropic” refers to the fact that such Lagrangians 
are resealed versions of the stored energy function for an orthotropic linear 
elastic medium, meaning that in the given coordinates there are three 
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orthogonal planes of reflectional symmetry, cf. [5, p. 2071. The Lagrangian 
for linear isotropic elasticity is a special case corresponding to the condition 

(Y+p=1. 

In this particular case, we can let 

a = PL/(2P + A), P = (P + W(2P + a 

where p and X are the classical Lame moduli [5, p. 1621. In particular, two 
isotropic Lagrangians determine the same orthotropic Lagrangian if and 
only if their Lame moduli are proportional: X/p = i/c, or, equivalently, 
they have the same value for Poisson’s ratio Y = X/(p + X). In the more 
general anisotropic case, the cu and p play the role of “canonical elastic 
moduli.” Thus, while the general planar elastic problem in a general 
coordinate system has 6 elastic moduli cijk,, Theorem 2 shows that if we 
choose a special adapted coordinate system, there are in reality only MYJ 
independent moduli. The implications of this result for the study of planar 
elasticity, including the determination of symmetries and conservation laws, 
and the direct application of complex variable methods into anisotropic 
elasticity, will be the subject of subsequent papers. 

Although the above fifteen classes of canonical forms for planar 
Lagrangians are all inequivalent, meaning that a Lagrangian from one class 
cannot possibly be equivalent to a Lagrangian from a different class, it is 
still possible for two different Lagrangians within the same class to be 
equivalent. For the case of orthotropic Lagrangians, which is the most 
physically interesting case, the basic result is as follows. 

THEOREM 3. Let L and L be diflerent orthotropic Lagrangians with 
moduli a, p and G, p”, respectively. Then L is equivalent to 2 if and only if 
their moduli are related by one of the following pairs of equations: 

(i) bi = (Y, /? = -p, 

(ii) 6 = l/a, /J = /3/a, 

(iii) E = l/a, /? = --p/a, 

(iv) G = (1 + Q: - /3)/(1 + (Y + fi), fi = (2 - 2cw)/(l + (Y + p), 

(v) & = (1 + (Y - P)/(l + (Y + p>, p = (2a! - 2)/(1 + (11 + /I), 

(vi) & = (1 + (Y + /3)/(1 + (Y - p), a = (2 - 20)/(1 + (Y - /3), 

(vii) & = (1 + (Y + p)/(l + (Y - /3), @ = (20~ - 2)/(1 + (Y - /3). 

Note that transformation (i), (iv) and (v) leave an isotropic Lagrangian 
unchanged, but (ii), (iii), (vi), and (vii) change it into a different orthotropic 
Lagrangian with 

G--=1. 

In particular, excluding isotropic Lagrangians, in the strongly elliptic case, 
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one can always use one of the above transformations to make the moduli cll 
and p satisfy the additional restrictions 

O<(YIl, 0~/3Il-(Y. 

Once one eliminates the possible interrelationships between the canonical 
forms in Theorem 1 and takes into account the possible plus or minus signs, 
there is a detailed list of 60 completely inequivalent canonical forms for 
planar, first-order quadratic Lagrangians. The complete list is given in 
Section 9. 

The methods utilized to prove these theorems come from the powerful 
techniques of classical invariant theory, cf. [4, 6, 71. In essence, classical 
invariant theory is concerned with the direct analogs of the equivalence and 
canonical form problems, but in the case of ordinary polynomials. The 
solution of these problems relies on the introduction of certain functions, 
called invariants or, more generally, covariants, whose values do not change 
under the given linear changes of variable. In the paper [lo], an extension of 
classical invariant theory to the case of symbols of quadratic Lagrangians 
has been developed, and the particular invariants and covariants con- 
structed there are directly applied to the equivalence and canonical form 
problems here. The specifics of the method are presented in Section 3 
below. 

It is a pleasure to thank Bill Shadwick and Niky Kamran for some useful 
discussions on Cartan’s equivalence method. 

2. SYMBOLS 

This paper is concerned with the study of homogeneous kth order 
quadratic variational problems 

where the Lagrangian is a quadratic function of the k th order derivatives of 
the dependent variables u: 

Here u = (ul,..., ~4) are the unknown dependent variables, which are 
functions of the independent variables x = (xi,. . . , xP) defined over some 
domain Q c BP J’. Given 1 I (Y I q, and a k th order multi-index I = 
(i l,“‘, i,), so i, + . - - +i, = k, we let u; = Jlua denote the correspond- 
ing kth order partial derivative of ua: 

q = a,p = akua/ax;l . . . ax). 



232 PETER J. OLVER 

In (3) the coefficients a$ are assumed to be constants, satisfying the 
symmetry condition a$ = a$;,“, and the sum is over all (Y, /3 = I,. . . , q, and 
all k th order multi-indices I and J. 

The Euler-Lagrange equations for such a variational problem are the 
self-adjoint linear system of 2kth order partial differential equations 

fi the sum now over p, I, J, where u~,~ = a&. In most applications, k = 1, 
so we are dealing with a first-order Lagrangian, with second-order 
Euler-Lagrange equations. 

DEFINITION 4. The symbol of the quadratic variational problem (3) is 
the polynomial 

where u = (u’ ,..., ~4) E 8%4, x = (xi ,..., xP) E RP, and, for I = 

0 i, . . . , i,), x* denotes the product monomial ~2x2 . * . xj. 

(Technically speaking, the symbol is defined on the cotangent space at 
each point, so we should be conforming to the usual practice of using letters 
other than the independent and dependent variables x and u for its 
arguments. However, for later puposes it will be convenient to adopt the 
present notation, which should not be a source of confusion.) 

For a first-order variational problem, the symbol is just the polynomial 
appearing in the Legendre-Hadamard condition for strong ellipticity, which 
is the condition that Q be positive definite, 

Q(v) ‘0 whenever x # 0 and u # 0, (6) 

cf. [5, p. 861. From the definition, it appears that the symbol does not 
uniquely determine the Lagrangian. For example, the terms U.J+ and uvuX 
both contribute the identical term xyuu to the symbol; however, these two 
terms differ by a total divergence 

and hence lead to the same Euler-Lagrange equations. It is not hard to 
prove that for quadratic Lagrangians this remark holds in general. 

PROPOSITION 5. Two homogeneous, quadratic Lagrangians have the same 
symbol if and only if they differ by a total divergence. Consequently, two 
quadratic variational problems have the same symbol if and only if they have 
the same Euler-Lagrange equations. 

The symbol of a k th order quadratic Lagrangian is a special case of a 
biform of bidegree (2k, 2) meaning that it is a homogeneous polynomial 
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separately in each of the two variables x and u, of degrees 2k and 2, 
respectively. In particular, for a first-order planar Lagrangian, so p = q = 2, 
k = 1, which includes the case of two-dimensional linear anisotropic elastic- 
ity, we have a symbol which is a “binary biquadratic biform,” or bi- 
quadratic for short. 

Proposition 5 also points out a key difference between quadratic 
Lagrangians and Lagrangians of higher degree, e.g., cubic Lagrangians. It is 
not possible to replace a higher degree Lagrangian by a well-defined biform. 
The net effect is that the equivalence and canonical form problems for 
higher degree Lagrangians are considerably more complicated, and the 
tools of classical invariant theory are not so readily applicable. 

3. CHANGES OF VARIABLE 

In our treatment of the equivalence problem for quadratic Lagrangians, 
we will only allow real linear changes of independent and dependent 
variables, 

x=A.W, u = Be ii, 

where A is a matrix in GL( p, W), the general linear group of real invertible 
p x p matrices, and, similarly, B is in GL( q, BP). The variational problem in 
the new f, fi coordinates is found by substituting A . W for x and B . ii for u 
wherever they occur in the integral. Since we will have cause to drop the 
tildes on the new variables, we will use the “substitutional notation” 

x-A-W, u - B . ii, (7) 

for the above change of variables. To distinguish the two general linear 
groups (especially in the case p = q), we will use the notation G, to denote 
the action of GL(p, BP) on the space W P of independent variables, and, 
correspondingly, G, to denote the action of GL(q, W) on the space W4 of 
dependent variables. (Occasionally, it will be convenient to allow the real 
general linear groups G, and GU to also act on the complex vector spaces 
C P and 4: 4.) In this notation, a change of variables will then correspond to 
an element of the Cartesian product Lie group, 

A = (A, B) E G, x G,. 

When the variational integral is subjected to such a linear change of 
variables, it remains quadratic, but the coefficients u# will, of course, 
change. The explicit formulas for the new coefficients are not difficult to 
write down explicitly, but are not overly helpful when it comes to a detailed 
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analysis, especially from the point of view of solving the fundamental 
equivalence and canonical form problems. As a first step towards address- 
ing these problems, we note that the change of variables easily translates 
into the standard action of G, x G, on the symbol of the variational 
problem. 

LEMMA 6. Let Y be a variational problem with symbol Q(x, u). If d is 
the transformed variational problem under the change of variables (7) induced 
by A = (A, B) E G, X G,, then .5? has symbol 

o(W,ii) = ldet Al. Q(A%, Bti). (8) 

Thus, except for the inessential scaling factor ldet A( coming from the dx 
in the integrand, the symbol is transformed by the obvious action of the 
group G, X G, = GL( p, R) X GL(q, R) on the space of homogeneous 
polynomials (biforms) in the variables x E R P, u E R 4. 

4. INVARIANT THEORY 

Classical invariant theory is concerned with those properties of homoge- 
neous polynomial functions which do not change under linear changes of 
variable. The principal tool is the construction of particular functions, 
known as invariants, which depend on the coefficients of the given homoge- 
neous polynomial or “form” Q(x), x E R P and with the property that they 
are unchanged (up to a factor) by the action of the general linear group 
GL( p, W). A simple example is the discriminant A = ac - b* of a quadratic 
polynomial ax * + 2bxy + cy *. See [4, 6, or 71 for a basic introduction to 
classical invariant theory. In the case of biforms Q(x, u), the only difference 
is the appearance of a second general linear group GL(q, R) corresponding 
to the changes in dependent variable. However, all the standard techniques 
of classical invariant theory readily generalize to analyze this more com- 
plicated problem. In this section, we summarize the basic results from the 
invariant theory of biforms, developed in detail in the paper [lo], which wifl 
be required for our solution to the equivalence and canonical form prob- 
lems. 

Consider a general biform 

Q(x,u> = blJxruJ, 

of bidegree (m, n), defined for x E R P, u E W 4. Under the linear change of 
variables 
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determined by the group element A = (A, B) E G, X G,, the coefficients 
u,~ of Q get transformed into new coefficients a”,J: 

The explicit formulas for the k?,J, while easy to write down, are not very 
.useful. What are useful are particular functions of the coefficients u,~ which 
are essentially unchanged by such a change of variables, i.e., have the same 
formula in terms of the new coefficients i,J. 

DEFINITION 7. An invariant of &weight (g, h) of the biform Q is a 
polynomial function Z(a) = I(. . . ,u,~, . . . ) of the coefficients of Q which, 
up to a determinantal factor, does not change under the action of the group 
G, x G,: 

Z(5) = (det A)‘(det B)hZ(a), A =(A, B)E G, x G, 

A couuriunt of &weight (g, h) of Q is a polynomial function J(a, x, u) 
depending both on the coefficients u,~ and the independent and dependent 
variables xi, zP, which, up to a factor, is similarly unchanged: 

J(:,E,Cr) = (det A)g(det B)hJ(a,x,u), A=(& B)E G,x G,. 

(Note that invariants are special types of covariants.) 

As an immediate application, note that the vanishing of a covariant for a 
particular biform Q is independent of any particular choice of coordinates, 
and thus has intrinsic geometrical meaning. For example, the discriminant 
of a quadratic polynomial vanishes if and only if the polynomial is a perfect 
square. Similarly, for a positive or negative definite covariant of euen 
biweight, meaning that both g and h are even integers, the sign of the 
covariant is also unaffected by real changes of variables and has intrinsic 
geometrical meaning. Again, the discriminant of a quadratic polynomial is 
positive if and only if the polynomial has complex conjugate roots, which 
will be the case in any real coordinate system. Note also that the extra 
determinantal factor in the transformation rule (8) for symbols of quadratic 
Lagrangians does not alter the definition of properties of covariants. 

For the purposes of implementing our solution to the planar equivalence 
problem, we present some of the basic covariants associated with a first-order 
planar quadratic Lagrangian L(x,u), where x = (x,, x2) = (x, y) and u = 
(u’, u*) = (u, u) are both in R*. After taking into account the ambiguity 
stemming from basic null Largangian u,uY - uBuX, we see that we can take 
L to be of the form 

(9) 
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where the coefficients ~$4 are constant. (They are closely related to, in fact 
linear combinations of, the components cijkr of the elasticity tensor in the 
elastic case.) In this case, the symbol is a biquadratic polynomial Q(x, u): 

Q(x,u) = a;;x*u* + a;;xyu* + u;;y*u* + u;fx*uu + a;;xyuu 

+u;2,y*uu + u;;x*u* + u;;xyu* + u;~y*u”. (10) 

As Q is a quadratic polynomial in the x-variables, the x-discriminunt 

A,(u) = :{ Q,, . Qrv - Qzy} 

will clearly be a covariant of biweight (2,0). (The subscripts on Q indicate 
partial derivatives.) The vanishing of A,(u) at a particular u0 indicates that 
at u0 the quadratic polynomial Q(x, us) is a perfect square: 

Q(x,u,) = f(bx + cy)*. 

Similarly, the discriminant 

A,(x) = $(Q,, . Q,, - Qiu} 

of Q with respect to the variables u is also a covariant, of biweight (0,2), 
with a similar interpretation. There is also a mixed covariant 

C2k u) = QxuQyv - QxoQ,w 

which is of biweight (1, l), and is itself a biquadratic polynomial. 
The simplest invariant of the symbol Q is the quadratic expression 

I 2 = 8&u;; - 4&z;; + 8&u;; - 4u;:u;; + (a;;)*. 

It has even biweight (2,2). There is also an important cubic invariant 

z 
3 

= a11u12a22 
11 12 22 - ai:u:‘,uf,” - u;;u;:ug + ll+l;;u;; 

+ ull u12u22 
22 11 12 - u::u;;u,:2, 

of biweight (3,3). Both of these will be of use in our classification program. 
The composition of covariants provides an easy method to compute 

further covariants of the biquadratic form Q. For example, one can 
construct the discriminant of the quartic from A,, or, alternatively, the 
discriminant of A,, both of which are invariants of degree 12. Remarkably, 
these two invariants are exactly the same! In particular, this implies that if 
A, has a repeated root, the same is true of A,. In fact, more than this is 
true: the cross ratio of the four roots of A, is the same as that of A,,. See 
[lo] for the proofs of these results, as well as more information on the 
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construction of invariants and covariants of biforms using a generalization 
of the symbolic method of Aronhold. 

In this section we begin the determination of the canonical forms for a 
first-order quadratic Lagrangian (9) in two independent and two dependent 
variables. As above, the standard action of GL(2, R) on the space of 
independent variables x = (x, y) E R* is denoted by G,, while G, denotes 
the action of GL(2, R) on the @ace of dependent variables u = (u, u) E R *. 
Occasionally, we will extend the actions of G, and GU to the complex space 
c*. 

The symbol for such a variational problem will be a biquadratic function 
Q(x, u) of x and u, cf. (10). We begin by distinguishing certain particular 
types of symbols corresponding to special types of Lagrangians. 

DEFINITION 8. The symbol Q(x, u) is called factorizable if it can be 
written as a product Q(x, u) = S(x) . T(u) of polynomials of x and u alone. 

Notice that factorizability is independent of the particular coordinates 
used. Of the 15 canonical forms listed in Theorem 1, cases 12-15 are 
factorizable, as well as case 1 when /3 = 0, (Y = + 1, and there are an even 
number (0, 2, or 4) of minus signs in the Lagrangian. 

The determination of canonical forms for factorizable symbols obviously 
reduces to the determination of canonical forms for homogeneous poly- 
nomials over W, a problem which has been dealt with in the classical 
literature, cf. [6, p. 2521. For real quadratic polynomials in x, there are six 
inequivalent canonical forms: 

x2 + y*, -x2 - y*, x2 -y*, x2, -x*, 0, 

and every other quadratic polynomial can be reduced to exactly one of 
these six by a transformation in G, = GL(2, R). Clearly, then, if Q is 
factorizable, we can separately reduce each of its two factors S and T to 
canonical form. This proves that the above 5 cases constitute the complete 
set of inequivalent canonical forms for factorizable biquadratic symbols. 

A wider class of symbols is provided by the “semi-diagonal symbols”: 

DEFINITION 9. The symbol Q(x, u) is called semi-diagonal if it has the 
form 

Q = px*u* + qy*u* + 2rxyuv + sx*v* + ty*v*, 01) 
where p, q, r, S, t are real constants. (The factor of 2 is just introduced for 
convenience.) 
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Most, but not all, biquadratic symbols are equivalent to a semi-diagonal 
symbol. For instance, our above analysis of factorizable symbols proves 
that every factorizable symbol is equivalent to a semi-diagonal symbol. Of 
the 15 canonical symbols listed in Theorem 1, cases l-5 and the factoriz- 
able cases 12-15 are semi-diagonal. The remaining “special” canonical 
forms are not equivalent to a semi-diagonal symbol. 

We begin our determination of canonical forms with a complete analysis 
of semi-diagonal symbols. 

LEMMA 10. Suppose the symbol for the quadratic Lagrangian is in the 
semi-diagonal form (11). Then it is equivalent to one of the canonical forms 
l-5 or 12-15 of Theorem 1. 

Proof. First note that if all four coefficients p = q = s = t = 0 vanish, 
or if two or three vanish and also pt = qs = 0 and r = 0, then Q is 
factorizable. These cases have been already analyzed, so we concentrate on 
the other possibilities. 

If all of the four coefficients, p, q, s, t are non-zero, we just rescale x, y 
and u: 

x +-+ (Iq/Pstl)“4x, Y -v/m, u +B ( Ist/pql)1’4U. 

This has the effect of changing Q into the symbol 

Q = kx2u2 + ay2u2 + 2pxyuu f ax2v2 f y2u2, 

where 

a = ~kid9hhZT and P=r/fi- 

This is the symbol of the canonical Lagrangian of type 1 as listed in 
Theorem 1. 

If precisely one of the coefficients p, q, s, t vanishes, then by possibly 
interchanging x and y, or u and u, we can assume without loss of 
generality that s = 0. A similar resealing argument shows that such a 
symbol is equivalent to one of the form 

Q = fx2u2 + y2u2 + 2jIxyuu & y2u2, 

which corresponds to a Lagrangian of type 2. 
If precisely two of the coefficients p, q, s, t vanish, then there are various 

subcases. If s = t = 0, then we can rescale to a symbol of type 3, while if 
p = q = 0 we interchange u and u before resealing to also get a symbol of 
type 3. If 4 = t = 0, or if p = s = 0, we similarly have a symbol of type 4. 
The only other cases not covered are when q = 0 = s, where a simple 
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resealing makes Q of type 1 with (Y = 0, and when p = 0 = t, where we 
interchange x and y before resealing to also reduce to type 1. 

If three or four of the coefficients p, q, s, t vanish, then the symbol is 
automatically factorizable, and so has been already analyzed. It is worth 
remarking that the special factorizable case p = q = s = t = 0, r f 0, 
corresponding to the Lagrangian ~TU,+ is changed into a Lagrangian of 
type 1 by the special change of variables 

b,Y)++-.Y,x+d, (vJ”(U-->U+U). 02) 

(Here, and below, we will consistently drop the tildes when we make a 
change of variables.) This particular transformation occurs many times in 
our classification procedure. 

6. ROOT STRUCTURE 

At the moment, we are not able to determine whether or not two different 
canonical forms are really the same under some as yet undetermined change 
of variables. There are several tools at our disposal for resolving this 
problem, including the invariants Z, and I, constructed in Section 4. The 
most powerful tool, however, is the structure of the roots of the two 
discriminants A, and AU. Note that the action of G, or G, cannot change 
the basic multiplicities or geometric configuration of these roots. For 
example, if AX has two double roots in one coordinate system, then it 
always has two double roots; if two of the roots form a complex conjugate 
pair, then they are complex conjugates in every coordinate system. Thus the 
multiplicity of the roots of the discriminants is an easy way to distinguish 
inequivalent symbols. We will use the notation 1’2j . . . for a polynomial 
with i simple roots, j double roots, etc. (including the roots at 00). For 
example, 1*2 denotes a quartic polynomial with two simple roots and one 
double root, while 4 denotes a quartic with a single quadruple root. The 
quartic which is identically zero will be denoted by the symbol 00 (indicat- 
ing a root of “infinite multiplicity”). It is then a simple matter to see that, 
by possibly interchanging the variables x and y or u and u, any semi-diag- 
onal symbol can be cast into one of the 14 forms listed in Table I. 

Comparing this table with the canonical Lagrangians in Theorem 1, we 
see that under resealing, cases l-4 correspond to Lagrangians of type 1. 
Cases 5-6 correspond to type 2, while 7, 8, 11 correspond to types 3, 4, 5, 
respectively. The remaining cases are all factorizable. 

From the structure of the roots of the discriminants, the only cases which 
have any chance of being equivalent are 2, 3, 11, and 13, or 4, 12, and 14. 
Clearly case 14, where Q is identically 0, is distinct from 4 and 12. 
Furthermore, case 4 has a nonzero invariant I,, whereas Z, vanishes in case 
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TABLE I 

Case Conditions 

1 p> 4, s, t f 0, (qs + pr - ry f 4pqsr 
2 p, q, s, 1 f 0, (qs + pt - r2)2 = 4pqst 
3 p,r+o, q=s=o, r2 #pt 
4 p,t#O, q=s=o, r2 = pt 
5 p,s,t+o, q=o, r2 #pt 
6 p, q s, t + 0, = 0, r2 =pt 
7 P74’0, s=t=o, r#O 
8 p,s f 0, q=r=o, r#O 
9 p,q+o, s=r=O 

+ 0, q=t=o: 
r=O 

10 p,s r=O 
11 p + 0, q=s=t=o, r#O 
12 p + 0, q=s=t=O, r=O 

13 p=q=s=l=Q r+O 
14 p=q=s=t=l-J, r=O 

A. 

14 

; 

cc 
122 
4 
122 
22 
4 

2y 

2y 
00 

;: 
22 

72 
4 
22 
122 

4” 
22 

27 
co 

12, so these cannot be equivalent. Case 13 can be reduced to a version of 
case 2 by the previously indicated change of variables (12). Similarly, if we 
are in case 3 with p and t of the same sign, we can rescale to make them 
equal and then use the same change of variables to change it into a version 
of Case 2. Except for these, all the other cases are inequivalent. (This will 
follow from our more sophisticated classification in Section 9.) 

7. GENERAL CANONICAL FORMS 

The determination of canonical forms for more general biquadratic 
symbols rests on the properties of the roots of either one of the discrimi- 
nants of Q. Clearly in the present situation x and u play interchangeable 
roles, so it does not really matter which discriminant is the primary object 
of interest. For definiteness we select AX, which is a quartic polynomial in 
u. Since A,(u) is a covariant, it is unaffected (except for a determinantal 
factor) by transformations A in G,. In other words, ‘f we make the change 
of variables u ++ ti = Au, whereby Q changes into Q, then A, transforms 
into A,, where 

h,(i) = (det A)*A,(&). 

In particular, the roots of A, get transformed according to the projective 
action of G, on C via linear fractional transformations: 

z++z+b)/(cz+d), A= ; f; EG,=GL(~,R). 
( 1 
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(Here we are viewing u = (u, u) as projective coordinates for the roots z, so 
we can identify z with the ratio u/u, with u = 0 corresponding to z = cc.) 

We label the four (complex) roots of AX as zi, zz, zs, z4, with corre- 
sponding representative points ui, u2, uj, u4, in C *. (Some of the roots can 
coincide; also the precise choice of projective coordinates uj = (uj, uj) to 
represent a given zj = uj/uj is unimportant.) Given a root zj of A,, we note 
that, by the basic property of the discriminant of a quadratic polynomial, 
the complex quadratic polynomial Qj(x) = Q(x,uj) must be a perfect 
square: 

Q~(x, Y) = +(bjX + CjY)‘. 

There are several different cases to analyze, depending on whether A, has 
only real roots or has at least one pair of complex conjugate roots. We 
begin by analyzing the latter. 

Case I. Assume that A,(u) has a pair of complex conjugate roots z1 
and z2 = Zi. In this case, since Q is real, the corresponding polynomials Q, 
and Q2 are complex conjugates 

Since the action of G, on the corn lex upper half plane is transitive, we can 
move the two roots to z1 = i = P- - 1, z2 = -i, by a suitable element of GU. 

Case Ia. The two perfect squares Q, and Q, are genuinely complex 
polynomials. In other words, 

Q,(x, y) = -4[(u + ib)x + (c + id)y]*, 

where a + ib and c + id are not real multiples of each other, and Q2 is the 
complex conjugate square. By replacing (x, y) by (ax + cy, bx + dy), we 
can transform Q, into the elementary square -4(x + iy)* and hence Q2 to 
its conjugate -4(x - iy)*. Thus, 

Q = (x - iy)*( u - iu)* 

+ { p(x - ljg’ + a(x - iy)(x + iy) + p(x + iy)‘) 

X(24 - iu)(U + iv) + (x + iy)*(u + iu)*, 

where p is complex and (I is real. Now, simultaneously rotating (x, y) 
through an angle 8 and (u, u) through angle - 8 (which is the same as 
multiplying x + iy by eie and u + iu by eeie) leaves Q in the same form, 
has the only effect of multiplying p by ezie. Thus we can choose the angle 8 
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so that p is real, and Q takes the semi-diagonal form (ll), where 

p=2p+a+2, q= -2p+a-2, r= -8, 

s=2p+a-2 t = -2p + u + 2. 

Thus we are in the case covered by Lemma 10, and we know the canonical 
forms. 

Case Ib. The two perfect squares Q, and Q2 are complex conjugate 
multiples of the same real square. In other words, 

Q, = 2( a + ib)*( cx + dy)*, Q2 = 2( a - ib)*( cx + dy)*, 

where a, b, c, d are real. If both Q, and Q2 are zero, then Q is factorizable. 
Otherwise, we can transform them into multiples of the elementary square 
x2 by an element of G,. Thus Q has the form 

Q = $x2( (a - ib)*( u - iv)* + (a + ib)*( u + iv)“) 

+ (fix* + t3xy + fy’)( u - iv)( 2.4 + iv), 

for certain real constants 6, a^, 7^. If we replace (u, v) by (au - bv, bu + au), 
then the symbol becomes 

Q = $x*{(u - iv)* + (U + iv)2) 

+ (px* + axy + ~y*)(u - iv)(u + iv) 

= X’(U’ - v’) + (px2 + uxy + Ty*)(U* + z?), 

where p, u, r are just equal to 6, o^,? divided by u* + b*. Keeping x fixed, 
we can translate and scale y so as to arrange that the polynomial px* + 
axy + ry * takes one of two forms. If r # 0, or r = u = 0, then we can 
arrange for the coefficient u of the xy term to vanish, and hence the symbol 
to be semi-diagonal. In the other case r = 0, u # 0, we can translate and 
scale to make it equal to xy, and so the symbol takes the form 

Q = x’(u’ - v”) + xy(u* + v’). 

This is not in semi-diagonal form, nor can it be changed into semi-diagonal 
form. Indeed, the discriminants A, and A, of this particular symbol have 
two double complex roots and a double and two simple real roots respec- 
tively (i.e., of types 2* and 1*2 in our earlier notation). This could coincide 
with case 8 in the semi-diagonal classification of Table I, except for the fact 
that for case 8, A, has two double real roots, and so cannot be changed 
into the current A,. Thus we have our first example of a genuinely 
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non-semi-diagonal symbol. This case corresponds to a canonical Lagrangian 
of type 6 in the list of Theorem 1. 

Case II. In this case, the discriminant A, has three distinct real roots, 
21, z2, z3. (The fourth root z4 may or may not coincide with one of the 
other three.) We can then use a transformation in G, to place the roots at 
Zl = 0, z2= 00, z3 = 1. There are then four distinct subcases, depending 
on the relative forms of the corresponding perfect squares Q,, Q2, Q3. 

Case IIa. Assume further that no two of the corresponding three 
perfect squares Q,, Q2, and Q3 are scalar multiples of each other, i.e., 
Q, # XQ2, etc. (In particular, no Q,. vanishes identically.) In this case, at 
least two of the squares Q,, Q2, and Q, have the same sign, which we can 
take to be Q, and Q2, and use a transformation in G, to make Q, = &x2 
and Q2 = fy2 (with the same sign). Therefore 

Q = f [x2u2 + y2u2] + (px2 + axy + ~y*)uu 

for certain real constants p, u, r. If p and 7 are both positive, both zero, or 
both negative, then we can rescale 

(x9 Y) ++ GN Iv)? (24, u) b--b (A-lu, p-b) 

to make r = p. We then use the change of variables (12) to change Q into 
the semi-diagonal form (ll), with 

p=2p+a&2, q= -2p+a+2, r = 8, 

s=2p+aT2, t= -2p+uT2. 

The other cases when p and r have opposite signs, or one or the other 
vanishes, are a bit more tricky. For definiteness, assume Q, and Q2 are 
both positive (the opposite case being treated analogously), so 

Q = x2u2 + y2u2 + (px2 + uxy + T,Y~)UU. (13) 

At the third root z3 = 1, i.e., (u,, u3) = (1, l), the perfect square is 

Q,(x, y) = (p + 1)x2 + uxy + (r + l)y2 = +(bx + ~y)~, 

where neither b nor c is 0 (otherwise Q, would be a multiple of either Q, or 
Q2). The only way for p and 7 to be of opposite signs or zero is when Q3 is 
also a positive square. There are two possibilities. If p 2 0, 7 < 0, then 
lb1 2 1, lcl < 1. We perform the change of variables 

(x, r) - (x, c-lb - bx)), (u, u) I+ (1 - 24, u). (14 
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Then net effect is to permute the roots zi, z2, z3 into 1, cc,O, respectively, 
and to take the corresponding perfect squares Q,, Q2, Q3 to the new forms 
(ix + Zy)‘, x2, y2, where b = -b/c, c” = l/c. Thus Q has the same form 
(13), with a new p, 6,7”. Note also that if lb1 2 1, ICI c 1, then the 
corresponding inequalities are not both true for 6 and ?. Therefore fi and 7” 
necessarily have the same sign, and we are back to the previous case. 
Similarly, in the case p < 0, 7 2 0, so lb1 < 1, lcl 2 1, we perform the same 
change of variables (14) to make p, 7 the same sign. Thus all versions of 
this case are equivalent to semi-diagonal symbols. 

Case IIb. Suppose Q, and Q2 are nonzero multiples of each other, 
but Q3 is a different nonzero square. Then we can arrange that Q, = +x2, 
Q2 = +u2x2, and Q3 = ky2, so that 

Q = fx2u2 & 02x2u2 + (-(kl + e2)x2 fy*}~u. 

Note that we can rescale u to make 

Q = fx2u2 f x2u2 + (px2 + ~y~)uu, 

for certain constants p, r and where 7 # 0. There are then two subcases: 

Case IIbl. If Q, and Q2 have the same sign, then 

Q = f.x2(u2 + u’) + (px2 + TJJ*)UU. 

Now, if we replace (u, u) by (u + u, u - u), then u2 + u2 becomes 2(u2 - 
u2), while uu becomes u2 - u2, so Q is placed in semi-diagonal form. 

Case IIb2. If Q, and Q2 have opposite signs, then 

Q = fx2(u2 - u”) + (px2 + 7y2)uu. 

In this case. the u-discriminant is 

A,(x) = (px2 + 7y2)2 + 4x4, 

which only has complex roots. If we interchange the roles of (x, y) and 
(u, u), we thus have a symbol of the sort discussed in Case I. Therefore, we 
can employ our earlier reasoning to conclude that the only non-semi-diago- 
nal form which Q could take is the analog of Case Ib3, namely 

Q = u’(x’ - y’) + UU(X’ + y’). (15) 

This corresponds to a canonical Lagrangian of type 7. 

Case 11~. Suppose Q2 is identically 0, and Qi and Q3 are not scalar 
multiples of each other. Thus we can make Q, = f x2, and Q, = + y2, 
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so that 

Q = fx*(u* - uu) + y*uu. 

If the two signs are the same, then we make the change of variables 

(x,y)++--y,x+y), (v)“(w+:u) 

to place Q into semi-diagonal form. If, on the other hand, we have opposite 
signs, then we use the change of variables 

(u, u) - (U’$d - u) 

to change Q to 

Q = ~u’(x’ - y’) -t uu(x2 + y’), 

which is easily resealed to the symbol (15). 

Case Ild. If Q,, Q,, and Q3 are all multiples of the same perfect 
square, then Q is factorizable. 

Case III, In this case, the discriminant A, has precisely two distinct 
real roots, which we can assume to be at z1 = 0, z2 = cc. 

Case IIIa. Assume that the two corresponding polynomials Q, and 
Q2 are not scalar multiples of each other. Then, using a transformation in 
G,, we can arrange that 

Q = +x*u* + (px* + uxy + ~y*)uu + y*u* 06) 

for certain constants p, u, 7. There are two possibilities: 

Case IIIal. Both roots of A, are double roots, so A, is a multiple of 
u2. Computing A, directly from (16) we conclude that this is possible only 
if p = T = 0, and so Q is semi-diagonal. 

Case IIIa2. The root zi = 0 is a triple root and the root z2 = cc is a 
simple root. In this case A, is a multiple of u3, which implies that the two 
+ signs in (16) are the same, p = 0 and (I = k2, the sign of u being the 
same as that of the terms x*u* and y *u* in Q. Furthermore, if r f 0 
(otherwise Q is semi-diagonal), we can rescale y and u to convert 7 to 1. 
There is still the freedom of replacing x by -x, so we conclude that there 
are just two possible forms 

Q = f (x*u* + y2u2) + (2xy + y*) uu. 

These are not equivalent to a semi-diagonal symbol, since both the discrimi- 
nants have root structure 13 (i.e., one simple and one triple root) which 
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does not appear among the 14 semi-diagonal forms. These correspond to 
canonical Lagrangians of type 8. 

Case IIIb. Assume that the two polynomials Q, and Q2 are nonzero 
scalar multiples of each other, so, transforming by G,, we have 

Q = +x*u* * x2u2 + (px* + axy + ~y~)uu. 

Note that we cannot have a triple root for Ax in this case; thus A, must be 
a multiple of u’, and this implies that r = 0. If (J f 0, we can replace y by 
px + ay to place Q into semi-diagonal form. If u = 0, then Q is factoriz- 
able. 

Case 111~. If only Q, is nonzero, then 

Q = +x2u2 + { px2 + uxy + 7y2}uu. 

If A, has two double roots, then r = 0, and, as in Case IIIb, we either get a 
semi-diagonal or a factorizable symbol. If A, has a triple root, then 
4pr = a*, and so the polynomial in brackets is a perfect square. Thus 

Q = +x2u2 k (px + v~)~uu. 

If v = 0, we are back to a factorizable symbol; otherwise we can replace y 
by ~LX + vy, and, possibly, u by -u to give Q the elementary form 

Q = kx2u2 + y2uu. 

This is not a semi-diagonal case, since the discriminants A, and AU have 
root multiplicities 13 and 4, respectively, which does not appear in our table 
of semi-diagonal symbols. These correspond to canonical Lagrangians of 
type 9. 

Case IIId. If both Q, and Q2 vanish identically, then Q is factoriz- 
able. 

Case IV. Finally, we look at the remaining case when the discriminant 
A, has a single quadruple root, which we place at zi = cc. 

Case IVa. The corresponding perfect square Q, is not identically 
zero, so we arrange that it be +x 2. Then the symbol takes the form 

Q = +{x2u2 + (px2 + uxy + 7y2)uu + (Ax2 + pxy + vy2)u2}. 

Since the discriminant A, must be a multiple of u4, we find that 

7 = 0, u2 = 4v > up = 2pv, 

If we have u # 0, then 

Q = +(x2u2 + x(px + uy)uu + [Xx* + $(px + u~)~] u’), 



QUADRATIC LAGRANGIANS 247 

where x = h - $p’. Thus we can replace y by px + ay to convert Q into 
semi-diagonal form. 

If, on the other hand, u = 0, then Y = 0 as well, and 

Q = + { x2u2 + px*uu + (Xx* + pxy)u* > . 

If p = 0, then Q is factorizable. Otherwise, we replace y by hx + py and 
rescale to make Q take either the form 

Q= ~{x*u*+x*uu+x~u*}, 

(if p # 0), or the form 

Q = fx2u2 + xyu*, 

(if p = 0). The first case can be reduced to the second by the transformation 

(x, y) I+ (x, :x + y), (4 u) + (u - :u, u). 
This is not equivalent to a semi-diagonal symbol, as the discriminants A, 
and A, have root multiplicities 4 and 13, respectively. Note that this case 
corresponds to canonical Lagrangians of type 10, and is the counterpart of 
Case IIIc.) 

Case IVb. If the perfect square Q, is identically zero, then the 
symbol takes the form 

Q = (px* + axy + ~y*)uu + (hx* + pxy + vy2)u2. 

The condition that the discriminant A, be a multiple of u4 implies that 
a* = 4~7, so the coefficient of uu in Q is a perfect square. If it vanishes 
identically, then Q is factorizable; otherwise, we can transform x, y (and 
possibly change the sign of U) so that 

Q = x*uu + @x2 + fixy + v”y2)u2. 

Moreover, for Ax be a multiple of u4, we necessarily have F = 0. Provided 
fi # 0 (otherwise we are back in a factorizable case) we can replace y by 
ix + py to put Q into the simplified form 

Q = x*uu + xyu*. 

In this case, both discriminants A, and AU have root multiplicities 4. 
However, this is not equivalent to semi-diagonal case 6 since the invariant 
I, vanishes here, but is nonvanishing in the semi-diagonal case. This case 
corresponds to canonical Lagrangians of type 11. 
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This completes the classification. Summarizing, we find that besides the 
fourteen types of semi-diagonal symbols, we have the following additional 
canonical forms: 

Case Symbol AX A” 

15. y2(u2 - “2) + xy(u2 + u2) 22 122 
16. U*(X* - y2) + f&(x2 i- y2) 122 22 
17. *(x*24* + y*v*) + (2xy + y2)uu 13 13 
18. +x*u* + y*uv 13 4 
19. +x=u* + xyv* 4 13 
20. x*uu + xyu* 4 4 

The reader may be struck by the asymmetry of case 17, and may wonder 
why there is not another case corresponding to an interchange of the 
variables (x, r) and (u, u). It turns out that the resulting symbol is 
equivalent to the original one. For instance, the symbol 

x2u2 + (2xy + y2)uu + y2u2 

is transformed into the “interchanged” symbol 

x224* + (2uu + u2)xy + y2u2 

by the change of variables 

(x, v) ++ (ix + Y, -x), (u, u) * (-0, 24 + au), 

as the reader can verify. A similar result holds for the case with a minus 
sign. 

8. EQUIVALENCE OF ORTHOTROPIC SYMBOLS 

We have now determined the basic 15 classes of canonical forms for 
first-order planar quadratic Lagrangians, and shown that no two canonical 
forms from different equivalence classes can possibly be equivalent under a 
linear change of variables. There remains the possibility that two different 
canonical forms within the same equivalence class might be equivalent. For 
most equivalence classes, there is just a finite number of canonical forms 
corresponding to different choices of plus or minus signs, and it is not 
difficult to see that all such canonical forms are certainly inequivalent with 
respect to real changes of variables. That leaves only canonical forms of 
type 1, with three sign choices and two arbitrary constants, and type 2, with 
three sign choices and one arbitrary constant, to be investigated. 
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For simplicity, we write out the detailed solution to the problem of 
equivalence of canonical forms only for the case of orthotropic Lagrangians, 
meaning those of type 1 with all plus signs: 

u,’ + u; + a( u; + ux’) + 2pu,u,. (17) 

The methods used for determining the possible equivalences of orthotropic 
Lagrangians will readily extend to the other cases, but, as our primary 
interest is in the elastic case, we leave the details of these cases to the 
reader. 

The symbol of an orthotropic Lagrangian is the biquadratic polynomial 

Q(x,u) = x*22 + ayv + 2pxyuu + ffx*u* -k y*u*. 

We assume to begin with that (Y + 0. (In terms of the canonical form for 
semi-diagonal symbols, this corresponds to not being in case 4. It was 
shown at the end of Section 6 how to convert case 4 to case 2, so we are not 
losing any generality by our assumption.) The x-discriminant for Q is the 
quartic polynomial 

where 

A,(u) = (Y(u~ + 2au2u2 + u4), 

2a = ( a2 + 1 - /32)/a. 

One important remark is that although the parameter a plays a fundamen- 
tal role in the structure of orthotropic symbols, it is not an invariant of the 
symbol! Note also that A,(x) has the exact same form with (x, y) replacing 
(u, u); in particular, the two discriminants A, and A, have the same roots. 

The quadratic formula gives the explicit formula for the roots of A,, 
which depend only on the parameter u. There are five geometrically distinct 
configurations that these roots can have: 

(1) u > 1 roots all on the imaginary axis at fri, +~‘i, 7 > 1. 

(2) u = 1 two double roots at +i. 

(3) Ial < 1 roots all on the unit circle at -I exp( + id), 0 < 8 -C $. 

(4) u = - 1 two double roots at + 1. 
(5) u < - 1 roots all on the real axis at 3-7, &7-l, 7 > 1. 

Note that case 2 includes the isotropic Lagrangians, i.e., (Y + fl = 1, as well 
as the complementary, but equivalent case OL - p = 1 mentioned in Theo- 
rem 3. 

Suppose to begin with that a! > 0. The case cx < 0 will be dealt with 
subsequently. We can also assume without loss of generality that /3 L 0 
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(otherwise replace x by -x). In particular, Q satisfies the 
Legendre-Hadamard strong ellipticity condition (6) if and only if we are in 
cases 1-3, i.e., u > - 1. 

We begin the analysis by looking at case 1, where all the roots are on the 
imaginary axis. Given r > 1, let S, denote the set of four points 

S, = { 7i, --7i, T-9, - 7-li). 

LEMMA 11. Let GL(2, R) act on the complex plane via linear fractional 
transformations. Given r, T ’ > 1, a transformation A E GL(2, IR) maps the 
set S, to the set S,, if and only if T = r’ and A is a multiple of one of the four 
matrices (i i), (i 01), (y i), or (T -i). 

Thus, the only changes of variable which can preserve the orthotropic 
root structure of Q for a given u > 1 are interchanges of x and y or of u 
and v, and resealings. If we are also requiring the symbol to be in 
orthotropic form, these are only three possibilities: We can change the sign 
of one of the variables x, y, U, or v; this changes /? into -8. We can 
interchange x and y, and rescale (x, y) * (y/ 6, x/ G); this changes (Y 
into l/a and p into P/CX Or we can compose these two transformations, 
changing (Y into l/a and p into -/3/a. All three of these transformations 
leave u unchanged. These correspond to transformations (i)-(m) in Theo- 
rem 3. 

Next consider case 3, in which lu( < 1, and the roots lie on the unit circle. 
The linear fractional transformation determined by the matrix : Pi will 

( 1 
map the unit circle onto the imaginary axis, and so onto a root structure as 
in case 1. This can be realized in the x and u variables by our familiar 
transformation 

tw)-tx-Y,x+Y), tv$-+t~--u,~+v). (18) 

This has the net effect of changing Q into the symbol 

Q = (2 + 2ff + 2p)(xV + y’v’) 

+ (2 + 2a - 2/3)( y 2u2 + x2v2) + (8 - 8a)xyuv. 

Note that under our assumptions, 1 + (Y + j? > 0, so simple resealing will 
convert Q into a orthotropic symbol, with moduli 

fs = (1 + LY - /I)/(1 + lY + p), p” = (2 - 2a)/(l + a + p). 

A simple computation shows that the corresponding parameter ~7 for the 
new orthotropic symbol is related to the original u by the transformation 

a” = -(u - 3)/(u + l), 
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which has the desired effect of changing a symbol of case 3 into one of case 
1. Thus we have reconstructed transformation (iv) of Theorem 3. Once we 
are in case 1, the only possible further transformations preserving the 
orthotropic form of the Lagrangian are the above ones, and this leads to the 
remaining transformations (v)-(vii). 

If we are in the orthotropic case 2, then the transformation (18) has no 
effect. (Indeed, when coupled with the resealing, it is just one of an entire 
one-parameter family of simultaneous rotations in x and u, which preserve 
isotropic Lagrangians. This extra degree of symmetry is another feature that 
distinguishes the isotropic case from the more general orthotropic cases). If 
we are in case 4, then 1 + ar - /3 = 0, in which case (18) produces an 
orthotropic Lagrangian with 01 = 0. 

If we are in case 5, with ar > 0, p 2 0, and u < - 1, then 1 + (Y - p < 0, 
so the effect of (18) and the resealing is the produce an orthotropic 
Lagrangian with 6 < 0, and a” < -1. Conversely, if we begin with an 
orthotropic Lagrangian with (Y < 0, CJ < - 1, then we can invert the trans- 
formation to produce an equivalent orthotropic Lagrangian with (Y > 0, 
u < -1. If, on the other hand, OL < 0, but u > -1, then we can never 
produce an orthotropic Lagrangian with (Y > 0, although we still have the 
same correspondence between the u > 1 and - 1 < u < 1 cases. 

The upshot is that for an orthotropic Lagrangian (17) for u # - 1 there 
are five different types of canonical forms, namely 

(i) 0 < (Y d 1,O 5 p < 1 - (Y giving u > 1, 

(ii) /3 > 1, 0 < (Y < fi - 1, giving u < -1, 

(iii) (Y < 0, Ia + 1) < /.I < 1 - (Y, giving - 1 < u < 1, 

(iv) (Y > 0, /3 2 0, (Y + fi = 1, giving u = 1, 

(v) a < 0, p 2 0, a + p = 1, giving u = 1, 

(vi) (Y = 0, /? 2 0, giving u = -1, 

(vii) the special form 2xu, 

with the property that every other orthotropic Lagrangian is equivalent to 
precisely one of these forms. (In particular, no two of the orthotropic 
Lagrangians on this reduced list are equivalent.) 

Similar types of reasoning can be applied to the other types of canonical 
forms, but we leave the details to the reader. 

9. THE COMPLETE LIST OF CANONICAL FORMS 

We are now able to give a complete list of inequivalent canonical forms 
for first-order planar quadratic Lagrangians (Table II) which will take care 
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TABLE II 

Tw canonicaJ form Restrictions Root structure 

Ia. 
Ib. 
IC. 

Id. 
IIa. 
IIb. 
IIC. 
IId. 

IIIa. 
IIIb. 
IIIC. 
IIId. 

IV. 
Va. 
vb. 
VI. 

x4 + 2ox2y* + y4, 

-(x4 + 2ox*y2 + y4), 

x4 + 2axzy* - y4. 

x4 + 2oxzy* + y4, 

x2y2 + y4, 

- x2y2 - y4, 

-x*y2 + y4, 

x’y’ - y4, 

x4 + 2xzyz + y4, 

-(x4 + 2x2yz + y4), 

X2Y2, 
- x2y2, 

X3Y, 
x4, 
-x4, 

0, 

-l<a#l 14C 
-I<o#l 14C 

1%~C 
UC -1 14R 

122R-C 

122R-C 

122R 

122R 

2% 

2% 

22R 

2% 

13R 

4R 

4R 

a, 

of the repetitions in our earlier list in Theorem 1. The primary feature that 
we will use to distinguish the different classes of canonical form will be the 
structure of the two discriminants AX and A,. Therefore, before stating the 
result, we recall the 16 canonical forms for a binary quartic over the reals. 
(See [6; Exercises 25.13, 25.141, although our numbering differs slightly 
from Gurevich’s.) 

In the root structure, the symbols C, R, and R-C indicate all complex 
roots, all real roots, and two real and two complex roots, respectively. 
(Clearly in cases IIa, b, the simple roots are the complex conjugate pair.) 

We now list the canonical forms for first-order, planar quadratic 
Lagrangians, as distinguished by the canonical forms of their discriminants, 
in Table III. The verification that this list is exhaustive, so every first-order, 
planar quadratic Lagrangian is equivalent to precisely one of the following 
60 types of canonical forms, has, for the most part been done, and the 
remaining details are not hard, but not very instructive. 

For the most part, these canonical forms are distinguished by the root 
structure, i.e., canonical form, of the corresponding quartic discriminants 
A, and A,. Occasionally, two different canonical forms will have the same 
canonical forms for both their discriminants, and they must be dis- 
tinguished by some other invariants or covariants. The hardest cases to 
distinguish by purely invariant-theoretic means are when a Lagrangian L 
and its negative -L are two differnt canonical forms. There are many 
such pairs, and they are always listed together with a + and - sign 
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TABLE III 

‘Ow Canonical form of Lagrangian Restrictions 

1 
2 

3 
4 
5 
6 
I 
8 

9 
10 
11 
12 
13 
14 
15 
16 

17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
21 
28 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

u; + lf,’ + a@? + v,) + 28u,v,., 
-(uf + v; + a(uf + v,‘, + 2&v,), 

2 
UK - v,t + a(-u; + v,‘) + 2pu,v,., 

ll; - v; + a( u.; - v,‘, + 28u,v, 1 
14: + v: + a(u.: + u,‘, + 2PU,rV,., 
ll; - v: + a# + v,) + 2Pu,v,, 
u,f + v: + a(uf + vz) + 2f9u,vV, 

u; + lg + u; + 2Bu,v,, 
-(uZ + v; + u,; + 2pu,v,). 

u.; + $ - ll; + 2pu,v,, 
-(u? + v; - ll; + 2jiu,v,.), 
-uf + u; + u; + 2fiu,v,, 
-(-tl; + lg + uf + 2pu,v,.), 
I43 - v f  + l( + 2~u,v,, 
-(Id: - v; + It; + 2&l,), 

u: + y,t + us + 2/3u,vy, 
-tu.: + u,t + u.: + 2/3u,v,), 
ut t yl” - u.:: t zpu,l$, 
-(uZ t I$ - u; + 2/3u,&.), 
u; - u,; + 2u,v,., 
uf + li; + 2u,vy, 

-(uf + u,; + 2u,v,,), 
l4; - uf + UIVX + u v  .” .P 9 
u; - v.; + u, up + vxvv, 
u; - v, + 2u,v,,, 

u.; + qs. + 2u,5., 
-(u,Z + v, + 2U,V”), 

u.; + l$ + ffp; + v,‘) + 28U,V”, 
- (UZ + II; + a( I( + II,‘) + 2&q,), 
uf + I$ + a(u: + vIj) + 2Pu,vy, 

uf + l$ + 2/3u,v,, 
-(u? + lg + 2jiu,v,), 
u; + yv’ + 2/h4,0,, 

-(uZ + y; + w4,U”~, 
u; - $ + 2pu,v,, 
u; + 2uxvv, 
-(u,’ + 2’U,V”), 

u,v, 1 
u,’ + v,’ + 2u,v, + U”y,’ 

O<all,OSj3<l-a 

O<a5l,O<P<l-a 

a 7 0, B 2 4 
a 7 0, B 2 0, 
a < 0, 1~ + 1) < P < 1 - a 

a + 0, p 2 0, 
acO,Os/3<Ia+lI 

OS@<1 
OIP’l 

P’l 
P’l 
/I20 
p20 
/?ZO 
p20 

P’l 
B’l 
OSS<l 

OlS<l 

a>O,/I2O,a+P=l 
a70,/3zO,a+/3=1 
a<O,/32O,a+B=l 

OIfi<l 
osp<1 

8’1 
B>l 
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TABLE III- Continued 

Tw Canonical form of Lagrangian Restrictions 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

5-l 

58 

59 

60 

following in the last column of Table IV, e.g., types 10 and 11. The fact that 
each pair constitutes two inequivalent canonical forms is easily verified by 
considering which changes of variables preserve the actual roots of the two 
discriminants, and then checking that no such change of variables will take 
L to - L. The only way to distinguish L and -L by use of covariants is by 
looking at those of odd degree and even biweight, since covariants of even 
degree are the same for L and -L, while those of odd degree and one or 
the other weight odd can be simply changed in sign either by L * -L, or 
by the change of variables x * -x, or u c) -u. 

The simplest covariant of odd degree and even biweight is the symbol Q 
itself. If Q is positive (semi-)definite, then it itself can be used to distinguish 
L from -L; this occurs with a few of these pairs. However, if Q is not of 
one sign, then more subtle covariants are required. For example, to dis- 
tinguish types 41 and 42, we can proceed as follows. The covariant C, is of 
even degree, and biweight (1, l), so the covariant 
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TABLE IV 

TYPe 

1 Ia 
2 Ia 
3 Ia 
4 Ib 
5 Ib 
6 IC 
I Id 
8 IIa 
9 IIa 

10 IIb 
11 IIb 
12 IIb 
13 II\, 
14 IIC 
15 IIC 
16 IIC 
17 IIC 
18 IId 
19 IId 
20 IIb 
21 IIC 
22 IIC 
23 IId 
24 IIIb 
25 IIId 
26 IIId 
21 IIId 
28 IIIa 
29 IIIa 
30 IIIb 
31 IIIC 
32 IIIC 
33 IIId 
34 IIId 
35 IIId 
36 IIId 
37 IIId 
38 IIId 
39 IV 
40 IV 
41 IV 
42 IV 
43 vb 
44 vb 
45 Va 
46 Va 
41 vb 

Ia 
Ia 
Ib 
Ia 
Ib 
Ic 
Id 
IIa 
IIa 
IIb 
IIb 
IIC 
IIC 
IIb 
IIb 
IIC 
IIC 
IId 
IId 
IIId 
IIId 
IIId 
IIIb 
IId 
IIb 
IIC 
IIC 
IIIa 
IIIa 
IIIb 
IIIC 
IIIC 
IIId 
IIId 
IIId 
IIId 
IIId 
IIId 
IV 
IV 
Vb 
vb 
IV 
IV 
Va 
Va 
vb 

Invariants Sign 

Q>O 
QsO 

Q>O 
QsO 

QrO 
QsO 
I, Z 0, C, type 31 
I3 + 0, C, type 31 
C, type 35 or 38 
I, = 0, C, type 58 
Z3 = 0, C, type 58 
C, = 0 (type 60) 

+ 
- 

+ 

+ 

+ 

t 
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TABLE IV-C~ontinued 

‘Me AX Ax 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

vb Vb 
vb vb 
Va VI 
Va VI 
v-b VI 
VI Va 
VI Va 
VI vb 
VI VI 
VI VI 
VI VI 
VI VI 
VI VI 

Invariants Sign 

I, < 0 - 

I, = 0 
+ 
- 

Q > 0, I, > 0 + 
Q I 0, I, > 0 
Q 2 0, I, = 0 + 
Q I 0, I, = 0 
Q=O 

which is also a biquadratic, is of odd degree and even biweight (2,2), cf. 
[lo]. For case 41 

Q = x2u2 + y2uu, 

SO 

C2 = QxuQyo - QyuQxv = 8xyu2. 

Therefore 

c3 = 32y2u2, 

which is positive semi-definite. For case 42, C, = -32y2u2 is negative 
semi-definite, and hence the covariant C, serves to distinguish the two 
cases. (In the other + pairs, the required covariants can be most easily 
constructed using hypejacobian combinations, cf. [lo].) 

I have not completely determined all the covariants of odd degree and 
even biweight which can serve to completely distinguish all the + L pairs of 
canonical forms. This is because (a) the calculations are rather tedious, (b) 
the results are not particularly enlightening, and, most importantly, (c) the 
proof of the general theorem gives the algorithm for constructing the 
canonical form of any given Lagrangian, so one can determine which case is 
applicable by direct construction anyway. However, I certainly believe that, 
with enough effort, each pair can ultimately be distinguished by an ap- 
propriate covariant. 
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