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The multi-Hamiltonian structure, conservation laws, and higher order symmetries for the 
Born-Infeld equation are exhibited. A new transformation of the Born-Infeld equation to the 
equations of a Chaplygin gas is presented and explored. The Born-Infeld equation is 
distinguished among two-dimensional hyperbolic systems by its wealth of such multi­
Hamiltonian structures. 

I. INTRODUCTION 

A nonlinear modification of Maxwell's electrodynamics 
was proposed by Born and Infeld in 1934. I The simplest 
example of this system of nonlinear field equations is the 
quasilinear second-order equation in I + I dimensions: 

(1 + 'P ~ ) 'PI/ - 2'P,'Px'Px, - (1 - 'P ;)'Pxx = 0, (1.1) 

which is known as the Born-Infeld equation.2 The Born­
Infeld also governs minimal surfaces in 2 + I-dimensional 
Minkowski space, which is a special case of the Nambu 
string. 3 The world sheet of the N ambu string is parametrized 
by harmonic coordinates, familiar from the theory of mini­
mal surfaces, rather than the light cone gauge.4 We will also 
consider the representation of Eq. (1.1) in null coordinates: 

X' = x + t, t I = X - t, 

in terms of which the Born-Infeld equation can be rewritten 
as 

'P ~''P,',. - 2(2 + 'P,''Px' )'Px" , + 'P ;''Px'x' = o. (1.2) 

In this paper we shall discuss the Hamiltonian struc­
ture, symmetries, and conservation laws of the Born-Infeld 
equation. We shall find that it has a remarkably rich struc­
ture. The first step is to recast the Born-Infeld equation as a 
first-order quasilinear Hamiltonian system of hydrodynam-

. ic type.5•
6 Remarkably, this can be done in three inequivalent 

ways, one of which corresponds to a system of isentropic gas 
dynamics, with the adiabatic index r = - I corresponding 
to the pressure-density relation P = - 1/ p, which is known 
as a Chap/ygin gas. 7 Each of these systems is separable; there­
fore, the extensive results on Hamiltonian structures, sym­
metries, and conservation laws of Sheftel' 8 and Olver and 
Nutku9 can be used. Even among the separable two-dimen­
sional systems, the Born-Infeld system has a much richer 
algebraic structure than most, in part due to the multiple 
Hamiltonian reformulations of the equation. We will see 
that the Born-Infeld equation admits (at least) six indepen­
dent Hamiltonian structures, in contrast to two Hamilto­
nian structures for a general separable system and four Ham-

iltonian structures in the more general polytropic case. 
Moreover, the diagonalization techniques introduced by 
VeroskylO are then applied to show that these systems admit 
first-order conserved densities depending on arbitrary func­
tions-which is special to these particular systems. 

We assume that the reader is familiar with the basics of 
Hamiltonian systems of evolution equations, symmetries, 
and conservation laws, as presented, for example, in Olver. II 
In the interests of brevity, we have omitted many of the more 
complicated computations. 

II. HYPERBOLIC FORMS OF THE BORN-INFELD 
EQUATION 

We begin by showing that the Born-Infeld equation can 
be rewritten in several ways as a first-order system of quasi­
linear hyperbolic evolution equations. All of these represen­
tations have the form9 

aH 
U,= -Dx -' av 

aH 
V,= -Dx -' au (2.1 ) 

where JY' [u,v] = fH(u,v)dx is the Hamiltonian functional 
and D x is the total x derivative. In vector form, if we let 

(
U(X,t)) u(x,t) = , 
v(x,t) 

then Eqs. (2.1) are in elementary Hamiltonian form II: 

u, = YJ*Eu [H], (2.2) 

where Eu denotes the Euler operator, or variational deriva­
tive with respect to u. The Hamiltonian operator in (2.2) is 
the constant coefficient skew-adjoint differential operator 

where 0'1 = (~ ~). (2.3) 

The induced Poisson bracket on the space of densities is giv­
en by the standard formula 
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{Y,K} = ~ f Eu [F] '§*Eu [H ]dx 

= + f {Ev [F]DxEu [H] 

- Eu [F]DxEv [H ]}dx. 

We begin by looking at Eq. (1.1) in the physical vari­
ables. Since ( 1.1 ) can be derived from a variational principal 
where the Lagrangian depends only on the gradient of qJ, we 
know that it can be expressed as the integrability condition 
of a first-order system.6 To effect this change, we introduce a 
new potential 1/1 given by 

1/Ix =qJJ~1 +qJ; -qJ;, 1/1, =qJ,I~1 +qJ; -qJ;. 
(2.4) 

Inverting Eqs. (2.4) for the first derivatives of qJ we find the 
same expressions, with the roles of qJ and 1/1 interchanged. 
Equation ( 1.1 ) is then realized as the integrability condition 
for system (2.4): Moreover, its companion equation ex­
pressing the integrability conditions for qJ is again (1.1), 
with 1/1 replacing qJ. We shall now formulate these equations 
in terms of a pair of conservation laws. For this purpose, we 
introduce the variables 

r=qJx' s=1/Ix· 

Solving (2.4) for qJ" 1/1, we deduce that the one-forms 

a = r dx + s~ (1 + r 2)/(1 + S2) dt = dqJ, 

{t)=sdx+r~(1 +?)/(1 +r2)dt=d1/l, 

are exact; the implication that they are closed gives rise to the 
following pair of quasilinear evolution equations: 

r, = [rs/~(1 + r2)(1 +S2) ]rx 

+ ~(1 + r2)/(l + S2)3 Sx' 

S, =~(1 +S2)/(1 + r2)3 rx 

+ [rs/~ (1 + r 2) (1 + S2) ]sx' 

(2.5) 

We will call the quasi linear system (2.5) the physical version 
of the Born-Infeld equation. It is easy to see that (2.5) is in 
the standard Hamiltonian form (2.2), where 

(2.6) 

is the Hamiltonian density. We note that there are alterna­
tive ways of reexpressing ( 1.1) as the integrability condition 
of a first-order system such as (2.2), but there is a unique 
choice of 1/1 which will result in a Hamiltonian system of 
equations. (An alternative first-order form ofthe Born-In­
feld equation that is not Hamiltonian can be found in 
Whitham.2

) 

A similar reasoning applies to the Born-Infeld equa­
tion, rewritten in the null coordinates (1.2). Dropping the 
primes on x, t, we similarly introduce a new potential X by 

Xx = - qJx/~1 + qJxqJ" X, = qJ,I~1 + qJxqJ, . (2.7) 

As in (2.4), the companion equation for X is identical to 
( 1.2). Define 

z = qJx' W = Xx' 

Note that the one-forms 
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a = z dx - (liz - z/w2)dt = dqJ, 

{t) = W dx - (lIw - w/r)dt = dX 

are exact, leading to an alternative system of quasilinear evo­
lution equations: 

z, = (lIr + lIw2)z" - (2z/w3 )wx' 

w, = - (2w/f)zx + (lIr + lIw2)wx, 
(2.8) 

which will be called the null coordinate version of the Born­
Infeld equation. Again, (2.8) are in Hamiltonian form 
(2.2), with the Hamiltonian density 

A 

H*(z,W) = z/w + w/z. (2.9) 

Although the two versions of the Born-Infeld equation 
can be obtained by a transformation between physical and 
null coordinates, it is rather remarkable that there is also a 
transformation of the dependent variables which maps one 
to the other, as shown in the following theorem. 

Theorem 1: Given r, s with rs> 1, define the transforma­
tion 

Z= (1 +r2)1/4(1 +s2)1/4[(rs+ 1)1/2+ (rs_l)I/2], 

w= (1 + r2)1/4(1 +s2)1/4[(rs+ 1)1/2 - (rs-1)1/2]. 
(2.10) 

If (r,s) satisfy the physical version of the Born-Infeld equa­
tion (2.5), then (z,w) satisfy the null coordinate version 
(2.8). 

The proof is a straightforward, but lengthy calculation. 
In Sec. III we shall see how the transformation (2.10) can be 
systematically deduced by referring to the second Hamilto­
nian structure of (2.5). 

We now turn to a remarkable transformation from the 
Born-Infeld system to a system of quasilinear equations aris­
ing in polytropic gas dynamics. 

Theorem 2: Define the variables 

u = - (lIr + lIw2), v = zw/2. (2.11 ) 

Then z, w satisfy the Born-Infeld system (2.8) if and only if 
u,v satisfy the gas dynamics system 

u, + uUx + v- 3vx = 0, v, + (uv)x = O. (2.12) 

The proof is again a straightforward calculation. The 
system (2.12) corresponds to the equations of isentropic, 
polytropic gas dynamics with the adiabatic index r = - 1, 
known as a Chaplygin gas. 7 The system (2.12) is distin­
guished from such quasiIinear hyperbolic systems by the fact 
that shocks do not form 12.2: This system is also in the elemen­
tary Hamiltonian form (2.2), with the Hamiltonian density 

H*(u,v) = u2v/2 + lI2v. (2.13) 

We remark that the reduction of a gas dynamics system to a 
single second-order hyperbolic equation, which includes the 
reduction of a Chaplygin gas to the Born-Infeld equation 
( 1.2), can be found in Garabedian. 13 Note, also, that the 
physical version (2.5) can be transformed directly to the gas 
dynamics version (2.12) by composing the transformations 
(2.10) and (2.11): 

u = rs/ ~ (1 + r 2)( 1 + ?) , v = ~ (1 + r 2)( 1 + S2) . 
(2.14 ) 

We thus have three distinct ways of reformulating the 
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Born-Infeld equation as a Hamiltonian system of quasilin­
ear evolution equations of the type (2.2). To keep track of 
various functions and operators in the different coordinate 
systems, we will adopt the following conventions: In the 
physical (r,s) version, these quantities will have an overtilde, 
e.g., H; in the null (z,w) version, they will have a caret, e.g., 
H; and the gas dynamics (u,v) coordinates will not have any 
distinguishing mark, e.g., H. 

III. FIRST-ORDER HAMILTONIAN OPERATORS 

We now investigate other first-order Hamiltonian struc­
tures for the Born-Infeld equation using the methods found 
in Refs. 6 and 9. First, we recall that the most general skew­
adjoint first-order matrix differential operator has the form 

.fiJ = M·Dx + Dx·M + Qx 

(
2mDx +mx 

- 2pDx +Px -qx 
2pDx + Px + qx) 
2nDx + nx ' 

(3.1 ) 

where 

is a general symmetric matrix, 

Q=( ° q) 
-q ° 

is a general skew-symmetric matrix, and where the coeffi­
cients m, n, p, and q are allowed to depend on the dependent 
variables. The particular Hamiltonian operator (2.3) corre­
sponds to the choice 

.fiJ*: m* = n* = q* = 0, p* = -!. (3.2) 

In order that the Poisson bracket associated with the opera­
tor (3.1) satisfies the Jacobi identity, the coefficients m, n, p, 
and q must satisfy additional first-order partial differential 
equations.6 

Besides the standard Hamiltonian form (2.2), any poly­
tropic gas dynamics system can be written in two additional, 
alternative Hamiltonian forms involving first-order Hamil­
tonian operators6 and making it a tri-Hamiltonian system: 

U t = .fiJoEu (H2) =.fiJ lEu (HI) = .fiJ2Eu (Ho). (3.3) 

For the case of the adiabatic index r = - 1, the Hamilto­
nian operators in (3.3) have the form 

.fiJo=.fiJ*: mo=O, no=O, Po= -!, qo=O, (3.4) 

.fiJ I: m l = l/v3, nl = v, PI = - U, ql = 2u, (3.5) 

.fiJ2: m2 = U/V3, n2 = UV, P2 = - u2/2 - 1/2v2, 

q2=U2 (3.6) 

Po= _!(Z-2_ W-2)-I, QO=(Z-2_ W-2)-I, 

fj; 1= - 2.fiJ*: ml = 0, nl = 0, PI = 1, ql = 0, 
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and are mutually compatible. II We note that (3.4)-(3.6) 
are genuinely distinct Hamiltonian operators, meaning that 
.fiJ 2 is not related to .fiJ 0 and .fiJ I according to a well-known 
recurrence formula 14 which generates higher order Hamil­
tonian operators from any bi-Hamiltonian system. The cor­
responding Hamiltonian densities placing (2.12) in the tri­
Hamiltonian form (3.3) are 

Ho = V, HI = UV, H2 = u2v/2 + 1!2v, (3.7) 

which appear in the well-known hierarchy of conserved den­
sities for gas dynamics.9 (See Sec. IV.) 

Before proceeding to the tri-Hamiltonian structure of 
the null coordinate and physical versions of the Born-Infeld 
equation, it helps to recall how Hamiltonian operators trans­
form under a change of variables . 

Lemma 3:14
•
15 Letu = qJ(Z) be a change of variables and 

let J denote the Jacobian matrix of qJ. Let.fiJ denote a Hamil-
A 

tonian operator in the u coordinates and .fiJ the correspond-
ing Hamiltonian operator in the Z coordinates; then these 
two operators are related by the change of variables formula 

.fiJ = J.fj;.JT. (3.8) 

Thus for Hamiltonian operators of the form (3.1), we 
find the corresponding coefficient matrices have the change 
of variables formula 

Q = J.QA .JT+ J·M·JT _ J ·M·JT x x x x • 

(3.9) 

Dubrovin and Novikov5 have pointed out that the Poisson 
brackets defined by Hamiltonian operators for equations of 
hydrodynamic type give rise to Riemannian metrics with 
vanishing torsion and curvature. The metric corresponding 
to an operator of the form (3.1) is given by 

dr = (n du2 - 2p du dv + m dv2)/(mn - p2). (3.10) 

Since the metric (3.10) is fiat we know that a (possibly com­
plex) change of variables u = qJ(z) will bring it to the ca­
nonical form d'S2 = 2 dz dw, determining the maximal ana­
lytic extension of the metric and corresponding to the 
elementary Hamiltonian operator (2.3). Remarkably, the 
transformations (2.11) and (2.14) are precisely the ones 
needed to place the metrics determined by the Hamiltonian 
operators .fiJ I' .fiJ 2 in canonical form. 

Proposition 4: Under the transformations (2.11) and 
(2.14) the Hamiltonian operators and densities for the gas 
dynamics system (2.12) are mapped to the following Hamil­
tonian operators and densities for the null and physical ver­
sions of the Born-Infeld equation: 

Null coordinate version-Hamiltonian operators: 

Arik eta/. 1340 

Downloaded 28 Oct 2010 to 128.101.152.160. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



Hamiltonian densities: 

Ho(z,w) = zw/2, 

HI (Z,w) = - z/2w - w/2z, 

H 2 (z,w) = w/4~ + 3/2zw + Z/4W 3. 

Physical version-Hamiltonian operators: 

PlJ 0: mo = - 2rs(1 + r 2)2, no = - 2rs(1 + S2)2 
(r2_~)2 (r2_~)2 

_ (r2+~)(1+r2)(1+s2) 

Po = (2 2)2 ' r -s 

PlJ 2 = g;*: m 2 = 0, n2 = 0, P2 = -~, Ch = O. 

Hamiltonian densities: 

Ho(r,s) = ~ (1 + r 2) (1 + S2), 

HI (r,s) = rs, 
H 2(r,s) = (r 2s2+ 1)/2~(1 +r2)(1 +S2) 

IV. RECURSION OPERATORS AND CONSERVED 
DENSITIES 

According to Magri's theorem,16 any compatible bi­
Hamiltonian system has an associated recursion operator. 
The Hamiltonian operators g; 0' g; I' and g; 2 are mutually 
compatible6; thus there are three recursion operators for the 
gas dynamics system, 

flll = § I·g;o-I, fll2 = g;2'§0-1, fll3 = g;2·g; I-I, 
(4.1 ) 

although there is a trivial relation between them: 

Similar recursion operators can be constructed for the null 
coordinate and physical versions of the Born-Infeld equa­
tion. Now, a curious phenomenon occurs when we apply the 
recursion operator to the hierarchy where the Born-Infeld 
Hamiltonian lies. We find that the hierarchy of Hamiltonian 
flows fll I terminates after just two steps: 

flll: Ho~HI~H2~0 

because the second Hamiltonian H2 is a distinguished func­
tional (Casimir) for the Hamiltonian structure determined 
by § I' Therefore, the hierarchy guaranteed by Magri's 
theorem 16 degenerates into just three independent Hamilto­
nians; we have a nontrivial example of a bi-Hamiltonian sys­
tem which does not satisfy one of the technical hypotheses of 
Magri's theorem, which states that the hierarchy of Hamil-
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tonians be independent functionalsy,16 However, the sec­
ond recursion operator fll 2 does generate further members of 
the gas dynamics hierarchy of conserved densities.9 (We re­
mark that in Ref. 9 we failed to show that this property of the 
hierarchy of flows generated by one of the recursion opera­
tors can occasionally degenerate. The equations following 
(4.3) of Ref. 9 should read as 

flll(Qn) = (ny- n - I)Qn+ I' 

fll 2(Qn) = (n12)(ny + y - n - 3)Qn+2' 

flll«t) = (ny-n+ l)Qn+1> 

fll 2(Qn) = [(n+ 1)/2](ny-n+ l)Qn+2' 

leading to degeneracies if y has one of the forms 1 ± lin, 
1 ± 2/n for some integer n.) 

Another interesting anomaly occurs for the physical 
version of the Born-Infeld equation. Here, from the point of 
view of Ref. 6, the most natural recursion operator would be 

aJ*_ 7,;, .7,;,-1_ 7> ."",*-1 
;:/[ -=1=2 --'PI= . 

Again, this recursion operator does not produce a hierarchy 
of symmetries and conserved Hamiltonian densities. In fact, 
as the reader can check, the recursion operator repeats after 
two steps: 

fll*: Ho~HI ~Ho~HI ~Ho~ ... , 

resulting in an infinite loop; again the functionals produced 
by Magri's theoreml6 are not independent. [At first glance, 
this result does not seem reconciled with the gas dynamics 
version under the transformation (2.14). However, we note 
that since the recursion operator involves the inverse of the 
Hamiltonian operator § *, we can add in any element of its 
kernel at each step. Thus the explanation is that we have just 
chosen different elements of ker § 2 to add in.] 

The gas dynamics, null coordinate, and physical ver­
sions of the Born-Infeld equation are examples of separable 
systems,8,9 meaning that the Hamiltonian density H in the 
representation (2.2) satisfies 

(4.2) 

For the three versions, the separation coefficients are given 
by 

gas dynamics [(2.12)]: 

!L(u) = 1, J.l(v) = v-4, 

null version [(2.8)]: 

A(z) = Z-4, jJ(w) = w- 4 , 

physical version [( 2.5) ]: 

-i(r) = (1 + r 2) -2, jl(s) = (1 +~) -2, 

(4.3) 

It is standard that the zeroth-order conserved densities for 
such a system can be found by solving a separable linear 
wave equation.8,9 

Proposition 5: A function F(u,v) is a conserved density 
of a separable Hamiltonian system (2.2) and (4.2) if and 
only if it is a solution to the linear wave equation 

(4.4 ) 

Any Hamiltonian system (2.2) admits the conserved 
densities 1, u, v, and uv. In the separable case, there are four 
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fundamental hierarchies of solutions to the wave equation 
( 4.4 ), each of the form 

n 

Hn (u,v) = L F j (u) 'Gn _ j (v), (4.5) 
;=0 

where the functions F j and Gj are generated by the recursion 
relations 

a2p 
-' =,A{u)Fi _ l , Fj(O) = F;(O) = 0, 
au2 

a2G 
av2' =f.l(v)Gj_1> Gj(O)=G;(O)=O. 

The hierarchies depend on the initial selection of 
Ho=Fo'Go: 

H6\) = 1, F61) = G61) = 1, 

H62) = U, F62) = U, G62) = 1, 

H63
) = V, F63

) = 1, G63
) = V, 

H64) = uv, F64) = U, G64) = v. 

Our transformations do not respect this hierarchical 
structure of the conserved densities. For example, (2.11) 
maps the first and fourth null Born-Infeld hierarchies to 
combinations of all four gas dynamics hierarchies, so that up 
to a multiple, 

H 2(1)-+H(I), H(4) H(3) 
J 1 2j -+ j , 

H" (I) H(2) H" (4) H(4) 
2} + I -+ }' 2j + I -+ } • 

On the other hand, the second and third hierarchies are 
mapped to algebraic conserved densities for the gas dynam­
ics version (2.12). For example, the conserved density 
H 62

) = z is mapped to the conserved density 

~ v - uv2 + ~ - v - uv2 
, 

which does not show up in any of the standard gas dynamics 
hierarchies. The hierarchies in the physical r, s variables are 
no longer rational functions and we shall not write them 
explicitly: They do not correspond to any of the hierarchies 
in the other variables (with isolated exceptions) and provide 
yet other non polynomial conserved densities for gas dynam­
ics system (2.12). 

V. HIGHER ORDER HAMILTONIAN STRUCTURES 

In Olver and Nutku9 it was shown that any separable 
Hamiltonian system has a second Hamiltonian structure in­
volving a complicated third-order matrix differential opera­
tor. The resulting recursion operator recovers results on 
symmetries and conservation laws due to Sheftel'. 8 For the 
Born-Infeld equations, each of the gas dynamics, null coor­
dinate, and physical versions is separable, and so we are led 
to three distinct third-order Hamiltonian structures. This is 
probably quite special to these particular systems, but we 
have no proof of this fact. In particular, it would be interest­
ing to see whether any of the other polytropic gas dynamics 
systems have additional Hamiltonian structures. 

Theorem 6: Consider a separable Hamiltonian system 
(2.2), where the Hamiltonian density satisfies (4.2). Define 
the matrix variables 

1342 J. Math. Phys .• Vol. 30, No.6, June 1989 

_ (Ux f.l(V)Vx ) = (A.(U)Ux f.l(V)Vx) (5.1) u - , Vx . 
x Vx A.(u)ux Vx Ux 

Then the system can be written in the bi-Hamiltonian form 

U t = Ifd*Eu (H) = 'If Eu (H*) (5.2) 

using the third-order matrix differential operator 

'If =Dx'Vx-I'Dx'U;I'UI'Dx 

= Dx' V; I'Dx 'U\' V; T'Dx' (5.3 ) 

In particular, 'If is Hamiltonian and compatible with Ifd *. 
In the case of gas dynamics the matrix variables coin­

cide: 

(

Ux 
U =V = 

x x Vx 

and the corresponding Hamiltonian operator (5.3) is 

'If 0 = Dx' U x-I'Dx' U x-I'uI'Dx, (5.4) 

which is compatible with Ifdo = Ifd*. The second Hamilto­
nian in (5.2) turns out to be 

H * = H i3
) = u4v/24 + u2/2v + 1!24v3

, 

which appears in the third hierarchy (4.5) of conserved den­
sities. The corresponding recursion operator is the square of 
the simple recursion operator 

!!ll=DX'U X-
I, 

so that 
'If·Ifd O-

1 = Dx'U ;1'Dx ' U x-I = !!ll2. 

(5.5 ) 

Similarly, we have a third-order recursion operator in 
the null variables (z,w). We define the matrix variables 

and the operator 
" I I 'If\=Dx'W; 'Dx'Z; 'u\'Dx 

= Dx' W x-1'Dx 'UI ' W x- T'Dx 

is Hamiltonian. Moreover, the Hamiltonian operators ~ \ 
and fj; I = - 2Ifd * are compatible; therefore, they form a 
Hamiltonian pair. The null Born-Infeld equation (2.8) can 
be written as a bi-Hamiltonian system 

(5.6) 

where the Hamiltonian is a multiple of the Hamiltonian 
H i2

) in the fourth hierarchy (4.5): 

H*(z,w) = 2Hi4
) (z,w) = w/12~ + 1!2zw + z/12w3. 

Note that the transformation (2.11) cannot map the 
above two higher order Hamiltonian operators to each other 
since the corresponding bi-Hamiltonian structures do not 
match, nor are the compatibility relations preserved. Indeed, 
a long calculation proves that the gas dynamics recursion 
operator arising from the bi-Hamiltonian Form (5.6) under 
the transformation (2.11) is the operator 

A A A_I 2 
!!ll\='lf1Ifd j -+ -2!!ll\!!ll, 

where !!ll is the gas dynamics recursion operator given by 
(5.5) and !!ll 1 is the recursion operator (4.1) arising from 
Nutku's6 Hamiltonian structures for gas dynamics. There­
fore the operator 
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~I= -2~1~0~1 

in another third-order Hamiltonian operator for Eqs. (2.12) 
which is compatible with the first-order Hamiltonian opera­
tor ~ I' but not with either ~ 0 or ~ 2' 

Finally there is yet another third-order Hamiltonian op­
erator arising from the physical version of the Born-Infeld 
equation. The operator takes the form 

f&'2 = Dx'S x-I'Dx' R x-I'UI'Dx 

= Dx'S x-I'Dx 'uI'S x- T'Dx' 

where 

(
rx 

R = x 
Sx 

This Hamiltonian operator is compatible with fi) 2 = ~ * 
and so, when transformed back to the other coordinate sys­
tems, it provides yet another Hamiltonian structure for the 
Born-Infeld equation. 

In summary, then, we have found that the Born-Infeld 
equation in any of its evolutionary forms (2.5), (2.8), or 
(2.12) possesses six distinct Hamiltonian structures: Three 
are first order, given by the operators ~ 0' ~ I' and ~ 2 and 
three are third order, given by the operators ~ 0' ~ I' and ~ 2' 

Moreover ~ i is compatible with ~j if and only if i = j. 
Whether there are yet more Hamiltonian structures, not 
trivially related to these, remains an open question! 

VI. DIAGONALIZATION AND HIGHER ORDER 
CONSERVATION LAWS 

As shown by Olver and Nutku9
, for a generalized gas 

dynamics Hamiltonian system there is an additional hierar­
chy of higher order conservation laws generalizing Ver­
osky's rational first-order conserved density l7: 

(6.1 ) 

The case of a Chaplygin gas, r = - 1, is distinguished in 
that it admits an infinite collection of distinct first-order con­
served densities (i.e., they do not differ by a divergence): 
The easiest way to see this is to apply a diagonalization tech­
nique, described by VeroskylO and Tsarev. 18 

Definition 7: A first-order quasilinear system is said to 
be in diagonal form if it has the form 

p, = A( p,q)px, q, = B( p,q)qx' (6.2) 

We remark that the existence of a diagonal form for a 
quasilinear first-order system is related to the existence of 
Riemann invariants. 18 

Proposition 8: For the Chaplygin system (2.12), the 
transformation 

p = u + l/v, q = u - l/v 

place it in the diagonal form 19 

(6.3) 

p, = - qpx' q, = - pqx· (6.4) 

Theorem 910: A two-dimensional diagonal quasilinear sys­
tem (6.2) has a first-order conservation law 
D, T + DxX = 0, with conserved density and flux of the 
form 
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T= F(p,q) + G(p,q) , X= AF + BG (6.5) 
Px qx Px qx 

if and only if F and G satisfy the system of differential equa­
tions 

(A - B)Gp = 2GBp ' (B -A)Fq = 2FA q , 

FAp + GBq =0. 
(6.6) 

For the special case A = - q, B = - p, corresponding 
to the Born-Infeld equation, the third equation in (6.6) is 
vacuous; thus there are the solutions 

F( p,q) = a( p)/( p - q)2, G( p,q) = p(q)/( p _ q)2 
(6.7) 

depending on the arbitrary functions a ( p), p( q). There are 
similar expressions for other gas dynamics systems with 
r=l= - 1, but then the third equation in (6.6) is not vacuous; 
this restricts the corresponding functions to satisfying 
a = - 13 and thus both coefficients must be constant! Thus 
the Born-Infeld case is very special. 

In terms of the gas dynamics variables, the conserved 
densities have the form 

T[u,v] =v4a(u+v- 1 )/(v2ux -vx ) 

+ v4p(u - v- 1)/(V2ux + vx )· 

Note that the case a = ~,p = - ~ reproduces the conserved 
density (6.1) when r= - 1. Under the transformation 
(2.11 ), these turn into the following conserved densities for 
the null version of the Born-Infeld equation: 

Z4w 4a(Z-1 _ w- 1) Z4W4P(Z-1 + w- 1) 

T [z,w] = 2 2 + 2 r ' 
w Zx - Z Wx W Zx + Wx 

where 

a(s) = a( - s2)/8s, pes) = p( - s2)/8s. 

For the particular choices a(s) = 1, pes) = ± 1, i.e., 

a(s) = 8!=S,p(s) = 8!=S,weobtaintheconservedden­
sities 

Z6W 6wx /(W4z;, - Z4W;), Z6W 6zx /(W4z;, - Z4W;), 

which are more like the first-order densities discovered in 
Veroskyl7; see, also, Olver and Nutku.9 1t is interesting that 
the transformation (2.11) does not map the Verosky-type 
densities to each other. 

It can be shown that the third-order evolution equations 
corresponding to the above two densities are each bi-Hamil­
tonian systems; hence the recursion operators lead to two 
further hierarchies of higher order conserved densities. 
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