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Abstract. The theory of evolution equations in Hamiltonian form is developed by
use of some differential complexes arising naturally in the formal theory of partial
differential equations. The theory of integral invariants is extended to these infinite-
dimensional systems, providing a natural generalization of the notion of a conservation
law. A generalization of Noether's theorem is proved, giving a one-to-one corres-
pondence between one-parameter (generalized) symmetries of a Hamiltonian system
and absolute line integral invariants. Applications include a new solution to the in-
verse problem of the calculus of variations, an elementary proof and generalization of
a theorem of Gel'fand and Dikii on the equality of Lie and Poisson brackets for Hamil-
tonian systems, and a new hierarchy of conserved quantities for the Korteweg-de
Vries equation.

INTRODUCTION

The many applications of variational methods to the study of non-linear partial
differential equations has given new impetus to the study of equations in Hamil-
tonian form over infinite-dimensional spaces. This has been of special interest since the
discovery (5) that certain physically interesting equations such as the Korteweg-de
Vries equation can be interpreted as completely integrable Hamiltonian systems. In
this paper it is shown how the classical Hamiltonian formalism of differential geo-
metry can be generalized to the study of evolution equations. For simplicity we work in
Euclidean space, although similar results for equations defined over smooth manifolds
are immediate, and lead to interesting cohomology classes. These will not be touched
on here; but see, for instance, (l), (25) and (29-31).

The motivation for this paper came from the observation (29), (17) that, whereas
every conservation law of a system of p.d.e.'s having a variational principle can be
constructed via Noether's theorem from a (generalized) symmetry group of the system,
not every symmetry gives rise to a conserved quantity. The development of the notion
of an integral invariant (3) in an infinite-dimensional context leads to an understanding
of the conservational roles of these further symmetry groups. We show that every
symmetry of an evolution equation in Hamiltonian form provides an invariant line
integral of the equation, similar to the conservation of circulation in fluid dynamics.
Those line integrals whose associated one-forms satisfy an additional assumption of
closure with respect to a certain exterior derivative are then conservation laws of the
usual sort. These ideas are applied to give a new hierarchy of invariant integrals of the
KdV equation, and an additional integral invariant for the BBM equation (2). Further
applications will be announced elsewhere.
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The techniques to be used are in the spirit of the formal variational calculus of
Gel'fand and Dikii (6-9) and its subsequent developments by Manin(i2), Kuper-
schmidt(n), Sternberg(24) and the author (15-17). In the course of the development
of the theory, other useful applications arise. Yet another solution of the inverse
problem of the calculus of variations, i.e. rinding necessary and sufficient conditions for
a system of p.d.e.s to come from a variational principle, is found by use of a new
resolution of the Euler operator. The Hamiltonian structure allows us to give an ele-
mentary proof and a generalization of a result of Gel'fand and Dikii on the equality of
certain Lie and Poisson brackets arising from equations having a Lax representation
(8, 9). This reduces to a question concerning the closure of a certain two-form, and a
method of proving this for general forms is discussed. The present generalization of
Noether's theorem to include invariant integrals is an immediate consequence of this
theory.

1. DIFFERENTIAL COMPLEXES

Consider the Euclidean spaces X = Rp, with coordinates x = (x1, ...,a;p)T, and
U = R9, with coordinates u = (u1,...,ita)T. (Here T denotes transpose, so x and u are
column vectors). Viewing the w's as dependent and the x's as independent variables,
let Jk denote the A-jet space, having coordinates ulj = dJui. Here dJ is the partial
derivative corresponding to the multi-index J = (jlt ...,jp). There is a natural projec-
tion 7r:Jk-> Jk_lt and we let Jx be the inverse limit of the finite jet spaces Jk. The exterior
powers of the cotangent space of Jx are similarly defined as inverse limits:

^ = i n v

A ^-differential form, meaning a smooth section of Afe, thus consists of a finite sum of

terms Pdx1 Adu^ = P(x,u^)dx^ A ... Adx^ AdvPj A ... Aduk
K. (1-1)

Here Pes/, the algebra of smooth differential functions, and depends only on finitely
many derivatives of the u>, with n indicating the degree of highest order derivative.
Note that stf is a partial differential algebra, the (total) derivative in the xi coordinate

b6ing D -A-± + YYu* ±
Di~ dx*~ dx** ?}?"'>* M/

where J, i = (jlt...,ji-!,ji + 1 ,ji+1, •••,jp)- In practice we often restrict our attention to
the subalgebra stfp consisting of those P's which are polynomials in the it's and their
derivatives, but this is not essential in what follows.

The exterior derivative d: Ak-*Ak+1> the underbar denoting spaces of sections, is
defined as the inverse limit of the exterior derivatives on /\kT*Jj. Therefore

( HP ?)P \

S r . ( f e l + S TT&dj A & 7 A M (1-2)
i ox1

 hJ du>j )
The finite-dimensional d-Poincare lemma (cf. (23), theorem III.4.1) immediately
implies the following:

THEOREM 1-1. The complex
is exact.
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Next define the exterior powers of the tangent space to Jx, denoted by At '= At^^oo.
to be the dual spaces to the cotangent spaces /\k. Thus a vector field on J& will be a
(formal) infinite sum p „ _

where the Pi, Qjj are in the algebra s/. In particular, the total derivatives Dt can be
viewed as vector fields. A vector field is vertical if all the ^-components Pl vanish. A
vector field is special if it is vertical and commutes with all the total derivatives. It is
not hard to see (6) that every special vector field has the form

where K = (K1,...,K9)Testfq, and DJ is the total derivative corresponding to the
multi-index J.

For each vector field v, there is a corresponding Lie derivative acting on the space of
differential forms, which we also denote by v. For example if v is given by (1-3), and
to = Pdu'j A du\, then

v(w) = v(P) dv?j A dv!^ + P dQif A duk
K

The following formulae are easily proved:

\{dto) = d[v(co)], (1-5)

V((I)A/() = V(W)A/( + (I)AV(/J). (1-6)

The space /\k can be decomposed as a direct sum

A* = A o © A i - 1 0 A a - a e - ,

which terminates with either

A°k if Jc^p, or AJTP if k > p.

Here A?"' is the subspace spanned by the differential forms (1-1) with I, the number of
dx's, fixed. A second exterior derivative D:/\k'-^/\k

+1 is defined by

| (W), (1-7)

the Z)/s acting as Lie derivatives.

THEOREM 1-2. For each integer k > 0, the complex

is exact. (Here 8% R = R/or k = 0 and 0 for k > 0.) Moreover, the derivatives d and D

anticommute: d.D + D.d = 0. (1-8)

There now exist a number of different proofs of this important result. In the poly-
nomial case, C. Shakiban's thesis (22) transforms the above complex to the standard
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Hilbert syzygy complex and thereby proves exactness. Explicit, lengthy computations
verifying exactness are to be found in Tulczyjew(27) (for k > 0), Takens (25), and
Andersen and Duchamp(i). Proofs based on some deep results from algebraic topology
are given by Vinogradov(29, 30) and Tsujishita(26).

The problem now is that d does not preserve the grading A?- In fact d = dx + du,
where dx: Ay -> Ay+i gives the exterior derivative for just the x's, and du:/\j-^ Ay+1 f° r

just the u's. (In (1-2) the first summation i s l a n d the second du.) Theorem 1-limplies
that the two subcomplexes

and A?-^> A } ^ - tf-±* A?^> -
are both exact. Furthermore, D, dx and du all mutually anticommute. Define

A?. = Coker(D:Ati^AJ) = j

By anticommutativity, there is an induced derivative

where, for -n%: Ay-> Ay* the natural projection,

THEOREM 1-3. For eachj the complex

is exact.

Proof. This follows from standard spectral sequence arguments using the fact that
D and du make Ay into a 'double complex' [cf. (4)]. For completeness, we include a
proof. Note that, for j = 0, the statement is trivial. Next, by induction, assume the
complex for j—1 is exact. We must prove that if we Ay and duco = Dv for some
veAj-l, then to = du/i + Dn for some /ieAy"1, neAif-i- Now if du<o = Dv, then
0 = duDv = — Ddu v, hence du v = DX for some As Ay -\ by Theorem 1-2. Byinduction,
v = —dnn + Dp for some ne Ay-i and pe Ay-21 - Finally

du(w — Dn) = du u) + Ddu n = duw + D(Dp — v) = 0.

Hence Theorem 1-1 implies that w-Dn = du/i for some fieA)'1, which completes
the proof.

Fixing the volume form dx = dx1 A ... A dxp on X allows us to identify Ap with
Ao> v ia u) A dx ~ co. Note that, under this identification, the derivative D: AjT1 ~*" Ap
can be identified with the total divergence operator:

Therefore, with
A* = Ao/im (Div) ~ /_ _

Theorem 1-3 proves the exactness of
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where it remains to show the exactness at the first stage. This will be done presently.
Two forms <o, weAo wiU be called equivalent, denoted by o> ~ G>, if they have the
same image in A*, i.e. w = d> + Div(/i) for some/t = {/ilt ...,/ip), with/^eAo-

A word of caution should be added regarding the spaces A*- If ^1 ~ &i and w2 ~ w2

are equivalent forms, it does not follow that o)1 A <o2 and w^ A w2
 a r e equivalent. For

instance, if p = q = 1, then dux ~ 0 in A*> whereas du A dux is not equivalent to 0 in
A| • In other words there is no well-defined exterior product on the spaces A* •

2. THE INVERSE PROBLEM

Each sufficiently smooth extremal of the variational problem

I[u] = \L{xMn))dx,

with Lagrangian L satisfies the well-known Euler-Lagrange equations E(L) = 0,
where E = (Ev ..., Eq)

r: stf-»s/q is the Euler operator, or variational derivative. Here

The inverse problem of the calculus of variations is to characterize those systems of
p.d.e.'s which arise as the Euler-Lagrange equations of some variational problem.
Here we apply the differential complex (1-9) to give a new solution to the problem.

LEMMA 2-1. Every differential form in AJ is equivalent to a unique form

P.du= ^Pidu1 (2-2)
<=i

where P = (Px Pgf es/<, and du = (du1,...,du«)T.
The proof is a straightforward application of integration by parts. The form P.du

will be called the standard representative of an element in A* •
LEMMA 2-2. If Les/, then the standard representative of d*L is E(L).du.

Proof. Integration by parts shows that

duL = ^^jdujj ~Y.(-DY^jdv> = E(L).du,

which proves the lemma.

THEOREM 2-3. A system ofq p.d.e.'s in q dependent variables, P = (Pv ..., Pg)
T = 0 are

the Euler-Lagrange equations for some variational problem if and only if d* (P. du) = 0
in A*.

The proof is an immediate application of Lemma 2-1 to the exact complex (1-9). Seen
in this light, (1-9) provides a new ' resolution' of the Euler operator, where d^.:A%-> A*
is essentially the same as the Euler operator. This resolution is different from those
appearing in Kuperschmidt(ll), and Manin(12), where new independent variables are
appended, Olver and Shakiban(l8), (22) which is algebraic, and Vinogradov(29, 30),
extending a theorem of Vainberg on potential operators to a full resolution.

As an example, consider the system

= 0,

uxy-uuy = 0.
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We must check the d+ -closure of the form

du + (uxy-uuy)dv.
y

Now
d* (o — dvxy A du + udvy Adu + duxy A dv — uduy Adv — uydu A dv

~ dv A duxy — uvdvAdu — udvA duy + duxy A dv — uduy /\dv — uydu A dv
= 0,

so w is (Z^-exact. Indeed,
a) ~ d*(-uxuy + \u\) = cZ*L,

and Z/ is the Lagrangian for the variational problem for which these are the Euler-
Lagrange equations.

We proceed to analyse the operator d#:/\\->/\%.

T H E O R E M 2-4. Suppose o) = P. du, as in (2-2). Then d* o) ~ 0 if and only if the qxq
matrix differential operator S> with entries

is formally self-adjoint. In other words, S* — S>, where the (i,j)-th entry of Si* is the L2-
ad'joint of the (j, i)-th entry of'2>.

Proof. Note that , 7 T „ 7
J d^w = —duT l\2>d%.

Integration by parts shows that
duT t\2d% = -duT h@!*du,

hence, if Si is self-adjoint, then d% w is zero. The proof of the converse is left until
section 4.

This theorem, combined with Theorem 2-3, gives the following formal analog of
Vainberg's theorem ((28), theorem 5-1) that an operator on a Banach space is the
gradient of some potential operator if and only if its derivative is a symmetric operator.

COROLLARY 2-5. The system P = 0 forms the Euler-Lagrange equations of some
variational principle if and only if the operator Q) defined by (2-3) is self-adjoint.

In light of the above considerations, it is of use to have an explicit, easily verifiable
criterion for knowing when a given form w is equivalent to 0 in A* • We conclude this
section by describing one such criterion due to Gel'fand and Dikii(6). The vector fields
d/duj and Z>3- all act on Ao a s Lie derivatives, so formula (2-1) for the Euler operator
also defines an operator E: Ao~*" Ao-

THEOREM 2-6. Let we Ao oe a form. Then <o ~ 0 in A* if and only ifE(OJ) = 0.

3. INVARIANT INTEGRALS

Let 34? be the Hilbert space of L2 functions / : Rp ->• R9 or the space of periodic L2

functions/. Let SP <^ Jfhe the Schwartz space of CK functions rapidly decreasing for
large \x\, or the space of periodic C00 functions. (Certain of the following results hold for
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more general ^ and^. ) Suppose S c SP is a smoothly embedded ^-dimensional mani-
fold. A local coordinate patch Sx on S is described by a smoothly parametrized family
of functions u(x,A), where xeW, and AeRfc. Given an n-form weAti, there is an
induced n-form on 8, denoted by o)\Se/\nT*S. In local coordinates, if

o) = Pdv?j A ...
then

[ J 8 ^ ^ ^ ^ ) ) ^ , A ... Â AV (3-D

(Integration takes place over Rp or a fundamental period.) For instance, if p = q = 1
and w = u^du, then

It is always assumed that the integrals in (3-1) converge for each A. Note that integra-
tion by parts shows that, if o) and & are equivalent forms, then o>\S = w\S, hence the
restricted form w\S only depends on the equivalence class of w in A*-

If 8 is oriented, w-dimensional, and weA*> then, assuming convergence, we can
integrate w over S:

I w = I to\S,
J s J s

the latter integral being with respect to the volume form induced from Jlf. The gen-
eralization of Stokes' theorem is immediate:

THEOREM 3-1. If S is a smooth n-dimensional manifold of functions with smooth
boundary 8S, and we A*"1, then

f f
I du) = I w.

J S J 9S
The proof is based on the elementary formula

{dto) | S = d{to\S). (3-2)

We also note the following straightforward result.

LEMMA 3-2. / / I w = Ofor all oriented manifolds S with boundary (of the appropriate
J s

dimension), then w ~ 0 in A*-
Now consider a general evolution equation

ut = K(xMn)), (3"3)
where K = (Klt...,.K"g)

T es/q. I t will be assumed that (3-3) is locally uniquely soluble
in,9" for initial data u(x, 0) = f(x) eS?. Thus (3-3) defines a, flow u(x, t) = Jft[f(x)], t > 0,
where $Ct:y'-+£f forms a local one-parameter semi-group. The special vector field
\K is the 'infinitesimal generator' of this semi-group, so we may write Jft = exp (tvK).
Given a compact, oriented manifold So <= y , let St = Jft(S0), the image of So under the
flow. For t sufficiently small, St is again compact, oriented.

Suppose we A* is an •n.-form. If

f w = f w (3-4)
J S, J So
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for all compact, oriented, n-dimensional submanifolds So and all sufficiently small t,
then w is called an absolute integral invariant of the evolution equation (3-3). If (3-4)
holds only for closed So without boundary, then w is called a relative integral invariant.
In finite-dimensional systems, the notion of an integral invariant dates back to Poin-
care1 (20). See also CartanO) for a comprehensive introduction. Integral invariants can
be viewed as generalized circulations, although the integration takes place in function
space. Stokes' theorem implies:

LEMMA 3-3. A form w is a relative integral invariant if and only if d* w is an absolute
integral invariant.

THEOREM 3-4. A form coe/\%is an absolute integral invariant of the evolution equation
ut = K if and only ifvK((o) ~ 0 in A*. Also, (oisa relative integral invariant if and only
ifvK(o>) = d^/i for some fie A*"1-

This follows from the characterization of \K as the Lie derivative of the flow induced
by the evolution equation. Note that the Lie derivative \K is well denned in A*
because the special vector fields are precisely those which commute with the total
derivatives D^

More generally, consider a one-parameter family of forms, w(<) depending smoothly
on time t. The analogue of (3-4) is

f co(t) = f
J St J So

w(0), (3-4t)

which defines relative and absolute time-dependent integral invariants. The criterion
of Theorem 3- 4 now reads that w(t) is an absolute invariant if and only if dt w — viC(&>) ~ 0,
where dt = d/dt.

Given a vector field v and a form we Ao. there is an induced form v J we Ao-1>
interior product of v and w, satisfying (V, v J w) = ( V A V, W) for all VeAm-i-
following formulae are proven exactly as their differential-geometric counterparts
((23); pp. 102-3).

LEMMA 3-5. Let v, w be vector fields, we Ao. w ' 6 Ao1- Then
(i) The interior product v J is an antiderivation:

VJ(WAW') = (VJW)AW + ( -1 ) "WA(VJW' ) , (3-5)

(ii) v(w) = vJdo + d(v-l(o), (3-6)
(iii) v(wJw)=wJv(w) + [v,w]Jw. (3-7)

COROLLARY 3-6. The interior product of special vector fields is well defined on A*-
Moreover the analogues of (3-6, 7) hold:

v(w -Iw) = w J v(w) + [v,w] Jw, (3-7*)

for v, w special vector fields and we A*-
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4. HAMILTONIAN STRUCTURE

Let QeA* be nondegenerate, d^-closed. Integration by parts shows that D. can be
put into the standard form

O. = -\duT i\3)du, (4-1)

where S is a nondegenerate skew-adjoint matrix of differential operators, uniquely
determined by Q.. To see that 3) is unique, if Q = duT t\3)du ~ 0, then corollary 3-6
implies that, for any if e <J/ «, 0 ~ vK J Q = {9 - 3)*) K. du, hence 3>K = 2*K for all
K, SO3J must be self-adjoint. This, incidentally, completes theproof of Theorem 2-4. If
Vg- is a special vector field, then define the one-form

WK = v x J & = ®(K)-du e A1*-

Conversely, if to ~ P.du is a one-form, then since Q. is non-degenerate, for Peim@,
there is a uniquely denned special vector field vw = v^- such that w = vw J Q; in fact
2iK = P. We will often enlarge our class of such forms Q to include cases when 3i is a
skew-adjoint formal pseudo-differential operator in the sense of Gel'fand and Dikii (8).
Usually, either 2 or 3>-x will be a genuine matrix differential operator.

Define the Q.-Poisson bracket of forms w, w' = A* as

{W>}=[v,,vJJfl. (4-2)

If o) ~ 3)P.du, o)' ~ SJP'.du, then {a/, w} ~ 0#.<fot, where Q = vP-(P)-vP(P') . the
vector fields acting component-wise.

LEMMA 4-1. 7/W and w' are d^-closed, then {«', w} is d^-exact.

Proof. By (3-6*), if w is tZ^-closed, then

vu(^) = v u J r f , a + d,(vu J Q) = d» w = 0

Therefore, by (3-7*)

On the other hand, since w' is closed, VW(G/) = d#(vw J w'), completing the proof.
In the special case w = d* P, w' — d* P' for P, P ' esf,

{co', a,} = {d*P',d*P} = v w (^P ' ) = ^[vu(P')] .

Therefore we can define the Q-Poisson bracket of P and P ' by

{P',P} = vw(P') = -vu,(P), w = d*P, a>' = d*P'. (4-3)

Thus {d* P ' , d+ P} = eZ,{P', P}, (4-4)

where we have used the exactness of (1-9) in (4-3). Furthermore, since d+P ~ E(P).du,
vu = vK where K = 3>-xE{P). Thus

{P', P} = J5(P)T^-1S(P'), (4-5)
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since, for any K e stfq, Pes/,

vK{P)-K.E(P) e imDiv.

Equation (4-4), when written out in full detail, yields the following generalization of
a result of Gardner (5) and Gel'fand-Dikil (8,9) on the relationship between the formal
Poisson and Lie brackets:

THEOREM 4-2. Suppose 2 is a non-degenerate skew-adjoint matrix of (pseudo)-
differential operators such that the two form Q = — \du^ N3)~xdu is d^-closed. For any
q-tuples of functions Q, Q' eim E,

vP,(P)-vP(P')=g>E(Qrrg>Q'), P=2)Q, P'=®Q'. (4-6)

For a counter-example to (4-6) when Q does not happen to be closed, letp = q = 1
and consider the skew-adjoint operator^ = 2uxxDx + uxxx. Let Q = u,Q' = u2, which
are certainly in the image of E. Then

It is easy to see that the right-hand side of (4- 6) contains the monomial 2uxuxxx; however,
inspection of the left-hand side shows that this monomial occurs with the coefficient
20, so (4-6) cannot hold.

DEFINITION 4-3. A quasi-Hamiltonian system is an evolution equation of the form

ut = ®E(H), (4-7)

where 3l is a skew-adjoint matrix (pseudo-)differential operator and Hes/ is the
Hamiltonian. If the associated two-form Q. = — \duT h@!-xdu is d*-closed, then (4-7)
will be called a Hamiltonian system and Q the fundamental two-form.

THEOREM 4-4. For a Hamiltonian system, the fundamental two-form is an absolute
integral invariant. Conversely, given an evolution equation with a non-degenerate closed
two-form for an absolute integral invariant, then the equation is a Hamiltonian system.

Proof. Since d* D. = 0, by (3-6*),

vK(Q) = ^ (v £ JQ) = d^E(H).du) = 0,

where K = 3)E{H). This proves the first statement. Conversely, if the invariant of
ut= K is in the standard form Q = — %duT t\3)~xdu, with 3> skew adjoint, then
vK J Q = Q}-xK.du must be ^-closed. By the exactness of (1-9), 3>~XK = E(H) for
some H es/.

In Manin's treatise (12) equation (4-6) is taken as the definition of a Hamiltonian
operator Si. See also Vinogradov(3l) for a coordinate-free version. Manin also gives a
rather cumbersome criterion - his theorem 1.7.13 - for checking whether a given
operator is Hamiltonian. The present definition depending only on the d* -closure of the
fundamental two-form is a much more natural generalization of differential-geometric
theory of finite-dimensional Hamiltonian mechanics and the fundamental forms to the
evolution equations under consideration; see Sternberg(23) for the finite-dimensional
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situation. Also, we have an immediate proof of the important result that any skew-
adjoint matrix of linear, constant coefficient differential operators is Hamiltonian; no
further calculations are necessary.

The objection could be raised that since, in practice, 3 is usually a skew-adjoint
matrix of genuine differential operators, checking the d* closure of the form

duT A^-tdu .

is not easy, and might in fact be just as cumbersome as Manin's criterion. We therefore
provide an easily verifiable criterion for the operator^ to be Hamiltonian, based on the
closure of the associated tivo-form Cl = \duT A3du with respect to a suitably modified
exterior derivative.

LEMMA 4-5. Let 3) = {3^) be a skew-adjoint matrix of differential operators. Define the
modified exterior derivative ds:/\o^Ao+1 by the following properties:

), n = degw,

da(u*) = S ^ - ( ^ ) .
i

Then 3 is Hamiltonian, meaning that the two-form Q = — ^duT A 3~1du is d^-closed, if
and only ifdB(Cl) ~ 0 in A*> where Cl = %duT A3du.

Proof. Define a map F: AO^AOJ

F(P) = P, Pejrf, Fldu*) = dgiu*),

F((OAW) = F{(O)AF(O>), F(Di(o) = DtFico).

F is then well-defined, and, moreover, F(Q.) = Q. From the last formula, w ~ 0 if and
only if F(w) ~ 0, so F also defines a map on A*- Furthermore, using the definitions of
dB and F, for any Perf, F(duP) = dsP. I t is not true that F(duw) = dsF(oj) for
arbitrary forms w, since in particular d3.d& + 0. However, we claim that

F(d* Q) ~ d9 D.

in A*, from which the lemma follows. To verify the claim, we use the usual formula for
the differential of an inverse matrix function to compute

d* Q = i (0 - i du)T A d2> A 2~l du.

Here, the notation d3) stands for the matrix of one-form operators induced by the
differential du acting on the coefficients of 3>. For instance, if 3) is the scalar operator
Dx + %uxDx + uxx, then d3) is an operator whose action on any form w is given by
d3) A (t) = 2dux A DX{OJ) + duxx A &>. Applying F to the above expression yields

F{d+ Q.) = \dv? hdB3) i\du = doCl,

with obvious notation. This completes the proof.
An elementary illustration of this result is provided by the non-Hamiltonian

operator^ = 2uxxDx + uxxx considered previously. The associated two-form is

Q. = \du A (2wzzdux + uxxx du) ~ uxx du A dux.
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Then d3 Q = D% (2uxx dux + uxxx du) A du A dux

= (5uxxxduxx + 2uxxduxxx) AduA dux

~ 3uxxx du A dux A duxx.

Theorem 2-6 then shows that this form is not equivalent to 0 in A*, hence 3l is not a
Hamiltonian operator, as we had previously established.

For a less trivial application, we look at some operators arising in the work of
Gel'fand and Dikii(8). Consider the (n - 1) x (n — 1) matrix of differential operators with
entries

*=o \ * / 3

with D = Dx, so p = 1. (Here i, j run from 0 to n — 2.)

THEOREM 4-6. If 2l is the operator with entriesQi^ as above, then Q = — ^duT

is d^-closed.

Proof. Here
n—1 n-i-j-l

Q = - 2 S
i,j = 0 k = 0

Then
= S (^ + *) ni®i+i+k+i idu1 A du* A du{

i,j,k\ * / !=0

The coefficient of u
i+i+k+l+m+1 dul

m A dw* A du{ is

\ i ) \ m ) [ i )[ k
\ (m + k + i-q\ (n + k-q\_iq+j\ (i + k + m-q\ (k + m-q\\
) \ i ) \ m J \ j ) \ i ) \ k )}'<z=ol\ '

which is zero. This is true because

/m + k + i-q\ lm + k-q\ _ /m + k + i-q\ (m + i\
\ i ){ m ) - [ m + i ){ i ) '

so the first sum is

/m + i\ * /m + k + i - q\ tq +1\ _ Im + i\ (i +1 + m + k + 1\
[ i ) £ 0 \ m + i ) [ I ) - { i ) \ k ) '

by a standard binomial identity. Therefore Lemma 4-5 implies Theorem 4-6.
As a direct consequence, formula (4-6) holds for the operator Q), which is Gel'fand

and Dikii's main Lemma. An intriguing question is why these particular operators
should arise from inverse scattering. Are there corresponding completely integrable
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Hamiltonian systems corresponding to other skew-adjoint operators 2> such that the
corresponding two-form Q is closed, and, if so, what do they look like?

One final remark on this subject is that, by virtue of Lemma 4-5, we can completely
dispense with the use of the inverse differential operator 3)~x in our original definition
of Hamiltonian operators and systems, and work exclusively with the associated two-
form rather than the fundamental two-form. This is vital in a fully rigorous treatment
of the case of more than one independent variable, since there is as yet no commonly
accepted rigorous definition of the inverse of a matrix of partial differential operators.
We leave it to the interested reader to fill in any missing details in this alternative
approach which has the advantage of full rigour, but suffers from a corresponding lack
of intuition.

5. NOETHER'S THEOREM

A conservation law of an evolution equation is a p.d.e. of the special form

DtT + T>WX = 0, (5-1)

satisfied for all solutions of the evolution equation. Here Tes/ is the conserved
density and Xejrfq the associated fluxes. Equivalently, the quantity JT dx is inde-
pendent of time t for solutions such that the integral converges. This in turn means
that the 0-form Te/\% is a relative integral invariant of the equation since

JT(u(t))dx-JT(u(t))dx = JT{u(0))dx- JT(u(0))dx

for any pair of solutions u, u. Conversely, any relative integral invariant TeA* such
that J T(f) dx = 0 for at least one function/in^1 gives rise to a conservation law of the
usual type.

Noether's theorem (14) relates the symmetries of a Hamiltonian system to its
conservation laws. Recall, (15), (17), that a (generalized) one-parameter symmetry
group of ut = K is given by the flow of a second evolution equation ut = P which
commutes with the flow of the first equation. The corresponding infinitesimal criterion
is that the two associated vector fields commute:

[vK,vP] = 0. (5-2)

LEMMA 5-1. Suppose Q is an absolute integral invariant of the evolution equation
ut = K. If ut = P is a symmetry, then the form vP J Cl is also an absolute integral
invariant.

Proof. By (3-7*), (5-2),

vK(vP J Q) = vP J vK(Q) + [yK, vP]JQ = 0,

proving the lemma.
We relate the above result to the more usual point transformational symmetry

groups of the Lie-Ovsjannikov theory(i9). If G is a one-parameter local group of trans-
formations acting on X x U with infinitesimal generator

v = £ £'•(*, « ) i + S &(z,u)£- (5-3)
i = l OX1 j = i OU3
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then the corresponding standard vector field is vP, with

P^p-i^uL (5-4)
? = i

where u\ = du^/dx*. It is easily checked that if G is a symmetry group, then so is the
group generated by \P.

Given a Hamiltonian system, its fundamental two-form is an absolute integral
invariant, so every one-parameter symmetry group gives rise to an absolutely in-
variant one-form. If, moreover, this one-form is ^-closed, then (1-9) and Lemma 3-3
show that there is a corresponding relative integral invariant 0-form, which, by the
previous remarks, is just a classical conservation law. This is the essence of Noether's
theorem. Note that whereas not every symmetry group gives rise to a conserved
quantity, since the rf^-closure qondition must be satisfied, there is always a corres-
ponding conserved one-form. This resolves the observation on the lack of one-to-one
correspondence between symmetries and conservation laws.

THEOREM 5-2. (Generalized Noether's Theorem). Suppose ut = S>E(H) is a Hamil-
tonian system with fundamental two-form Q. = —\duTK3)''1du. If ut = P is a one-
parameter symmetry group, then the one-form a>p = v f J i l = @)~XP .du is an absolute
integral invariant. Conversely, given an absolute invariant one-form a> = Q.du, the
evolution equation ut = S)Q is a symmetry. Moreover, w.p = d%T for some conserved
density T if and only ifP = @E(T), i.e. O. must also be an invariant ofut = P.

More generally, we can allow a time-dependent flow, ut = P(t), which is a symmetry
of ut = K if it preserves the solution set. The analogous infinitesimal criterion is

[vK,vP] = vP(. (5-2t)

The analogues of Lemma 5-1 and Theorem 5-2 now hold with no change in the state-
ments, although the proofs must be slightly modified. This we leave to the reader.

6. SOME APPLICATIONS

(A) The Korteiveg-de Vries equation. Consider the Korteweg-de Vries equation

This can be written in Hamiltonian form ut = DE(H), with H = \(\uz — \u%)dx.
(Here D = Dx.) Thus the fundamental form associated with the KdV equation is
Q. — —\du/\D~1du, which is of course d^-closed. Then theorem 5-2 implies that if
\P is the infinitesimal generator of a one-parameter symmetry group of the KdV
equation, then v P - I Q = D^P.du is an absolute integral invariant. Moreover, if
P = E(T) for some T, then D^P. du = d* T, so T is a conserved density for the KdV
equation.

The connection between the higher-order analogues of the KdV equation and its
infinite family of conservation laws is well known (17). Here we instead consider other
symmetries of the KdV equation and derive a new family of absolute integral invar-
iants which are not conservation laws of the usual kind. The point-transformational
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symmetry group of the KdV equation is four-parameter, generated by the vector
fields

Vi = Bx,

v2 = dt,

V3 = tdx-du,

\ i = xdx+3t8t-2u8u.

These represent invariance under space translations, time translations, Galilean
boosts and scale transformations respectively. In order to apply our Hamiltonian
formalism, we must first put these vector fields into standard form, namely vP , where

-Pi = ux>

P 3 = l-tux,

Pi = 2u + xux + 3tut = 2u + xux + 3t(uxxx + uux).

The corresponding invariants are

co1 = udu = d%(^u2),

w2 = (uxx + \u2) du~d*{- \ul + \u\

co3 = (x + tu)du = d*{xu + \tu2),

w4 = (xu + D~lu + 3t(uxx + \u2)) du

= d*{\xu2 + 3<( - \u%

Also OJO = du is conserved. (This reflects the arbitrary constant in D~l.) Now a>0, (o1; w2

give rise to the first three conserved densities of the traditional hierarchy: u, \uL,
— \u\ + -|M3. The conserved density xu — \tv? corresponding to w3 yields the anomalous
conservation law found by Miura, Gardner and Kruskal(l3). Note that, since \v? is a
conserved density, this shows that \xu dx = at + /? for constants a and /?. Finally the
form w4 is not closed. The fact that w4 is an absolute invariant amounts to the following
property: if u(x, t, A), 0 < A < 1, is any one-parameter family of solutions of the KdV
equation, then

udx. — dxdA+\ %x[u2(x, t, A)]
J o J - o o J - o o Ok J - o o

A =

for constants a', fl', where a' = ( — \u2. + \v?dx. Note that w4 contains the term
o) = D~xu du, and d% o) = — 2Q. By lemma 3-3 w is already a relative integral invariant,
so w4 can be considered as a ' completion' of w to an absolute invariant.

Further, more complicated integral invariants can be obtained by use of the recur-
sion operator for the KdV equation. Recall, (15), that, if vP is a symmetry of the KdV
equation, so is vP, where P' = QuP, and
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Successive applications of the recursion operator.® to the symmetries Vj, v2 just gives
the usual hierarchy of KdV-type equations. Here we apply S> to the other point-
transformational symmetries. Now

= tuxxx + |M + \tuux + \xux

so we just recover the symmetry v4. Applying S> to P4 gives

S>P4 = 5uxx + xuxxx + %v? + xuux + \ux

where K2 = uxxxxx + \uuxxx + ̂ -ux uxx + \u2ux, which is the next polynomial in the
usual KdV hierarchy. The corresponding absolute integral invariant is

w5 = (4MZ + xuxx + \xu2 + %uD~lu + ID-1^2) + MD^K^) du

2] + (3ux + ̂ D-^u2)) du;

where T2 = ^U^ — ^UU^ + Y^U* is the next conserved density in the usual hierarchy.
Therefore, if u(x, t, A), 0 ^ A ̂  1, is a one-parameter family of solutions of the KdV
equation,

for constants <x", /?". Further applications of 3) to the polynomial P 3 gives a new hier-
archy of generalized symmetries \Pk, with Pk+3 = £>k(l +tux), and thus a hierarchy of
absolute integral invariants. I conjecture that none of these new invariants are d#-
exact, and hence do not give rise to conservation laws of the classical type. Applications
of these invariants will be considered elsewhere.

(B) The BBM equation. The equation

was proposed by Benjamin, Bona and Mahoney(2) as an alternative equation for
describing long waves in shallow water. This can be put into Hamiltonian form
ut = @E(H), w i t h ^ = (1 - D 2 ) - 1 / ) and

=n
J - c

H

The fundamental two-form is then

= \(du A dux — duA D~x du).

Now if vR is the standard form of a symmetry, then the corresponding invariant one-
form is wP = v P J Q = (D~1P — DP)du. I t is easily shown that the symmetry group
of the BBM equation has the three generators

8X, 8t, t8t-(u+l)du,
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which have standard representatives (up to sign)

UX8U>

+ tut) 8U = [u + 1 + t{ 1 - Z)2)-1 (uux + ux)] 8U.

The corresponding absolute integral invariants are

+ u)] du = (D-1u — ux)d

Also co0 = rfw is- an invariant. Now o>0, w1, w2 are just the usual three conserved
quantities of the BBM equation, and it can be shown that there are only these three
quantities (16). Invariance of w3 implies that if u(x, t, A) is a one-parameter family of
solutions of the BBM equation, then

I I
J o J - o o V J - o

xu

for constants a, ft. It can be shown by a fairly tedious calculation that there are no
further symmetries of the BBM equation, and thus no further invariant one-forms.

I should like to express my thanks to Professor T. Brooke Benjamin for many
stimulating discussions on Hamiltonian systems, and to the Science Research Council
for support in the period during which this work was completed.

* Note added in proof. A recent paper of Gel'fand and Dorfman (32) also analyzes
the Hamiltonian formalism and obtains results similar to those in section 4.
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