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One of the distinguishing features of soliton equations is the fact that they can be written in 
Hamiltonian form in more than one way. Here we compare the different quantized versions of 
the soliton equations arising in the AKNS inverse scattering scheme. It is found that, when 
expressed in terms of the scattering data, both quantized versions are essentially identical. 

In 1975, one of the present authors 1 showed how to ob­
tain the quantized levels of the nonlinear Schrodinger equa­
tion using the action-angle variables (canonical coordi­
nates) of the AKNS scattering data. The symplectic form 
used to effect the reduction to canonical coordinates was 
based on the standard Hamiltonian structure for the nonlin­
ear Schrooinger equation. The method used was a nonlinear 
generalization of one of the standard methods for the second 
quantization of the electromagnetic field. As presented in 
the textbook by Schiff,2 one takes the classical electromag­
netic field and decomposes it into normal modes (Fourier 
components). The key idea in this approach is that the clas­
sical electromagnetic Hamiltonian will decompose into a 
sum of noninteracting classical Hamiltonians, each of which 
has just two degrees of freedom and· is easily quantized by 
itself. This method of quantization bypasses all the inherent 
difficulties of fully quantizing the system, including the fac­
tor-ordering problem, defining the quantum field operators 
for the fundamental fields, etc. 31t is fundamentally based on 
the symmetries of the classical system, and reduces the prob­
lem to one of quantizing noninteracting particles.4 In this 
way, the original difficult second quantization problem is 
reduced to a simpler set of noninteracting problems. The 
advantage of this simpler solution is tremendous when one 
considers the information that one can glean from it. First, 
one can obtain the spacings of the energy levels. One also 
discovers which quantum variables will commute, and 
which modes will have a particle-like behavior. Of course, 
for a full quantum theory, one still has to deal with a number 
of remaining difficult problems, including finding a consis­
tent factor-ordering for the quantum operators, evaluating 
matrix elements, etc. Unfortunately, the solution to this 
larger quantization problem may well be multivalued.3 

However, in the meantime, one has been able to immediately 
isolate the above mentioned important features of second 
quantization, and, very importantly, those quantities which 
would have the same common solution for every possible 
consistent second quantization. Thus, any difficulty which 
would be found at this level would also be present in any 
quantum field theory. And a study by this method can pro­
vide valuable insight into the structure of the more thorny 
parts of the second-quantization problem. 

The symplectic form used in Ref. 1 to effect the reduc­
tion to canonical coordinates was based on the first Hamilto-

nian structure for the nonlinear Schrooinger equation. In 
1978, Magris showed how many soliton equations, including 
the nonlinear Schrooinger equation, could be written as bi­
Hamiltonian systems, meaning that they have two distinct, 
but compatible, Hamiltonian structures. Indeed, his funda­
mental result showed that, subject to some technical hypoth­
eses5.6 any bi-Hamiltonian system is completely integrable in 
the sense that it has infinitely many conservation laws in 
involution and corresponding commuting Hamiltonian 
flows. 

From the viewpoint of quantum mechanics, the exis­
tence of more than one Hamiltonian structure for a given 
classical mechanical system raises the possibility of there 
existing more than one quantized version of this system, 
even at the level of quantization considered in Ref. 1. The 
resulting ambiguity in the quantization procedure raises se­
rious physical doubts as to the mathematical framework of 
quantization. However, the main result to be proven here is 
that, for AKNS soliton equations,7 both quantized versions 
are essentially the same. We demonstrate that, in terms of 
the respective canonical coordinates on the scattering data, 
the two Hamiltonians have identical expressions, and hence 
identical quantum versions. Indeed, we conjecture that this 
phenomenon is true in general: quantization does not depend 
on the underlying Hamiltonian structure. (The results of Do­
donov et aI., 8 in which an ambiguity in the quantization pro­
cedure for certain finite-dimensional bi-Hamiltonian sys­
tems is supposedly demonstrated, are erroneous, since they 
fail to incorporate the important topological properties of 
phase space properly in their picture. Indeed, their ambigu­
ity is just a version of the ambiguity inherent in the quantiza­
tion of two-dimensional Hamiltonian systems, which we dis­
cuss in detail below.) Moreover, we will see that for the other 
members of the associated hierarchy of soliton equations the 
only difference in the quantum versions is in the choice of 
weighting factor for the quantum operators corresponding 
to the continuous spectrum, the weight being determined by 
the classical dispersion relation, and the replacement of the 
bound state Hamiltonians. Thus, the effect of quantizing dif­
ferent members of the soliton hierarchy will only be signifi­
cant for the bound states/solitons. 

Our presentation relies heavily on the notation and re­
sults in earlier papers by Kaup and NeweU I

•
9

•
IO on the clo­

sure of the squared eigenfunctions for the AKNS scattering 
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problem. The key to our result is the well-known fact that the 
recursion operator, which is built out of the two Hamilto­
nian operators for the system5

•
6 is essentially the squared 

eigenfunction operator. Since variations in the potential for 
the AKNS scattering problem are expressed in terms of the 
squared eigenfunctions, the second symplectic form can be 
simply written down in explicit form. In terms of the scatter­
ing data, it differs from the first symplectic form only by a 
weighting factor in the continuous spectrum, and a change 
in the discrete components. However, the corresponding dif­
ference in weighting factors for the two Hamiltonians exact­
ly cancels out the weighting factor for the two symplectic 
forms, while the discrete components reduce simply to the 
quantization of a two-dimensional Hamiltonian system, 
based on different symplectic structures. Thus, the entire 
quantum ambiguity reduces to the simple matter of an ambi­
guity in the quantization of two-dimensional Hamiltonian 
systems, a problem that is easily handled. 

Our notation is as follows. Hamilton's equations are 

a,Qa=JapapH, (1) 

where Q = {~} are the dynamical variables (the p's and 
the q's), J = [,FP] is the Hamiltonian operator, which de­
termines the underlying Hamiltonian structure of the phase 
space, and H is the Hamiltonian function or density. For 
instance, for a harmonic oscillator, one would take 

Q=~). J=(_~ ~). and H=!(p2+t/). 

When Q is a function of a continuous variable, the sum over 
the dummy indices in (1) is understood to include the ap­
propriate integration, and the partial derivative is under­
stood to be a functional derivative instead. The Poisson 
bracket determined by such a Hamiltonian operator has the 
form 

{F, G} = (aa F)Jap apG, (2) 

which requires the symplectic two-form to be 

fl = ! dQ a A J ;/ dQ p . (3) 

For the harmonic oscillator, this reduces to the familiar ca­
nonical form 

fl = dpAdq. (4) 

Therefore, the operator J needs to be skew adjoint, and satis­
fy the additional condition that the Poisson bracket (2) sat­
isfy the Jacobi identity, which is equivalent to the require­
ment that the two-form fl can be closed. 6 

Before presenting the main results, we discuss a simple 
but crucial fact that any two-dimensional Hamiltonian sys­
tem has a unique quantized version, even though it has many 
different Hamiltonian structures. In terms of the standard 
Hamiltonian structure prescribed by the canonical two-form 
( 4), Hamilton's equations take the classical form II 

aH aH 
p, = --, q, =-. 

aq ap 
(5) 

In H2, any nonzero two-form A(p, q)dpAdq is always 
closed, and hence determines a Hamiltonian operator 
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( 0 -1) 
j= ~ Ao' 

It is easy to see that (5) can be written in Hamiltonian form 
using this second Hamiltonian structure if and only if A is a 
function of the Hamiltonian H. In this case, the new Hamil­
tonian function is 

H 2(p,q) =~[H(p,q)], 

where ~(s) is any nonvanishing scalar function, and 

fl2 = ~'[H(p,q) ]dpAdq (6) 

is the second symplectic form. Re-expressing fl2 in canonical 
form will lead to new canonical variables p, q, and an ostensi­
bly different quantized version. However, provided this 
transformation does not affect the phase space topology, it is 
not hard to see that these two quantized versions will end up 
being identical, at least in the semi-classical limit, and so 
there is no ambiguity in the (semi-classical) quantization of 
two-dimensional Hamiltonian systems. 

We now turn to our problem at hand. For simplicity, we 
will consider the general nonlinear Schrooinger equation 

iq, = - qxx + 2rt/, (7a) 

ir, = rxx + 2qr, (7b) 

in detail. However, our arguments will work equally well for 
any other soliton equation associated with the AKNS spec­
tral problem7

; see the remarks at the end of the paper. For 
r = ± q*, (7) reduces to the single equation 

iq, = - qxx ± 2(q* q) q, (8) 

which is the form of the nonlinear SchrOdinger equation in 
which all physical constants, e.g., Ii, m, etc., have been set 
equal to 1. According to Magri,s the nonlinear Schrooinger 
equation can be written as a bi-Hamiltonian system 

'1', = J I aHI = J2 aH2 . (9) 

The first Hamiltonian can be identified with the (signed) 
energy 

HI = ± E = fO "" (qxrx + t/r)dx , 

while the second Hamiltonian is the field momentum 

H2 = P = i L"""" (rqx - qrx )dx . 

The two Hamiltonian operators are given by 

-i'l 
0) , 

( 10) 

(11 ) 

(12) 

(13) 

(In our notation,6 we have omitted the delta functions used 
by some authors.) Moreover, these Hamiltonian structures 
are compatible, in the sense that any linear combination 
CIJI + C~2 is also Hamiltonian. Therefore, according to the 
theorem of Magri the operator 
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(14) 

is a recursion operator for the general nonlinear SchrOdinger 
equation, leading to an infinite hierarchy of mutually com­
muting bi-Hamiltonian flows. 

To determine the two quantized versions of the nonlin­
ear SchrOdinger equation, we need to introduce canonical 
coordinates and momenta, which will be found among the 
scattering data for the associated eigenValue problem. We 
begin by recalling how this was done in Ref. 1 for the first 
symplectic form. The general nonlinear SchrOdinger equa­
tion can be solved using the AKNS eigenvalue problem 7 

vl,x + itvl = qV2' v2,x - itV2 = rol . (15) 

We let 

~ = (::) 

be the solution to (15) satisfying the boundary conditions 

. (1) (a(t)e - ;'X) 
~->e-I'x 0' X-> - 00, ~-> b(t)e;'X ' X->oo, 

for 1m t> O. Similarly, let 

be the solution to (15) satisfying the boundary conditions 

:;: ;,x( 0 ) .,,->e- _ l' X-> - 00, 

_ (b(t)e-;'X) 
~-+ _ o(t)e;'X' X-+ 00 , 

for 1m t < O. This serves to define the scattering coefficients 
a, b, 0, b, which also satisfy 

(16) 

Theratiop(s) = b(s)/a(s), sreal, serves to define the con­
tinuous spectrum of the scattering data for (16). The zeros 
of a(t) in the upper half plane correspond to the bound 
states, and are denoted as t) = s) + ill),j = 1, ... ,N. Finally 
let bj denote the value of b at t j , and let Pj denote the residue 
of p at the pole t j • Similar quantities are defined for the 
eigenvalues 1. 

In Ref. 1 it was shown how to express the first symplec­
tic two-form in terms of the scattering data in the case 
r = ± q*. Tracing through the calculation there in the more 
general case, we find that 

0 1 = if"oo {8q1\ 8r}dx 

= ~ J: 00 {810g b(s) 1\ 810g[0(s)a(s) ]}ds 

N 

- 2 L (8tj 1\8 log bj + 8'j 1\8 log b) , 
j= I 

(17) 

I 

where the last sum is absent if r = + q*, since there are no 
bound states. When r = ± q*, then o(s) = a(s)*, and 
b(s) = =fb(s)*. In this case one can choose canonically 
conjugate variables by letting 

Aj = 411), p) = - 45), p(s) = - (i/11')logla(s) 1 , 
represent the momenta (p's), and letting 

Bj = arg b), q) = loglbjl, q(s) = arg b(s) 

represent the conjugate coordinates (q's) for the system. 
The first Hamiltonian functional is then expressed as 

(18) 

From this expression, the quantized form follows directly as 
in Ref. 1. 

For the second symplectic form, we first recognize that 
by (12), (13) and Ref. 7, 

(19) 

where LA is the recursion operator for the squared eigen­
functions. Recall that the squared eigenfunctions corre­
sponding to (15) are the functions 

We define the corresponding quantities'll) for the bound 
states t) similarly. The key resuleo is that the recursion oper­
ator LA, given in (19), has the squared eigenfunctions as 
eigenstates: 

(20) 

Thus we can compute the second symplectic form 

Now, according to (B3) of Ref. 10, 

N 

- 2i L (8p) 'IIj + Pj 8tjX) + 8p) ~j + p) 81x). 
j= I 

Therefore, using (20), 

(L A )-18V = !f: 00 [8p(s)(L A )-I'II(S) - c5p(S)(LA)-I~(S)]ds 

115 

N 

- 2iL (8pj(L A)-I'IIJ +p)8tJ(L A)-IXJ + c5p)(LA)-I~j +p)81(L A)-li,;) 
j= I 

= ~foo (8p(s)~(s) - ¥(s)~(s») ds - 2i f (8(P))'II) + Pj 8tjX) + 8(~)~J + ~ 81x)) , 
1r - 00 S + IE S - IE )= I t) tJ tJ tJ 
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where we have moved the integral over the continuous spec­
trum off the real axis to avoid the singularity at' = O. There­
fore the only difference between the computation of 0 1 and 
the new symplectic form 02 are the weighting factors 1/ S' in 
the continuous spectrum, and 1/ 'j in the discrete spectrum. 
A similar calculation as was used to produce ( 17) now gives 

02 = ..!.. {c510g[ii(S')a(S')] 1\15 arg b(S')}-. f'" dS' 
ff -'" S' 

+ ..!..b(0)b(0)c510g 0(0) 1\ 15 log [;(0) 
2 a(O) b(O) 

N __ 

- 2 L {c510g 'j 1\ 15 log bj + 15 log 'j 1\ 15 log bj } , 

j= I . 
(21) 

where the two complex integrals have combined to give the 
principal value in the leading term, and extra discrete term 
comes from the associated residues at the pole, = O. When 
r = ± q*, canonically conjugate variables are provided by 
the momenta 

Aj = 4 arg '1' Pj = - 410gi'j I, 
p(S') = - (i/ffS') 10gla(S') I, 

and the conjugate coordinates 
'" Bj = arg bj , qj = loglbj I, q(S') = arg b(S') , 

provided S' #0. In addition, the point S' = 0 appears sepa­
rately as the extra residue term in the expression for 02' so 
this particular mode survives the principal value cancella­
tion in a new discrete form. However, there is no simple 
formula for the relevant canonical variables there. Also, in 
the case r = ± q*, this term vanishes because a( 0) = a( 0), 
and so this extra complication does not arise. All the other 
modes for the continuous spectrum are related according to 
the simple reweighting 

p(S') = S'p(S'). (22) 

For the second Hamiltonian structure, the Hamiltonian 
functional giving the nonlinear SchrOdinger equation is the 
momentum (11). According to the calculations in Ref. 1, it 
can be expressed in terms of the scattering data as 

4 f'" N -2 2 
H2 =P=-; _'" S'logla(S')ldS'-4ij~1 ('J -'j)' 

(23) 

Comparing with ( 18), we see that, in terms of the respective 
canonical variables, the continuous spectrum contribution is 
exactly the same weighted sum of the continuous canonical 
momentum variable associated with the respective symplec­
tic two forms: 

4 f'" HI: -; _ '" S'2p (S')dS' versus 

H 2: : S: '" S'p(S')dS' = : S: '" S' 2p (S')dS'. 

Therefore, the continuous modes have identical quantiza­
tions. (The singular point S' = 0 plays no role as both Hamil­
tonians make no contribution to this mode.) As for the 
bound states, we are reduced to the case of a collection of 
integrable two-dimensional Hamiltonian systems with dif-
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ferent Hamiltonian structures. For the original symplectic 
form 0 1, the Hamiltonian system corresponding to the dis­
crete eigenvalue 'j has the form 

(logbj)t = - ~ ~~I =4i'J, ('j)t = ~ a~=lbj =0, 

and similarly for the eigenvalues ~. (We are just reproduc­
ing the classical calculation of the evolution of the discrete 
scattering data for soliton equations.) For the second sym­
plectic form 02' the Hamiltonian system corresponding to 
the discrete eigenvalue '} now takes the form 

I b 1 aHI 4'1- 2 (og j) t = - - = l~ J' 
2 alog'} 

(l I- 1 aHI 0 
og~j)t = 2 alogb) = , 

and similarly for the eigenvalues~. Thus, these two dimen­
sional Hamiltonian systems are identical, even though they 
use two different Hamiltonian structures: 

- 2c5'j 1\ 15 log bJ versus - 215 log 'j 1\ 15 log bj • 

However, as we remarked above, we take as fundamental the 
fact that a two-dimensional Hamiltonian system has a 
unique quantization, even though it has many different 
Hamiltonian structures. Therefore the bound states for the 
nonlinear SchrOdinger equation also have identical quanti­
zations. We conclude that both Hamiltonians lead to the 
same quantized verison of the nonlinear SchrOdinger equa­
tion. 

As a final remark, we recall that the other soliton equa­
tions appearing in the AKNS scheme can be written in the 
form 

(;)t = O(LA)(;t, 
where O(S') determines the linear dispersion relation.7 

These can all be written in bi-Hamiltonian form using the 
same two Hamiltonian structures as above. An identical cal­
culation, which we omit for the sake of brevity, will show 
that the two quantized versions of any member of these 
AKNS hierarchies will lead to the same quantum version. 
Moreover, it is not hard to see that the only difference be­
tween the quantized versions of two different members of the 
same soliton hierarchy is in the weighting factor O(S') for 
the modes corresponding to the continuous spectrum [with 
appropriate discrete contributions at the points where 
O(S') = 0] and replacement of the discrete Hamiltonians by 
0('1) and O(~), respectively. Thus the only distinction 
between the various quantized versions of a soliton hierar­
chy is in the weighting assigned to the continuous modes, 
and the replacement of the Hamiltonian governing the evo­
lution of the bound states. Finally, we note that the same 
considerations will apply to other soliton equations, such as 
the Korteweg-de Vries equation, as the key fact that the 
recursion operator is the squared eigenfunction operator re­
mains valid. 
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