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THE CONNECTION BETWEEN PARTIAL DIFFERENTIAL
EQUATIONS SOLUBLE BY INVERSE SCATTERING
AND ORDINARY DIFFERENTIAL EQUATIONS OF PAINLEVE TYPE*

J. B. MCLEOD' aND P. J. OLVER¥

Abstract. A completely integrable partial differential equation is one which has a Lax representation, or,
more precisely, can be solved via a linear integral equation of Gel'fand-Levitan type, the classic example
being the Korteweg—de Vries equation. An ordinary differential equation is of Painlevé type if the only
singularities of its solutions in the complex plane are poles. It is shown that, under certain restrictions, if G is
an analytic, regular symmetry group of a completely integrable partial differential equation, then the reduced
ordinary differential equation for the G-invariant solutions is necessarily of Painlevé type. This gives a useful
necessary condition for complete integrability, which is applied to investigate the integrability of certain
generalizations of the Korteweg—de Vries equation, Klein-Gordon equations, some model nonlinear wave
equations of Whitham and Benjamin, and the BBM equation.
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1. Introduction. The recent discovery of nonlinear partial differential equations
which can be exactly solved by the linear integral equations of inverse scattering theory
has provoked considerable interest in the range of applicability of these methods for the
integration of nonlinear equations in mathematical physics. The original investigations
of Gardner, Kruskal and Miura [26] and Lax [22] for the Korteweg—de Vries (KdV)
equation have now been extended to solve a surprising number of differential equations
of physical interest, including the sine-Gordon, nonlinear Schrodinger, three-wave
interaction and other equations (cf. [1], [19], [37], [38], [39]). In all of these examples,
the given equation is recast into a “Lax representation,”

(1.1) 4L —[B,L]1=BL-LB,

where L,B are linear differential operators depending on the solution u(x,t) of the
equation, with B skew-adjoint. This representation implies that the spectrum of L has
an elementary time evolution, and hence the original equation can be integrated once
the inverse scattering problem of reconstructing the potential u(x,?) from the spectral
data of the corresponding operator L has been solved. In all known examples, this

inverse scattering problem is effected through the solution of a linear integral equation
of the form

(1.2) K(x,p3 )+ FOxps0)+ [ K(x,230)H(z,p;) d2=0,

known as the Gel’fand-Levitan equation. Here F and H are constructed from the

spectral data of L; the potential u(x,t) is recovered from the values of K on the
diagonal x=y.
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Hereafter, any partial differential equation which can be solved by such a linear
integral equation will be termed completely integrable, this terminology stemming from
the interpretation of the KdV equation as a completely integrable Hamiltonian system
[11], [23]. Of course, only certain types of solutions can be obtained in this fashion, so
this definition is subject to further refinement (cf. Definition 2.1). Completely integra-
ble equations all seem to have many other remarkable properties in common including
cleanly interacting soliton solutions, existence of infinitely many conservation laws,
Bicklund transformations, etc. (cf. [21]). However, the precise interrelationship among
these properties remains to be rigorously formulated; thus reasons of practicality
necessitate the adoption of the Gel'fand-Levitan type of linear integral equation as the
distinguishing characteristic of complete integrability.

The most notable drawback in the applicability of inverse scattering techniques is
that there is as yet no systematic method for determining whether a given differential
equation is completely integrable, i.e., can be solved by such a linear integral equation.
In this paper we find a useful necessary condition for integrability based on the nature
of the complex singularities of group-invariant solutions to the equation. Whereas we
are thus no closer to finding a scattering problem if it exists, this condition is useful for
determining when no such solution is possible. In the applications to be considered, a
number of nonlinear partial differential equations (p.d.e.’s) of interest will be shown
not to be integrable by inverse scattering methods.

This condition was inspired by an observation of Ablowitz, Ramani and Segur [2],
[4] that the ordinary differential equations for group-invariant (self-similar) solutions of
known examples of completely integrable equations inevitably are equations of the type
studied by Painlevé and his students; these are characterized by the property that all
their solutions are meromorphic in the complex plane (cf. [17], [18]). Such an equation
will be referred to as an equation of Painlevé type. (Painlevé also allowed fixed
singularities of arbitrary type, but we will not.) This leads immediately to the conjecture
proposed by Ablowitz, Ramani and Segur [2] and Hastings and McLeod [16]:

CONJECTURE. If a system of partial differential equations is completely integrable,
and G is a symmetry group of this system, then the reduced system of ordinary differential
equations for the G-invariant solutions is of Painlevé type.

This conjecture, if true, would provide a powerful necessary condition to test for
complete integrability. Here we will prove a somewhat weakened version of the conjec-
ture, which nevertheless proves useful in several applications. There are two restrictions.
First, if, in the Lax operator L, some combination of the solution # and its spatial
derivatives occurs, say Q(u), then it is this combination (or combinations) that must
have only poles as singularities. For instance, if L=D?+u_, then only u, is required to
have poles, and thus we may allow logarithmic branch points as singularities of the
solutions of the reduced ordinary differential equations. Usually we will assume that Q
is a linear combination of u and its spatial derivatives, calling this case linearly
completely integrable. Secondly, the same combination Q must satisfy certain precondi-
tions for the inverse scattering formalism to go through; this means that, when re-
stricted to the real axis, Q either is periodic or satisfies decay conditions at x= %= o0,
which implies corresponding restrictions on the solutions u that can be considered. It is
only for such solutions such that Q(u) must be meromorphic. If a system of ordinary
differential equations has the property that, for such solutions u, the combination Q(u)
is meromorphic, we say that the system is of restricted Painlevé type relative to Q. Our
basic result, in rough form, replaces “Painlevé type” by “restricted Painlevé type” in
the above conjecture.
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The main tool in our proof is a theorem of Steinberg [32] which states that if 7(z)
is an analytic family of compact operators in a Banach space, then (I—T(z))™},
provided this inverse exists for at least one value of z, is a meromorphic family of
operators. Under appropriate assumptions on the initial data of our completely integra-
ble system (to ensure that the functions F and H in the Gel'fand-Levitan equation
satisfy certain analyticity criteria) we can conclude from Steinberg’s result that Q must
be a meromorphic function of (x,¢). Now suppose that G is a one-parameter, analytic,
regular local group of transformations acting on the space of independent and depen-
dent variables which leaves the set of solutions of the system of partial differential
equations invariant. Then the G-invariant (self-similar) solutions can all be found by
integrating a system of ordinary differential equations on the quotient manifold whose
points correspond to the orbits of G. The analyticity of G implies that for any
G-invariant solution whose initial data satisfies the inverse scattering assumptions, the
function Q on the quotient manifold can have only poles for singularities. In other
words, the reduced system of ordinary differential equations must be of restricted
Painlevé type relative to Q.

Ablowitz, Ramani and Segur [2], [3] have also given proofs of a version of the
above conjecture. They restrict their attention to Gel’fand—Levitan equations of Fred-
holm type, and their groups are only groups of scaling transformations. Thus our result
is somewhat more general. Both proofs are necessarily restricted to certain types of
solutions, in particular, solutions decaying sufficiently rapidly as |x| - oo are allowed.
Extensions to the case of spatially periodic solutions can be inferred from the work of
McKean and Trubowitz on the Korteweg—de Vries equation [23], [34], although the
analogue of the Gel’'fand—-Levitan equation is not explicitly written down. We strongly
suspect, however, that solutions are in general meromorphic in the periodic case also,
and therefore include solutions of this type in our test for complete integrability. It
would be of great interest to remove all restrictions on the types of solutions for which
such a result can be proved and thereby prove the complete version of the conjecture.

In § 3 we discuss some applications of this result. First we show that the gener-
alized KdV equation

(1.3) utufu +u, =0

can be linearly completely integrable only if p=0,1, or 2. These exceptional cases
correspond to the Airy equation in moving coordinates, the KdV, and the modified
KdV equations, which are well known to be completely integrable. Secondly we con-
sider a nonlinear Klein-Gordon equation in characteristic coordinates:

(1.4) u=f"(u).

It is shown that if f(u) is a rational function, real for real u and with two consecutive
zeros, simple or double, on the real axis, and if (1.4) is linearly completely integrable,
then f is a polynomial of degree at most 4. Also, if f(u) is a linear combination of
exponentials e®* with the «; all rational multiples of some complex number a, again
real for real u and with two consecutive simple or double zeros, and if (1.4) is linearly
completely integrable, then

f(u)=c,e?P+cieP+cy+c_e Putc_je2Pu
for some B. This includes the sine- and sinh-Gordon, and an equation due to Mikhailov

[24], [25], which are known to be integrable, and the double sine-Gordon equation,
whose status is a matter of dispute. The next application shows that certain nonlinear
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model wave equations considered by Benjamin, Bona and Mahony [5] and Whitham
[36] cannot be linearly completely integrable. The last example deals with the BBM
equation [5],

(1.5) utuu,~u,,=0.

xxt™

Although this cannot be treated rigorously by the methods of the present paper, we
show that if the full conjecture were true, then (1.5) could not be linearly completely
integrable.

Finally we discuss the general Lax representations of Gel’fand and Dikii for scalar
differential operators L of order n (see [12], [13]). For n a composite number, there exist
steady state solutions of the corresponding evolutionary systems with arbitrary complex
singularities. This suggests that the inverse scattering problem for such an L is not
amenable to solution by a Gel'fand—Levitan type equation, at least in the form dis-
cussed here. Indeed, only for second and third order L (see [20]) has the inverse
problem been solved, so the theory for fourth order operators becomes of great interest.
From those results, it can be seen that our criterion for complete integrability is a
powerful preliminary test to determine whether a given system can be integrated by
inverse scattering.

2. Analyticity properties of completely integrable differential equations. Consider a
system of partial differential equations

(2.1) A(t,x,u) =0,

where x,tER and u=(u',- - -,u™) ER™ is a vector-valued function. We assume that the
initial value problem of (2.1) with

(2.2) u(x,0)=f(x)

is well posed for f in some Banach space % of functions, so that for ¢ sufficiently small,
there is a unique solution u(x,#) of (2.1)—(2.2). In practice % is either a space of
functions decreasing sufficiently rapidly at =oo or a space of periodic functions.
Usually the presence of appropriate conservation laws will ensure that the solutions are
actually global in ¢, but this will not be assumed a priori. The first task is to make
precise what is meant by (2.1) being completely integrable.

DEFINITION 2.1. A system of partial differential equations is completely integrable

relative to Q(u) in the Banach space % if there is a linear matrix integral equation of the
form

(2.3) K(x,y; t)+F(x,y;t)+f°°K(x,z;t)H(z,y;t)dz=0,
X

called the Gel’ fand—Levitan equation, satisfying the following properties:
i) F, H, K are N X N matrices of functions;
ii) F and H are uniquely determined by the initial data (2.2);

iii) for initial data in 9B, and for all real x, y, all complex &, and ¢ in some domain
in C, the functions F(x —et,y —et; t) and H(x—et,y —et;t) are analytic in ¢, ¢, and there
is a Banach space %B* (not necessarily the same as ®) for which F(x—et,y —et; 1) ER*
as a function of y and the operator

T(x,t)f(y)Zf:of(z)H(z—st,y—et; 1) dz

is a compact operator in $*;
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iv) the Gel'fand—-Levitan equation has a unique solution (in %*) for all x and at
least one ¢ in £;

v) the solution u of the system (2.1), (2.2) can be recovered from the solution K of
the Gel'fand-Levitan equation via a relation of the form

(24) Olu(x,1)] =P[K(x,x,0)],

where Q is some function of u and its spatial derivatives, and P is a polynomial in K
and its spatial derivatives.

Thus to recover the solution u of a completely integrable system of partial differen-
tial equations, we must solve the Gel'fand-Levitan equation for K and then solve the
differential equation (2.4) for u. In practical examples, Q is a linear combination of the
spatial derivatives of u, and in this case the system will be called linearly completely
integrable. 1t should also be remarked that the requirement that iii) hold for all
complex & can certainly be relaxed, although there seems little practical point in doing
so, and that the domain £ will customarily include the origin or at least have the origin
on its boundary (it might, as in the example of the KdV equation below, be a sector of
a circle center the origin).

Example 2.2. The Korteweg—de Vries equation. This is the original example of the
use of inverse scattering techniques [21], [22]. The equation is

(2.5) u,+6uu +u, . =0,
and has a Lax representation with operators
(2.6) L=—D*~u, B=-—{4D’+3(Du+uD)},
where D=d/dx. The Gel'fand-Levitan equation takes the form
o0
(2.7) K(x,p;1)+ F(x+y; )+ [ K(x,2;0)F(z+y;1) dz=0,
X

and we recover the solution of the KdV equation via

—, 4 .
(2.8) u(x,t)=2 de(x,x,t).
The kernel F is given by

29)  Fxi)=3 (8k21—k,x)+o [ R(k)exp(2kx+8ikr) dk
(2.9) (x,t)-j:lcjexp Jt—kx 271f,°° exp(2kx +8i ,

where A ;= —ka are the eigenvalues, c; the corresponding norming constants and R(k)
the reflection coefficient associated with the potential u(x,0)=f(x). This solution is
valid provided

(2.10) f:(1+x2)|f(x)|dx<oo

(cf. [7], [21]).

The uniqueness of the solution of (2.7) in the KdV case is a standard result, and
the only item remaining to be checked is Definition 2.1 in condition iii). So far as
analyticity is concerned, the only part of F that could fail to be analytic is that
corresponding to the continuous spectrum of L:

(2.11) Fc(x,t)2%/00R(k)exp[8ik3t+ikx]dk.
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If we take any reasonable space of initial data for B, for example that given by (2.10),
then R(k) can be extended analytically into the upper half of the k-plane, and |R(k)/k?|
is bounded as |k|— oo. (The function R is closely related to the spectral density function
m of Titchmarsh, and the analyticity and estimates can be obtained by suitably
translating the results in [33, Chap. V].) If therefore we write

1 0 *® . ,
FC(X’I):E{.[OO+L }R(k)exp[8tk3t+th]dk=F2+Fl,

say, and consider F,, then, if ¢ is real and positive, we can deform the integral from
(0, 00) to (0, ac0), for any a with 0<arga<{jw. We can now increase arg?, but the range
for a becomes 0<arga<3(7—arg?). Nonetheless this does allow us to define F,(x,t)
as an analytic function of ¢ for 0 <arg¢<<a. (It is also an analytic function of x since for
large k the term k3¢t dominates kx.) If we decrease argt, the range for a becomes
—jargr<arga<iw, which allows us to define F,(x,¢) as an analytic function of ¢ for
-r<argt<0, and so in fact in the whole complex plane cut along the negative axis.
Similar remarks apply to F,.

Further, by using the deformed contours and integrating by parts (integrating e’**
and differentiating the remainder), we see that FE®, the Banach space defined by
(2.10), and that the operator T is compact in B, although % is certainly not the only
possible choice for $B*.

Example 2.3. A case in which the combination Q(u) appearing in the definition 2.1
of complete integrability is nontrivial is provided by the sine-Gordon equation, which is

(2.12) u,=sinu.

The scattering problem which can be used to solve the sine-Gordon equation was first
described by Zakharov and Shabat [39] and was developed in full detail by Ablowitz,
Kaup, Newell and Segur [1]; it takes the form

o, = —ifo—Fu (x,t)w,
(2.13)
w,=i{w+iu (x,1)v,

in which the x-derivative u, of the solution of the sine-Gordon equation appears as a
potential.

The analogue of the Gel’fand-Levitan equation for (2.13) again takes the form
(2.7), but in this case K and F are now 2X?2 matrices of functions. The matrix F is
constructed from the appropriate scattering data for (2.13); the precise details of this
construction can be found in [1]. Since u, appears as the potential in (2.13), the
analogue of (2.8), used to recover the solution of the sine-Gordon equation, takes the
form

u (x,t)=—2K,(x,x;1),

where K, denotes the upper right-hand entry of the matrix K. Thus for the sine-Gordon
equation, Q(u)=u,, a fact that will be of significance when we analyze the travelling
wave solutions in §3.

We now investigate the properties of the solutions of a general integral equation of
Gel'fand-Levitan type. Our main tool is the following theorem of Steinberg [32],
generalizing a theorem of Dolph, McLeod and Thoe [9], for the case of Hilbert—Schmidt
operators.
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THEOREM 2.4. Let D be a Banach space, and let T(z) be an analytic family of
compact operators defined for z€Q CC. Then either I—T(z) is nowhere invertible for
2E€Q or (I—T(z))~ ! is meromorphic for z Q.

Let us write the Gel’fand-Levitan equation (2.3) in the symbolic form

(2.14) (I+T(x,t))K(x,y;t)+F(x,y;t)=0,
where T(x,t) denotes the family of integral operators
o0
(2.15) T(x,0)/(y)= [ f(2)H(zy50) de.
P

It will always be assumed that 7(x,¢) is a compact operator for each fixed (x,¢). For
instance, this is guaranteed if

00 00 2
[ HG, 20 dydz<oo;
X

X

indeed, in this case T is Hilbert—Schmidt.

To apply Steinberg’s theorem, we treat the time ¢ as the complex parameter. (Note
that it would not do any good to look at x as this parameter since the domain of
integration for T(x,t) depends on x, and so the operators could not possibly be
analytic for a large enough class of functions.) Now, for all x, y, if the kernel H(x,y; )
depends analytically on 7 for €, then the operators T(x,?) depend analytically on z.
If furthermore F(x,y;t) is analytic in ¢, then Steinberg’s theorem implies that

K(x,y;t)=—(I+ T(x,t))” ' F(x,y;t)

is, for each fixed (x,y), a meromorphic function of z. (It is one of the assumptions of
complete integrability that the inverse exists for at least one ¢.) Therefore

Olu(x,0)] =P[K(x,x;1)]

is also a meromorphic function of ¢ for each fixed x.

THEOREM 2.5. If a system of partial differential equations is Q-completely integrable
in the Banach space B, and if the initial data u(x,0)ER, then the function Q[u(x,t)] is
meromorphic in t for t € and each fixed x.

A slight generalization of this theorem will prove to be of use in the sequel.
Suppose that the time axis is “skewed”, by making the change of variables

(%,6)=(x+et,1)

for some real e. If u=f(x,?) is the solution to the “ unskewed” equation, then i= f(%,0)
=f(X—et,t) is the solution in terms of the new coordinates. If we let

K(%,5;f)=K(x—et,j—et;t),
then K is a solution of a Gel'fand—Levitan equation of the form

K(x,y;E)+F(x—ef,y~~e{;t)+fwk(x,z;{)H(z—ei,y*—e{;{)dz*:o.
X

Therefore the “skewed” equation is also completely integrable, which gives the follow-
ing theorem.

THEOREM 2.6. If a system of partial differential equations is Q-completely integrable
in the Banach space B, and if the initial data are in B, then the function Q[u(x,t)] is
meromorphic in (x,t) for x€C, t Q.



INVERSE SCATTERING AND PAINLEVE TYPE EQUATIONS 495

Consider now the particular solutions of a given completely integrable system
which are invariant under the action of a one-parameter symmetry group of the system.
In many examples, the group is either a group of translations, leading to travelling
wave solutions, or a group of scale transformations, leading to the self-similar solutions
of dimensional analysis. The theory for more general symmetry groups is no more
difficult than for these particular well-known examples, but in order to preserve the
continuity of the exposition, we relegate a brief overview of the theory of group
invariant solutions of partial differential equations to an appendix. More comprehen-
sive treatments may be found in [6], [30] and [27].

The main result required here, which is standard for the two main examples, is
that, roughly speaking, all solutions invariant under a p-parameter group G of symme-
tries of a given system A=0 of partial differential equations can be found by integrat-
ing a system A/G =0 of differential equations involving p fewer independent variables.
For example, if A=0 is a single equation for the function u(x,?), x, ¢ ER, the solutions
invariant under the translation group G,:(x,t,u)—(x+ce t+¢u), e ER, where ¢, the
wave speed, is fixed, are just the travelling wave solutions

u=w(§), (=x—ct,

obtained as solutions of an ordinary differential equation found by substituting the
above expression into the given equation. Similarly, a scaling group G,:(x,t,u)-
(A*x,APt,\"u), 0<A ER has self-similar solutions of the form

u=t"Pw(¢), E=x/1vF,

again obtained as solutions of an ordinary differential equation.

We now state the precise hypotheses required to prove our version of the general
conjecture on completely integrable systems and Painlevé type equations. For a defini-
tion of terms the reader should consult the Appendix.

We restrict our attention to a Q-completely integrable system, A=0, of partial
differential equations in two independent variables (x,t). Let G be a one-parameter
local projectable symmetry group of the given system, such that the transformations in
G, when extended to complex values of the variables (x,¢,u), are analytic. Let G,
denote the projected group action on (x, t)-space. Assume further that the action of G,
on some subdomain D, CCX§, Q as in Definition 2.1, is regular in the sense of Palais
[31], so that all the G-invariant solutions of A=0 defined over D, are found by
integrating a system of ordinary differential equations, A /G =0, defined over the image
M, of D, in the quotient manifold M.

THEOREM 2.7. Suppose A=0 is a Q-completely integrable system of partial differen-
tial equations in the Banach space B with an analytic, regular, projectable, one-parameter
symmetry group G. If u=f(x,t) is a G-invariant solution of A=0 with initial data lying in
B, then the combination corresponding to Q of the solution of the reduced system of
ordinary differential equations is meromorphic in M,,, the image of D, in M.

Proof. Since G, is analytic, the orbits of G, in the (x,#)-plane must be analytic
curves. If the solution of the reduced equation had a singularity other than a pole on
M,, the corresponding G-invariant solution would have a similar singularity along the
orbit corresponding to the singular point. This, however, would contradict Theorem
2.6. O

Thus Theorem 2.7, in a certain restricted sense, states that the reduced equation
for the G-invariant solutions must be of Painlevé type. However, since the initial data
for the G-invariant solutions must lie in %, it is not for every solution of the reduced
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equation that Q is required to have only poles for singularities. In effect we can
consider only those solutions which either decay sufficiently rapidly at = oo along the
real axis, or are periodic along the real axis. This restriction seems inescapable given the
particular method of proof. It would be extremely interesting to remove these restric-
tions and prove the conjecture of the introduction in full generality.

3. Applications.
3.1. The generalized KdV equations. Consider the equation

(3.1) ut+uPu +u,,, =0,

xxx

where p is a nonnegative integer. This equation has scale-invariant solutions, but as the
resulting third order ordinary differential equation is rather complex to analyze in full,
we therefore apply our results to a simpler class of self-similar solutions, namely the
travelling wave solutions. Here the symmetry group is

G,: (x,t,u)—>(x+ce t+e,u), ¢e€ER,

where ¢ denotes the velocity of the wave. The invariants of G, are §=x —ct, u, and the
reduced equation for G -invariant solutions takes the form

u” +uPu —cu' =0,
primes denoting derivatives with respect to & This can be integrated once:

—1 1
" — p+1 it
u IS u?" +cout > d.
Multiplying by ', a further integration yields
(3.2) (u’)2=(p+(2p_|_2)u”+2+cu2+du+e,

for some constants d,e. Thus the general travelling wave solution will be expressed in
terms of the hyperelliptic function corresponding to the square root of the ( p+2)nd
order polynomial on the right of (3.2). The following two results characterize the
singularities of the solutions of (3.2).

THEOREM 3.1 (Painlevé’s theorem). Consider the ordinary differential equation

G(u',u,£)=0,

where G is a polynomial in u' and u, and analytic in §. Then the movable singularities of
the solutions are poles and /or algebraic branch-points.
THEOREM 3.2. Consider the equation

(3.3) (w)’=R(u),

where R is a rational function of u. Then the solutions of (3.3) are all meromorphic in C if
and only if R is a polynomial of degree not exceeding 4.

The proofs may be found in Ince [18] and Hille [17, p. 683]. Note that if » has an
algebraic branch point, so also does any linear combination of u and its derivatives.
Therefore, for (3.1) to be linearly completely integrable, (3.2) must satisfy Theorem 3.2.
Thus p=0, 1, or 2, and in these cases the solutions are given by elliptic or trigonometric
functions. Note that p=0 corresponds to the linear case, p=1 to the KdV equation,
and p=2 to the modified KdV equation, all of which are known to be integrable by
inverse scattering.

To complete the demonstration that the generalized KdV equations are not lin-
early completely integrable for p#0, 1,2, we must place the complete integrability in a
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suitable Banach space %, and to do so we check the asymptotic behavior of the
travelling wave solutions at =+ oo. If we require that u,u,—0 as |x|— oo, then d=e=0
in (3.2). Moreover the polynomial on the right of (3.2) now has a double zero at u=0
and a simple zero at u,=[3( p+ 1)( p+2)c]'/?. Standard techniques (cf. [36]) allow us
to conclude the existence of travelling wave solutions with positive velocities decaying
exponentially for |x|— oo, and reaching an extreme value of u,. Thus for p odd, the
travelling waves are humps with u, the peak value, while for p even, both humps and
troughs occur. The important point, however, is the exponential decay of these waves
for |x| - oo, and the fact that for p#0, 1,2, they have complex nonpolar singularities. If
therefore we take for the Banach space % a space of functions vanishing exponentially,
we have shown that the generalized KdV equations are not linearly completely integra-
ble in B for p+#0, 1,2, and this completes the demonstration that these equations can
be solved by inverse scattering only when p=0, 1 or 2. This result is in accordance with
numerical evidence [10] that only in these special cases do the equations have soliton
solutions.

3.2. Nonlinear Klein—Gordon equations. Consider the nonlinear Klein—Gordon
equation in characteristic coordinates

(34) u,=f(u),

where f is an analytic function of u, real for real u, and prime denotes derivative. The
cases we will be most interested in are when f is a polynomial or a finite sum of
exponential functions. We will determine necessary conditions on f for (3.4) to be
linearly completely integrable by analysis of the singularities of the travelling wave
solutions. If ¢ is the velocity, §=x—ct, then the reduced equation for the G -invariant
solutions of (3.4) is

(3.5) —cu”=f"(u).
Multiplying (3.5) by #’ and integrating yields

4 ’ —_—
(3.6) =5 (W) =f(u)+k

for some constant k. For simplicity we shall assume that k can be chosen so that u,
(real) is a simple or double zero of f(u)+k and there is a second consecutive simple or
double zero for some real u,. This assumption ensures that the initial data u(x,0) can
be chosen to lie in a suitable Banach space %:

i) if u; and u, are simple zeros, so that a solution of (3.6) oscillates between u,
and u,, we take 9D to be a space of periodic functions;

ii) if u; is a double and u, a simple zero, so that a solution of (3.6) decays
exponentially to u, as |§|— oo, we take B to be a space of functions exponentially
converging:

iii) if #, and u, are double zeros, so that a solution of (3.6) tends exponentially to
u, as £— oo and to u, as §— —oo (or vice versa), we can again take % to be a space of
functions exponentially converging, but to different limits.

The following theorem (stated in the context of (3.4) although it applies generally)
is an immediate consequence of considering a linear combination of u and its deriva-
tives. It tells us what singularities are possible for solutions of linearly completely
integrable equations.

THEOREM 3.3. Suppose for some constant k that the analytic function f(u)+k has two
consecutive simple and/or double zeros on the real axis. Then, if the nonlinear Klein—
Gordon equation (3.4) is linearly completely integrable in the relevant Banach space
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indicated above, it must be the case that any solution of (3.6) (with ¢ having the opposite
sign to f(u)+k between the zeros) has as singularities only poles or logarithmic branch-
points.

A logarithmic branch-point is by definition a singularity such that some linear
combination of derivatives has a pole. It arises in practice if the scattering operator L
depends only on u,,u,,, -+, so that Q[u] in turn depends only on derivatives; to
demonstrate that this situation can indeed arise, consider the sine-Gordon equation

U, =sinu.

It was indicated in Example 2.3 that this is completely integrable, and to examine it in
the context of Theorem 3.3 we take

f(u)=—cosu, k=0.
The solution of (3.6) is then

2 sin(3u)=sn{c"/*(¢+9))},

where sn is the Jacobi elliptic function with modulus k=1/y2 . This is well defined for
¢>0. Now sn has simple poles on a certain rectangular lattice in C, and so u has
logarithmic singularities at these lattice points. The reason for the appearance of these
nonpolar singularities is the fact that », rather than u appears in the scattering operator
L. We note that u, on the other hand does have only poles for singularities.

THEOREM 3.4. Suppose that f(u) is a rational function, real for real u and such that,
for some k, f(u)+k has two consecutive simple and/or double zeros on the real axis. If
the Klein-Gordon equation u,,=f'(u) is linearly completely integrable, then f is a poly-
nomial of degree not exceeding 4.

The proof is immediate from Theorems 3.1 and 3.2.

To discuss the case where f is a polynomial of degree <4, one can try other
similarity solutions of (3.4), or else quite different tests. For example, it can be shown
[8] that when f is of degree >2, so that f’ is nonlinear, (3.4) has only finitely many
polynomial conservation laws, while a theorem of Gel’fand and Dikii [12], [13] states
that if a system of partial differential equations has a Lax representation, then there are
an infinite number of polynomial conservation laws. Next we consider the case where f
is a finite sum of exponential functions

m
flu)= .Eocje"‘f“, ¢, EC.
j=

For simplicity, we restrict our attention to the case where a;=n;a for some a €C and
some rational numbers n;. By dividing a by the common denominator of the n;, we
may assume the n; are integers. Now let v=exp(au), so that v’=awvu’. Thus v satisfies

¢ N2 _— n;
(3.7) - E—;;(v) = Yot

Note that Theorem 3.2 cannot be applied here since v may have singularities not shared
by u. However, since u’=v’/av, it is necessary to find conditions on (3.7) such that the
function v’ /v, for solutions v, has no movable algebraic branch-points. This requires a
more detailed investigation of the proof of Theorem 3.2. It suffices for our purposes to
note the following:

LemMa 3.5. Consider the ordinary differential equation

(v')’=0v""P(v),
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where P is a polynomial with P(0)#0 and n is a positive integer. Then for any §,E€C
there is a solution v with algebraic branch-point at §,. This solution has a Puiseux
expansion

o(£)= ga,(z—e:o)"

with a,#0, and the rational number r is given by
yr=(m+D7lifn=2m,

ii)r=22m+3) 'ifn=2m+1.

The proof of this result can be inferred from Hille, [17, pp. 681-682].

LEMMA 3.6. Suppose v has an algebraic branch-point at &,. Then v’'/v has no
branch-point at &, if and only if v(§)=(£§—&,)f(§) for r rational and f meromorphic at
£o-

Proof. Assume without loss of generality that £,=0. Let v have the Puiseux
expansion

o(§)=¢"" 3 at”,
=0

J

where m is an integer and a,70. Let a, be the first nonzero coefficient for which kr is
not an integer, if such exists. Now

1 2 )
____g mr 2 bjgjr,

v j=0

where by=a; ! and the first nonzero coefficient b; with jr not an integer is b, = —a,ay 2,
Furthermore

0
o' =g Y (mtj)raEl.
j=0
Therefore

Yo 3 o

v =0 4

and the coefficient of £*” is
c,=—mraga;'+(m+k)ragay’,

which vanishes only when a, =0. This proves the lemma. Cd
PROPOSITION 3.7. Consider the ordinary differential equation

(3.8) (v)= § bv.

j==n

Given £, EC, there exists a solution v of (3.8) such that v’ /v has an algebraic branch-point
at &, unless (3.8) is of the special form

2
(3.9) (v)Y= 3 ;o2
j=—2

for some integer k.
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Proof. Let £,=0 and assume by 0, b_,70. By Lemma 3.6 all solutions must be
of the form v(§)=¢§f(£) with r rational and f meromorphic at 0 if we are to avoid an
algebraic branch-point for v’ /v. Thus

(0)=£(rt"'f+17),
and

v/ =¢irfi,
so that, equating the fractional powers of §, we see that ;=0 unless jr=2r+ for some
integer ¢. If n>0, it follows from Lemma 3.5 that ;=0 unless

1)j=2 mod(m+1) for n=2m, or

ii) 2 j=4 mod(2m+3) for n=2m+1.
In particular, the only negative values of j which satisfy these congruences are 1—1n
and —n, the first value occurring only when 7 is even.

Next set w=1/v. Then (3.8) becomes

N
(W)= 3 bw.
Jj=—n

Since w’/w= —v’ /v, w must satisfy the same conditions as v. Therefore, if N>4, bj:O
unless

)j=2mod(M—1)if N=2M, or

i) 2j=4 mod2M—2)if N=2M+1.
The only positive values of j satisfying these are N, N+ 1 and 2, the second only if N
is even. Comparison of the two sets of congruences then shows that (3.8) must be of the
required form. O

THEOREM 3.8. Suppose f(u) is a linear combination of exponential functions e** with
a;=n;a, n; rational, a complex. Suppose further that f(u) is real for u real, and that, for
some real k, f(u)+k has two consecutive simple and/or double zeros on the real axis. If
the Klein—Gordon equation u,,=f'(u) is linearly completely integrable, then f must be of
the special form

2
(3.10) flu)y="3 c¢e,

j=-2
where B is a rational multiple of a.
It is interesting that the form (3.10) for f includes the double sine-Gordon equation
ux,=asinau+bsin( —;-au) ,

for which numerical studies of Dodd and Bullough [8] indicate the existence of soliton
solutions. Mikhailov [24], [25] and Fordy and Gibbons [15], have shown that a special
case of (3.10) when f(u)=e2“+e~* does have a Lax representation, but it is not known
whether the result extends to a general function f(u) of the form (3.10).

3.3. Model wave equations of Whitham and Benjamin. The integro-differential
equation

(3.11) u,+uu +I[u,]=0,

where J(is the integral operator

KA = [~ A=) ()
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was proposed by Whitham [35], [36] as an alternative to the KdV equation for long
waves in shallow water which could also model breaking and peaking. Here J( is taken
to be the Fourier transform of the desired phase velocity c(k), where k is the wave
number. Of particular interest is the case

1

k)= ———mr,
(k) p2+k?

r>0,
so that
1
= — A
H(x) 5,¢

Note that JC is the Green’s function of the operator D?—p2=9) so that (3.11) is
equivalent to the differential equation

(3.12) D[u,+uu, | +u =0.

It can be shown [10] that (3.12) possesses travelling wave solutions u, with |u|—0 as
|x| > o0, and amplitudes between 0 and some maximum height. Computer studies
indicate that these waves may be solitons, i.e., they may interact cleanly. One possibly
undesirable feature of (3.11) is the extremely fast propagation of short-wave compo-
nents, and for this reason Benjamin, Bona and Mahony [5] proposed the alternative
model

(3.13) u,+uu, —I[u,]=0.
Again, in the special case, (3.13) can be rewritten as
(3.14) D[u,+uu,]—u,=0.

In general, we will let 9D be any constant coefficient linear differential operator

D= ¥ ¢, D',  ¢,#0.
i=0
We show here that the model equations (3.12), (3.14) cannot be integrable by inverse

scattering methods. As usual, consider the travelling wave solutions of these equations.
If ¢ denotes the velocity, then the reduced equation, after integration, is

(3.15) @[%(u—c)z]+a(u+d)=0.

Here d is a constant of integration, a=1 in the Whitham model, a=c in the Benjamin
model, and D now denotes d/d§, £=x— ct. Since nth order equations of Painlevé type
have not been classified, we resort to Painlevé’s original “a-method” to analyze the
singularities of the solutions of (3.15). The basic result is found in Ince [18, p. 319].

LeEMMA 3.9. Suppose A(u,&,a)=0 is an analytically parametrized family of ordinary
differential equations for a in some domain Q containing 0 as an interior point. If the
general solution u(§, &) is uniform in § for a €Q~ {0}, then it will be uniform for a=0.

In our case, let §£=§,+ af. Then if we consider u as a function of {, (3.15) becomes

1
(c,D"+ac, D" "+ - +a"c0)[5(u—c)2] +a"a(u+d)=0,
where D now denotes d/d§. For a =0, this reduces to

D”(%(u—c)z) =0,
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the solution of which is
u=c+\P,($)

for an arbitrary polynomial P, of degree =n—1. This, for appropriate P,, has an
algebraic branch-point at {=0, so that, by the lemma, solutions of (3.15) must also
have nonlogarithmic branch-points. (This involves a slight extension of the lemma
above, but it is easy to infer its truth from the proof given by Ince.) If these solutions
also satisfy decay or periodicity properties, Theorem 2.7 (together with Theorem 3.1)
shows that model equations (3.12), (3.14) cannot be linearly completely integrable. In
particular, Whitham’s equation with )= D?—»? is not integrable by inverse scattering.

3.4. The BBM equation. The equation
(3.16) uAuu,—u, =0,

known as the BBM equation, was proposed by Benjamin, Bona and Mahony [5] as an
alternative model to the KdV equation for the description of long waves in shallow
water. In [29] it was shown to possess only three independent conservation laws, and
therefore by the results of Gel’fand and Dikii cannot be completely integrable. Our
consideration of this example runs into difficulties because the self-similar solutions do
not satisfy any decay or periodicity properties, and the functions Q we can allow are
limited, but we will indicate the method here.
First we note that (3.16) admits the symmetry group

G:(x,t,u)>(x,\"'t,Au), O<AER,

of scale transformations. Invariants of G are provided by x and w=1tu, for t>0, and the
reduced equation for G=invariant solutions is then

(3.17) w’+ww —w=0,

the primes denoting derivatives with respect to x. It can be readily checked, by the
procedure in Ince [18], that (3.17) is not of Painlevé type. Indeed, it is of Ince’s type i(b)
[18, p. 330]. Applying the a-method as Ince does, one can readily check that branch-
points appear, although possibly only logarithmic, and this, granted the existence of a
suitable Banach space %, would show that the BBM equation is not Q-completely
integrable for Q, say, the identity.

However, a closer investigation of the behavior of the real solutions of (3.17) is
required. Since x does not appear, it can be integrated to yield

(3.18) (1=w)e” =ce /2,

In principle, this equation can again be integrated by solving for w’ in terms of w. To
investigate the solutions qualitatively, note that w’=0 if and only if w?>=2logc, c=1.
The only double root is when ¢=1, and only in this case do solutions decay at + oo or
—o0. However, it is readily seen that a solution decaying at one endpoint cannot decay

at the other, nor are periodic solutions possible. Thus we are unable to apply our results
to this case.

3.5. Lax pairs of composite order. Gel’fand and Dikii [12], [13] succeeded in
classifying all Lax pairs of differential operators of the following special type. Let

L,=D"+u, ,D" >+ - +u;D+u,



INVERSE SCATTERING AND PAINLEVE TYPE EQUATIONS 503

be a scalar differential operator of order n with u=(u,,"--,u,_,) independent C*
functions, and D=d/dx. They showed that for each integer m not a multiple of », there
is a differential operator

Pm:Dm+pm,m—2Dm—2+ e +pm,1D+Pm,0

of order m, the p,, ; being polynomials in the u; and their derivatives, such that the Lax
representation

oL,
ot - [Pm ’ Ln]
is a nontrivial system of evolution equations
(3.19) u,=K,(u).

Moreover, the P, are unique if we require the coefficients p,, ; to have no constant
term.

Consider the stationary solutions of the system (3.19), i.e., those in which u is
independent of ¢. These satisfy the system K, (u#)=0, or equivalently, the “stationary
Lax representation”

(3.20) [P,,L,]=0.

THEOREM 3.10. If the orders n,m of the operators L,, P, in the Lax representation of
(3.19) are not relatively prime integers, then stationary solutions of (3.19) with arbitrary
singularities in the complex plane exist.

Proof. Let k>1 be the greatest common divisor of m and n. Consider the operator

Mk:Dk+Uk_2Dk_2+ e +01D+Uo,

whose coefficients v;(x) are sufficiently differentiable for xR but are otherwise
arbitrary functions. Then

n/k m/k
Ln,Oz(Mk) / H Pm,Oz(Mk) /

obviously satisfy the stationary Lax representation (3.20) and, moreover, using the
formalism of Gel'fand and Dikii, it is easy to prove that P,, , is derivable from L, , via
the same formulae as gave P,, from L,. Therefore each such M, gives a stationary
solution of the evolutionary system (3.19). O

Now suppose that L, is any such operator, where » is a composite number. If there
exists a Gel'fand-Levitan type of integral equation for solving the inverse problem for
the operator L,, then Theorem 2.7 would imply the meromorphic character of the
group-invariant solutions of the evolutionary system (3.19), using similar arguments to
those used in the integration of the Korteweg—de Vries equation. This, however, is in
contradiction to Theorem 3.10 for the case of time-invariant solutions. (The relevant
symmetry group is just translation in ¢.) This indicates that such a differential operator
of composite order does not have an inverse-scattering formalism in the sense that the
Schrodinger operator does—either no such Gel’fand-Levitan equation exists, or the
assumptions regarding analyticity are not justified. Indeed, we know of no such
Gel’'fand-Levitan equation for any operator of composite order, e.g. for order n=4.

Appendix. Group-invariant solutions of differential equations. The general theory
was developed by Lie and, more recently, Ovsjannikov. For details, the best references
are [6], [27], [30]. Here we briefly review the relevant concepts.

Let

(A1) A(x,u)=0, x€R™, u€cR",
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be a system of partial differential equations in m independent and n dependent
variables. A symmetry group is a local Lie group of transformations acting on the space
R"XR™ which takes solutions of the system to other solutions. (The group acts on
solutions by transforming their graphs. In the case of projectable groups, meaning that
all transformations are of the form (%,%#)=(a(x),B(x,u)), a solution u=f(x) will be
transformed into the solution #=f(%)=B(a~'(X),f(a~(X))), provided « is invertible.)

The most helpful property of continuous symmetry groups is that for a given
system they can all be found by systematic computations of an elementary character.
The key step, which was Lie’s fundamental discovery, is to look for the infinitesimal
generators of the group, which are vector fields of the general form

Qi | < 0
0= 2 &(x,u) g0+ 2 glx,u) 5,
i=1 ij=1 J

the group transformations themselves being recovered from the auxiliary ordinary
differential equations governing the integration of the above vector field. This leads to
the following infinitesimal criterion for a symmetry group of a given system [28].

THEOREM. Let G be a connected local Lie group. Then G is a symmetry group of the
system of partial differential equations A=0 if and only if

(A2) pro(A)=0 whenever A=0

for every infinitesimal generator v of G.

Here pro refers to the “prolongation” of the vector field v, obtained as the
infinitesimal generator of the action of the group G on the spaces of partial derivatives
of u with respect to x induced by the action of G on functions u=/f(x). The point is
that the condition (A2) leads to a large number of elementary partial differential
equations for the coefficients &, @; of v, the general solution of which is the most
general infinitesimal generator of a one-parameter symmetry group of the given system
of differential equations. Examples of this computation can be found in the above-men-
tioned references.

Now, given a symmetry group G, a G-invariant (or self-similar) solution of (A1) is
a solution which is unchanged by the transformations in G. The fundamental property
of G-invariant solutions is that, roughly speaking, they may all be found via the
integration of a system of partial differential equations in fewer independent variables.
To make this precise, we must assume that G acts “regularly” in the sense of Palais [31]
on an open subset U CR™ XR”. This requires, in U,

i) that all the orbits of G have the same dimension,

ii) that, for any point (x,u), there exist arbitrarily small neighborhoods N such
that the intersection of any orbit O of G with N is a connected subset of O.

(The prototypical group actions excluded by the second requirement are the
irrational flows on the torus.)

Under these two assumptions, it is well known that the quotient space M=U/G,
whose points correspond to the orbits of G, can be naturally endowed with the
structure of a smooth (although not always Hausdorff) manifold. Moreover, the G-in-
variant solutions of (Al) are all obtained by integrating a reduced system A/G=0 of
partial differential equations on M, which necessarily has fewer independent variables.
Precise statements and proofs of these results may be found in [27].

For our purposes, the construction of the reduced system for the G-invariant
solutions proceeds as follows: Local coordinate systems on the quotient manifold M are
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provided by a “complete set of functionally independent invariants of G, cf. [30]. If G
is projectable, these are functions of the form

gl(x)’. o ,gm—l(x),wl(x’u)’, o ,w”(x,u),

which are unchanged under the action of G. The functional independence means that
the Jacobian matrix

9&/9x 0
ow/dx  dw/du

is everywhere nonsingular. The reduced system A/G =0 will then be found in terms of
the new independent variables ¢’ and the new dependent variables w-/.
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