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1. Introduction.

Generalized symmetries first make their appearance the original paper of E. Noether
on the correspondence between symmetries of variational problems and conservation laws
of the associated Euler-Lagrange equations. The terminology generalized refers to the fact
that the infinitesimal generators are allowed to depend on derivatives of the dependent
variables, which makes the corresponding group transformations nonlocal. Recurson
operators were first introduced in [9] to provide a mechanism for generating infinite
families of generalized symmetries. A fundamental advance in the subject was the work of
Magri, [7], who showed how recursion operators could be constructed for systems with
two compatible Hamiltonian structures. In this péper, we déveiop the general theory of
recursion operators and biHamiltonian systems, based on the important constuct of the
Poisson complex. New Hamiltonian structures and recursion operators for systems of
hyperbolic conservation laws, including the equations of gas dynamics and one-
dimensional elasticity are found. Many of the topics in this article are more extensively
developed in [11], [12], [14] to which we refer the interested reader for a more complete
exposition of the theory, applications and history.

2. Generalized Symmetries, Recursion Operators and Conservation Laws.
Consider a system of partial differential equations

Ax, u™) =0, v=1,...,m, (2.1)

defined on some open subset M of the jet space, whose coordinates (x,u™) consist of
the independent variables x = (xl,...,xp), the dependent variables u = (ul,...,uq), and
their partial derivatives u® = Pu®/dx’ up to order n. A generalized vector field is a

partial differential operator of the form
2 d
vg = D, Qulxa®) =, 2.2)
=1 aua

in which the characteristic Q[u] = (Qy,.. .,Qq) is a g-tuple of differential functions, meaning
smooth functions of x, u, and derivatives of u. The vector field VQ generates a one-



parameter group of transformations on a suitable space of functions. Specifically, if
u = f(x) is a prescribed function, then the transformed function fg(x) = g f(x) = f(x,€) is

found by evaluating the solution u = f(x,€) to the Cauchy problem

aaLe - Q (X u(k)), o= 1) e Q) U(X,8 = O) = f(X) | (23)

at time €. (We ignore complications involving the existence and uniqueness of solutions of
the Cauchy problem (2.3).) The vector field vQ is called an (infinitesimal) generalized

symmetry of the system (2.1) if it takes solutions to solutions (at least formally), i.e. if
u = f(x) is a solution, so is u = g.'f(x). In particular, if the characteristic takes the special

form

Qux, uD) = @ (x,u) - Zg‘(x u) — a -, a=1,..,q
i=1

then the group corresponds to the geometrical group of transformations generated by the
vector field

Z&(xu) 2%@“1)-—.

i=1
Other generalized symmetries act non-locally on functions.

To obtain the infinitesimal invariance criterion for the system of differential equation
(2.1), we prolong v to the infinite jet space M, which we realize as the direct limit of
Q p

the finite jet spaces M® a5 n — oo, leading to the partial differential operator

Prvq = Z ZDJQ(,

a=1 J aUJ

Here Dy= Djl- . -Djk denotes the kth order total derivative corresponding to the multi-

index J = (]1,.,]1()

Theorem 1. Suppose the system of partial differential equations (2.1) is totally
nondegenerate in the sense of [11; Definition 2.83]. Then Vo is a generalized symmetry



of the system if and only if
pr VQ(AV) =0, v=1,..,m, 2.4)

for all solutions u = f(x) to the system (2.1).

The nondegeneracy condition required for the validity of the theorem is very mild,
and is satisfied by well-nigh every system of partial differential equations which arises in
physical applications. The symmetry conditions (2.4) constitute a large, over-determined

system of elementary partial differential equations, called the determining equations, for the
characteristic Q of vo- In practice, these can be systematically solved to determine all the

generalized symmetries of the system (2.1).

Define the Fréchet derivative of Afu] = (A4,...,A) to be the differential operator

DA(v) = gdg Alu + &v].

e=0
Note the elementary identity
Prg(a) = Dy(Q),
so that the symmetry condition (2.4) can be rewritten as

DAQ) =0 whenever u is a solutionto A =0. (2.5)

There is a natural Lie bracket operation between generalized vector fields.
Specifically, if Vo and vy are generalized vector fields, their Lie bracket vg = [VQ, Vgl

is the generalized vector field with characteristic
S = pr vQ(R) —pr vR(Q). (2.6)

The reader can verify the usual binlinearity, skew-symmetry and Jacobi identity for this
bracket. In particular, if vQ and vp are generalized symmetries of the system (2.1), so
is the vector field vg = [vQ, vgl.

By definition, a recursion operator R for a system of differential equations is a

linear operator which maps symmetries to symmetries; in other words if vQ is a general-

ized symmetry, and Q = R-Q, then v s also a generalized symmetry. There is a



simple criterion for detemining when a given operator is a recursion operator. The proof is
an elementary application of formula (2.5).

Theorem 2. A linear operator R is a recursion operator for the system of

differential equations A[u] = O if there is a second linear operator R  such that the
identity

DyR = R-D, 2.7)
holds on solutions to A.

Example 3. We shall illustrate our concepts using the elementary example of the

Riemann equation
U = uuy, 2.8)

which is the simplest possible scalar nonlinear conservation law. Later we will see how
many of the results for this very simple equation have direct counterparts in the case of
two-dimensional hyperbolic systems, including the equations for polytropic gas dynamics
and one-dimensional elasticity .

We begin by determining all the generalized symmetries of the Riemann equation.

Since (2.5) is required to hold only on solutions to (2.8), we can always replace t-
derivatives of u by equivalent expressions involving only x-derivatives. If A =u, —uu,,

then the Fréchet derivative operator is D, = D,—u‘D, —u,. Therefore, a differential

<
function Qu] = Q(x,t,u,uy,...,up), where u, = dku/dxk, is the characteristic of a
generalized symmetry if and only if Q is a solution to the first order partial differential

equation
DQ = uD,Q +u,Q

whenever u solves (2.8). Expanding the total derivatives, and replacing t-derivatives of
u by x-derivatives, we see that Q must be a solution to the first order partial differential
equation

w(Q) = Qt+u-Qx+u2X-qu+3ux'uxx-qux+ +{Dkx(u'ux)—u'uk+1}'Quk ~u,Q, (2.9



subscripts on Q denoting partial derivatives. By the method of characteristics for a first
order linear partial differential equation, it is easy to determine the general solution:

Theorem 4. Define the rational differential functions

I, j=3.

1
Iozu, Il=x—t'u, 12=——X, I3=_3, I. 1 ='1§ij
X

A differential function Q is the characteristic of a generalized symmetry v = Q9, of
(2.8) if and only if

Q = u,Glg I Ly o Ty, (2.10)

where G is an arbitrary smooth function of its arguments.

It turns out that there are several recursion operators for the Riemann equation.

Two zeroth order ones are given by
R, = 2u+u, D', R, =u’+uu D]l (2.11)

For instance, to prove (2.7) for ‘Rl, we note that since u'D, +u, = D,u, the

X
commutator

[Dy, Ryl = [D,—uD,~u,2u+u, D

-1 2y -1
= 2u+u, D = 2umu, — (ueu,, +uy)Dy

vanishes on solutions, which proves (2.7), with R = R . The verification for R, is
similar. Therefore, starting with the translational symmetry, with characteristic Qy = u,,

we generate a hierarchy of higher order symmetries with characteristics Q, = u“-ux;

explicitly

2n + 3 n+2
le(Qn) “Th+ 1 Qni1s (R'Z(Qn) “h+ 1 Quiz -

(Interestingly, even though there are two independent recursion operators, the two
hierarchies happen to coincide. However, this is special to the polynomial symmetries; on
other symmetries, these recursion operators will act differently.)

The Riemann equation admits an additional first order recursion operator



R =D (2.12)

L
X ux ¢
This latter operator acts on the hierarchy Q, according to

3?‘((zn) = nQn_I’

and so, up to multiple, "inverts" the first order recursion operator R ;. Again, this is
special to the polynomial hierarchy. For instance, starting with the rational second order

2.

A .
generalized symmetry with characteristic Q, = u,'Iy =u,“u ,, the recursion operator R

XX?

generates the additional hierarchy of higher order symmetries ék =ucl,, k=2,3, ...,
whereas R; and R, lead to yet other second order symmetries.

Given a system of partial differential equations (2.1), a conservation law is a p-
tuple of differential functions Plu] = (Py,.. .,Pp) whose divergence

p
DivP = Y D;P; - 0,
i=1

vanishes on all solutions to (2.1). For dynamic problems, the conservation law takes the

form

DtT+DiVX=O.

(Div here refers to the spatial variables.) The t-component of such a conservation law is
referred to as the conserved density, and, for suitable solutions, (in particular those for

which the flux X vanishes on the boundary) the integral J. T[u] dx provides a constant of
the motion. A conserved density is called #rivial if it is a (spatial) divergence T =DivY on
solutions. In the Lagrangian framework, Noether's Theorem, cf. [11; Theorem 5.42],
provides a complete correspondence between generalized symmetries of a variational
problem and conservation laws of the associated Euler-Lagrange equations. In the next
section, we shall see how this extends to the Hamiltonian framework.

Example 5. For the Riemann equation (2.8), any conserved density T, which,

without loss of generality, we can take to depend only on x, t, u, ..., u,, must satisfy

DT+ DX =0



on solutions to the equation for some flux X. Writing this out, and replacing t-derivatives
by the corresponding expressions in terms of x-derivatives, we find

uD, T+w(T)+D,X = 0,

where w is the vector field given in (2.9). Let X =Y — u'T, so this becomes
w(T)-u, T+DY = 0.

If we rewrite T = u F(t, Ly, I, Iy, ..., I 1), in terms of the invariants Ij of w, and the
single parametric variable t, then w(T)-u, T =u,-G,, hence the functions

U F(G T Ly Ty oy T ) = ugFQ, I I, Ty o Ly = D{ [ Y s}

differ by a trivial conserved density. Setting t =0 in the formula for T, we conclude that

it is equivalent to a conserved density of the form
T = ux'G(Io, Il, 12, ceny Ik)

Thus, surprisingly, for the Riemann equation the expressions for symmetries and
conserved densities are the same! In particular, we note the infinite sequence of zeroth

order conserved densities

H (u) =u", n=1,273,.... (2.13)

3. The Poisson Complex and Hamiltonian Systems.

We now present an approach to the theory of Hamiltonian systems based on the
important Poisson complex, which plays as fundamental a role here as the deRham
complex does in the theory of differential forms. The Poisson complex, though, involves
the dual objects to differential forms, which are known as multi-vectors, or, in the infinite—
dimensional case, functional multi~vectors. This complex, in the finite—dimensional case,
is due to Lichnerowicz, [6], and was generalized to infinite dimensions in Olver, [10]. We
begin by recalling the basic definitions; see [11] for many of the details.

On the infinite jet space, M), the space AY  of functionals is defined as the



cokernel of the total divergence operator, so that two differential functions L[u] and L[u]
define the same functional £[u] = _l. L[u] dx if and only if they differ by a total

divergence: L = L + Div P. More generally, define a vertical k-form to be a finite sum
W = ZP?[u] duJ1 AL Adqu,

where the coefficients P“i‘ are arbitrary differential functions. The total derivatives D; act

as Lie derivatives on the vertical forms, and the space NS of functional k-forms is

analogously defined as the cokernel of the total divergence. In particular, an easy
integration by parts argument shows that any functional one-form is uniquely equivalent to
one in the form R

0 = j { él P,[u] du* } dx = j {P - du} dx. (3.1)

Similarly, it can be shown that any functional 2-form can be placed into canonical form

Q=21 ZB du® A BogduPydx = 7 [{dun Bdupdx,  (32)
a,

uniquely determined by the skew-adjoint matrix differential operator & = (& aB)'

The vertical differential d takes a vertical k-form to a vertical (k+1)-form, and is
induced by its action

dp = Y L g
ou?
a,] J

on differential functions. It can be shown that 8 commutes with each total derivative D;,

and hence induces a well-defined map
§: Nk 5 Akl

on the spaces of functional forms, called the variational differential. An easy argument
based on the finite-dimensional Poincaré lemma shows that the variational complex

) S
0 s A9 > Al 5 A2 S A




is locally exact, meaning that, over suitable (star-shaped) subdomains 8w = O if and only
if o =08{ for some functional form {. In particular, if £[u] = J. Lfu] dx is a functional,

its variational differential is the one-form

52 = [ {E(L)-du} dx C(3.3)

determined by the Euler-Lagrange expression E(L) or variational derivative of £. The
exactness of the varational complex at the Ax - stage leads to the well-known Helmholtz

conditions for a differential equation to be the Euler-Lagrange equation for some variational
problem, [11; Theorem 5.68], namely A = E(L) for some Lagrangian L if and only if its
Fréchet derivative is self-adjoint: Dy = Dy,

Our main interest here is not in the functional forms, but rather in the dual objects -

the functional multi-vectors. By definition, a functional k-vector is an alternating, k-linear
map from the space A} of functional one-forms to the space A of functionals. It can

be shown that each functional k-vector can be written in the form
_ o oy O
0 = _[{ ZRJ[u] 611 AL AGJk } dx,

where the 67" form a basis for the verzical vectors, dual to the basis duf* of vertical forms.
We find

@0 A... A®D = j { 3 RYu) - det(Dy PL) }ax,
where o; = _[ { z Pja[u] du® } dx are functional one-forms written in canonical form

(3.1). The total derivatives act as Lie derivatives on vertical multi-vectors, and so the space
/\k of functional k-vectors is again the cokernel of the total divergence operator. In

particular, integation by parts can be used to place any functional uni-vector (i.e. k = 1) in

the canonical form
vo = [ 1 Y Qqul6% }dx = | 1Q-61ax, (3.4)
o=1

and the space /\; can be identified with the space of generalized vector fields. Similarly,
any functional bi-vector, i.e. element of /\;, can be placed in canonical form

10



® = 0y = = [{6A B0} dx, 3.5)
determined by a unique q X q skew-adjoint matrix differential operator £.

Warning: The space /\; of functional multi-vectors is not the dual space to the
space A¥ of functional k-forms. This is because the wedge product of two functional

forms is not a well-defined functional form!

If vg is a generalized vector field or uni-vector, we can define its prolongation to

act as a Lie derivative on the space of functional multi-vectors. The key formula is
prv®) = DQ*.-B,

where Da is the adjoint of the Fréchet derivative of Q, and 6 denotes the column vector
of basis uni-vectors 8%, o = 1,...,q. (See [10], [12] for a justification of this formula.)
The prolongation pr Vg acts on differential functions as before, and the action is extended
to the entire space by the usual rules of derivation and commutation with the total
derivatives. In particular, as the reader can check, this definition of the Lie derivative
recovers the correct form of the Lie bracket (2.6) between generalized vector fields.

If © is a functional k-vector, and ;= coil A...A® , m<k, awedge product

lm’
of functional one-forms, we define the interior product to be the functional (k — m)-vector
w;-J® determined by the formula

OO M A AN ? = SO OPAT AL AT - (3.6)

In particular, if m=k~1, then ;10 e /\I, and hence can be viewed as an generalized

vector field, as in (3.4).

The most important operation on functional multi—vectors is the Schouten bracket,
which generalizes the Lie bracket between vector fields. If & is a k-vector and ¥ an 2-

vector, then their Schouten bracket [@,¥], is a (k+2-1)-vector. It is uniquely defined

by the following formula:

11



(DY), 08, A...A8L 5 > =
(3.7)

(_l)kp. + p—
(G i D (sen D) <¥; (52, 10}52,.
J

e

(=Dk
k

Z (sgn D) <@; {3L;1¥}8L> +
1

which must hold for every set of functionals ﬂl, ey f’k +0_1» With variational derivatives

O£, given by (3.3). In (3.7), the first sum is over all multi-indices I = (iy, ..., ip_;),

1<ij<...<ip  <k+2-1, with I"= (@7, ..., i) being the complementary multi-index,
so TuT"=mn(], ..., k+82-1) for some permutation ®, and sgnI denoting the sign of the
permutation ®. Similarly, the second sum is over all multi-indices J = (jq, ... J_1)>

1<jj<... <jp; Sk+2-1, with J” and sgnJ being defined-analogously. Note also
that, according to the remark in the previous paragraph, the terms 8£; ¥ and 3£,10
are in /\’;, and hence determine generalized vector fields, which act on the remaining
wedge products d£;- and 0£y- as Lie derivatives. (This definition, first proposed in

[10], has the advantage of being the only one I know of which works equally well in both
finite and infinite dimensions.)

The Schouten bracket satisfies the following properties. Let @ e /\;, Ye A L

OX= /\;1 be functional multi-vectors.
i) Bilinearity: [®, W] is an R-bilinear function of ® and V.
ii) Super—symmetry: [, ¥] = -1k ¥, @],
iii) Super—Jacobi Identity.
k'm &m k-0 _
D [O,¥],0] + (D)™ T [[O, PLY] + (-1)" " [[¥,0], ®] = 0.

iv) Lie Derivative: If vQ is a generalized vector field or functional uni-vector, then
the Schouten bracket [vQ, @] is also a functional k—vector, and coincides with the Lie

derivative of @ with respect to pr Vo In particular, the Schouten bracket of two

generalized vector fields is the same as their Lie bracket (2.6).

Each functional bi-vector ® g determines an alternating, bilinear map on the space

of one—forms, and hence a bilinear, skew—symmetric "bracket” on the space of real-valued
function(al)s:

12



{F, R}=<Op; 8F, 5HD.

Explicitly, using (3.5), we see that this bracket is given by the standard formula

(F, R} = j E(F) - S'EH) dx, . (3.8)

where F and H are the integrands of the functionals F, ¥. The bracket automatically

satisfies the Leibniz rule, and hence to be a genuine Poisson bracket must only satisfy the

additional restriction imposed by the Jacobi identity. This can be easily expressed in
invariant form using the tri-vector [® g, ® 5| obtained by bracketing © g with itself:

{{F, H}, P} + {{P, F}, H} + {{H, P}, F} = % [0, ég]; dF, dH, dP>.

Therefore a functional bi-vector © g determines a Poisson bracket if and only if it satisfies

the extra condition
(Og, Ol =0. (3.9)

This condition is a nonlinear condition on the underlying differential operator &. Any

functional bi-vector satisfying (3.9) is called a Hamiltonian bi-vector; similarly, any skew-
adjoint differential operator coming from a Hamiltonian bi-vector is called a Hamiltonian

operator.

Given a Hamiltonian bi-vector, let ¥ = O¢g be the map taking functional k—vectors

to functional (k+1)-vectors defined by bracketing with the Poisson bivector ©:
V(YY) =[O, V]. (3.10)

The determining property (3.9) along with the super Jacobi identity for the Schouten
bracket immediately implies that

B(O(Y) = [6,[6,¥]] =0

for any multi-vector ¥. Therefore the maps ¥ determine a complex, called the Poisson

complex corresponding to the Poisson bivector ©:

Y O 0 O
A/\T——)/\; >/\; > el

0 >A0

13



The composition of two successive maps is always trivial: 9 ° 9 = 0.

The first stage of the Poisson complex, ¥ : /\B - A ’;, maps functionals to
generalized vector fields. Specifically, if ¥[u] = J H{u] dx is a (Hamiltonian) functional,

the corresponding generalized vector field

vy = B(R) = [0, ®] (3.11)

is called the Hamilronian vector field determined by . Explicitly, it is readily seen that
CR has characteristic Q = &-E(H), where & is the Hamiltonian operator determined by

®. The corresponding Hamiltonian flow, cf. (2.3), is governed by the Hamiltonian system

of evolution equations
u, = 8EMH). (3.12)
We note the standard formula
{R,F} = —prvgg (F) = pryz(R) (3.13)

for any pair of functionals ¥, F, which proves that a functional F determines a
conserved density for the Hamiltonian system (3.12) if and only if {¥, F} = 0. There-

fore, every conserved density F determines a generalized (Hamiltonian) symmetry /‘\'} of

the Hamiltonian system (3.12).

Conversely, if an generalized vector field vQ is a Hamiltonian vector field, so Q =
S-E(H) for some differential function H, then closure of the Poisson complex at the /\I—

stage implies that
ﬁ(vQ) =[Opg, VQ] = pr vQ(@)&) =0. (3.14)

If the Poisson complex is exact at the /\*l‘—stage, then (3.14) is both necessary and
sufficient for vq to be a Hamiltonian vector field. In this case, (3.14) provides a simple
and readily verifiable condition that will tell whether or not a given vector field is
Hamiltonian with respect to the given Poisson bracket. Writing out (3.14) explicitly leads
to the following characterization of Hamiltonian vector fields, [12]; see also [5] for a
similar result.

14



Proposition 6. Let ©® ¢ be a Hamiltonian bivector, with & the corresponding

Hamiltonian differential operator. If the evolutionary vector field vq is Hamiltonian,
meaning that Q = &-E(H) for some differential function H, then

Dq & + 5-D5 = vo(®). - (3.15)

Conversely, if the Poisson complex corresponding to © g is exact at the /\;——stage, then

(3.15) is both necessary and sufficient for Q to be of the Hamiltonian form (3.12).

Explicit conditions on the Hamiltonian bi-vector that imply exactness of the
corresponding Poisson complex are not known in general; this is one of the main open
problems in the subject. However, in the case of constant coefficient skew-adjoint
differential operators (which are always automatically Hamiltonian), one can prove the
following theorem on exactness of the Poisson complex at the initial stage:

Theorem 7. Let & be a nondegenerate, skew-adjoint, constant coefficient qx q

matrix differential operator. Then, except for a finite dimensional space of linear
differential functions, the Poisson complex for © g is exact at the /\;—stage. More

specifically, there exist linear differential functions Qj[ul,...,Q,[u] such that an
generalized vector field vQ satisfies the condition

DquD, + D, Da =0,
if and only if
Q= 8EM) +¢;Qq+...+¢,Q,

for some Hamiltonian H[u], and some constants Cps .- €. (In fact, even the linear
functions Qj are Hamiltonian provided one admits nonlocal Hamiltonian functionals

depending on the potential w.)

Example 8. For the Hamiltonian operator D,, the Poisson complex is exact at
the /\’;—stage. This is equivalent to the statement that Q[u] = D,E(H) for some
differential function H if and only if DqoDy + Dy D(*Q = 0. Exactness fails for the third
order operator Di, but there are just two linear counterexamples: Qq =u,, and Q, =
xu, +u. Thus we have the analogous result that DD + DD = 0 if and only if
Qu] = Di E(H) +¢1Q; + ¢,Q,, for some constants €15 €

15



A similar exactness result should hold for the later /\;—stages, k> 1, of the

Poisson complex, but I have not tried to construct a proof. The only field dependent
. . . * . .
Hamiltonian operator for which exactness at the Al—stage is known is the second

Korteweg—deVries Hamiltonian operator & = Di + 2uD, +u,, cf. [12], although the

Darboux Theorems of [2], [13] greatly extend the range of application of the constant
coefficient results. 1 believe a detainled investigation into the Poisson complex
corresponding to a Hamiltonian operator will lead to significant results in infinite-
dimensional geometry and differential algebra.

4. Bi-Hamiltonian Systems.

The most productive way to derive recursion operators is through the theory of
biHamiltonian systems, first proposed by Magri, [7].

Definition. Two functional bi-vectors © g and ®, are said to form a
Hamiltonian pair if every linear combination ¢'® g +d'®¢, ¢,d e R, is a Hamiltonian

bi-vector.

Since the condition (3.9) is quadratic, to check whether ® g and ©¢ form a
Hamiltonian pair it suffices to prove that the three functional bi-vectors © g, ®¢, and

© g + Og are Hamiltonian. Equivalently, we need check
[Og,Bg] = [Of, O] =0
and the additional compatibility condition
[Og, O] =0. 4.1)

A system of differential equations is said to be biHamiltonian with respect to a Hamiltonian
pair ® g and O, if it can be written in the two Hamiltonian forms

u = DR, - EJR,,

for some Hamiltonian functionals ¥, and ® ;. We now state a version of Magri's

theorem on the "complete integrability” of biHamiltonian systems, and give an elementary

16



proof based on the exactness of the Poisson complex.

Theorem 9. Let ® g and ®, form a Hamiltonian pair, and assume that the

Poisson complex for the bi-vector ® g is exact at the /\I—stage. Let
u, =Qul = B0, = €-6H, 4.2)

be an associated biHamiltonian system. Then the operator R = €-87! is a recursion

operator, and leads to a hierarchy of differential functions
Qui1lul = R-Qy[ul.
Each of the corresponding evolutionary vector fields vV, = in is :alsé biHamiltonian
u = Qu] = B8R, = €IR . (4.3)
The functionals ¥, ¥, ®,,... are in involution with respect to either Poisson bracket:
(R, 15 =0={R_ R 1}

Thus, for any m,n, ¥, is a conservation law for the evolutionary system governed by
the vector field v, and v, is the corresponding generalized symmetry.

Note that the theorem automatically implies the invertibility of the Hamiltonian
operator & on the hierarchy Q,[u], which shows the advantage of the Poisson complex

approach.
Proof.

The proof that R is recursion operator in general can be found in [11; Theorem
7.27]; interestingly, this does not require the compatibility of the two bivectors. Here we
just prove the properties about the hierarchy Q. Proceeding by induction on n,
according to (3.11), the condition that the evolution equation (4.3) be biHamiltonian is

equivalent to the fact that the corresponding generalized vector field v, = v, can be

written in the two forms

Vo= [GB’ Rn] = [®‘€’ Rn—l]'

17



Voe1 = [Og, L

be the next evolutionary vector field in the presumed hierarchy. The main task is to prove
that v, is a Hamiltonian vector field for the operator &, i.e.

Vol = [G)B’ }tn+1:|

for some functional ;. By exactness of the Poisson complex for ® g, we need only

verify that v L1 18 closed, i.e.
(g, Vi1l = 0.

To verify this latter condition, we use the super—Jacobi identity and the compatibility
condition (4.1) for the Hamiltonian pair:

[@)5’ Vn+1] = [Qﬁs [G‘)i’ Rn]] = - [G)‘E, [Gﬁ, }tn]] == [®€) [gt’ }tn_l]] = O’

the last equality being a consequence of the closure of the €—Poisson complex. (Note that
we do not require exactness of the €-Poisson complex.)

To prove the involutiveness of the resulting sequence of functionals note that
according to (3.12),

{R,Rp}e = prv(Ry), {R,Bte = prve (R,
hence
(BB 1y = {R, R }e.
We now employ the skew-symmetry of the Poisson bracket to work our way down:

{Rn’}tm}ﬁ = {Rn’}tm—l}t = {Rn+l’}tm~1}5 = = {Rk’}ak} =0,

where k is the integer part of %ﬂ and the final Poisson bracket is the &-Poisson bracket

if m—n iseven, the €-Poisson bracketif m—n is odd. This completes the proof.

We also note that, for a biHamiltonian system, there is a hierarchy of higher order
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Hamiltonian operators, cf. [5]. The only problem with this result is that these operators are
usually, but not always, integro-differential operators.

Proposition 10. If 5, € are the Hamiltonian operators for a Hamiltonian pair,

and R =€ -5 the associated recursion operator, then the operators
rke - e.olegl . .ple (4.4)
are Hamiltonian operators.

Example 11. The Riemann equation is a "quadri-Hamiltonian system’', meaning
that it can be written in Hamiltonian form in four distinct ways; however not all pairs of
Hamiltonian operators are compatible. The three first order Hamiltonian operators

50 = DX’ 31 = ZU'DX + uX’ B2 = uZ.DX +u uX’ (4’5)

are all compatible, i.e. any two of them form a Hamiltonian pair. We find that the Riemann
equation (2.8) can be written in the three Hamiltonian forms

u = ByE(EHy) = 8 EEH,) = 8yEMH)),

using the hierarchy of zeroth order conserved densities (2.13). Moreover, these
Hamiltonian operators are not trivially related by (4.4). The resulting recursion operators
R, = 81-361 y Ry = 52-80_1 are as given in (2.11), while R, = 82-81'1 is trivially
related by the equation R, = R;-R;. The infinite hierarchy of commuting Hamiltonian
flows generated by Theorem 9 consists of the generalized vector fields v, = Qn[u]-au,
with characteristics Q,[u] = u™u,. The n'? flow is also tri-Hamiltonian:

u, = Qfu] = u™u,

= BoE (s Hniz) = S Mo ) = 828 (i Ha )

Each of these Hamiltonian systems admits an additional third order Hamiltonian
operator

1
. X 3; Dy, (4.6)

f, = D ° "1- . D )
uX
and can be written in yet another Hamiltonian form
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n . 1
Up = Wiy = tE( (n+1)(n+2)(n+3)(n+4) H‘n+4) (4.7)

The Hamiltonian operators &, and € are compatible; however, € is not compatible
A
with either &; or 8,. The consequent recursion operator R = €-8j - R2 s the

square of the simpler first order recursion operator (2.12). Note also that by proposition

1 k
10, there is an entire hierarchy of Hamiltonian differential operators L D, - ™ ]2 "D,
X

and each of the equations (4.7) can be written in Hamiltonian form using any one of these
higher order Hamiltonian differential operators!

The third order generalized symmetry /‘\'3,. with characteristic (/2\3 = u, Iy, cf.
(2.10) is bi-Hamiltonian

u = ByE@A)) = EW),

.. A A
using the conserved densities Hjy = u, Iy, H;=u,I;. Consequently, the odd order
vector fields /‘\’2n .1 are also bi-Hamiltonian, corresponding to the higher order rational
A : .
conserved densities H, = u, I, 5. For any solution to the general first order flow (4.7)

corresponding to the vector field v,, each of the higher order quantities J.ﬁm[u] dx isa

linear function of t, (provided that the integral converges). In fact, if H(u) is any zeroth
aZm+ lH

order Hamiltonian, with flow u, = D,E(H), then }/\Im +t is a conserved

au2m+ 1

density. In particular, ﬁm is a conserved density for v, whenever 2Zm>n-— 1.
5. Gas Dynamics

In the final section, I will describe some recent joint work with Y. Nutku on
Hamiltonian structure, symmetries and conservation laws for quasi-linear hyperbolic
systems, including the classical equations of gas dynamics, [14]. The general form of a
two-component hyperbolic system of conservation laws of Hamiltonian type is

u =Dy H,, ve =Dy Hy,

where the Hamiltonian density H(u,v) depends only on u, v. The Hamiltonian operator

is the matrix differential operator 8, =06,"D,, where ¢; = ( (1) (1)) The system can be

written in the convenient matrix form
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u, = SEMH] = Hu, (5.1)

where

H
H — 01D2H - I_IUV AA
H H

uu uv

In the terminology of Dubrovin and Novikov, [4], [15] these systems are of "hydro-
dynamic type".

There are three important examples. The equatlons of gas. dynamics are of this
form, where u represents the velocity, and v the den31ty of the fluid, and the
Hamiltonian is H(u,v) = — (Eu vV + F(v)), the function F is related to the physical

pressure P according to the equation P’(v) = v-F"’(v), cf. [19; Chapter 6]. The

44
equations of polytropic gas dynamics correspond to the choice F(v) = ;’(% for some

v#0,1; the case y=2 also arises in shallow water theory, [8], [19; p.84]. A second
important example is provided by the Hamiltonian H = % + %, in which case (1.2) is

equivalent to the Born-Infeld equation from nonlinear electrodynamics, [1], [19; p. 579].
Finally, the Hamiltonian density H(u,v) = %uz + F(v) gives many simple models for a

one-dimensional nonlinear elastic media; the derivative F” being a monotone function of v
corresponds to an ideal fluid or elastic solid; nonmonotone functions provide simple
models of phase transitions, [16], [19; p. 123]. The case F(v) = (14+v) ¥ corresponds to
the Euler equation arising in nonlinear acoustics, cf. [8].

We begin by characterizing all the zeroth order conserved densities for the
Hamiltonian system (5.1), cf. [15].

Proposition 12. A functional F[u] = JF(u,v) dx is a conservation law for the

hyperbolic system (5.1) if and only if F is a solution to the second order linear partial
differential equation

A(uv) Fy, = Bu,v) F,, (5.2)

with A=H_ , B=H

vy? uu’
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The most important class of Hamiltonian systems (5.1) are the separable systems,
for which the corresponding partial differential equation (5.2) admits a separation of

— . . Hy  uw) .
variables in the rectangular (u,v)-coordinates, meaning that = . The special

Hiu A(u)

case when A= 1, which includes gas dynamics and the elastic models, has added

importance; such systems are said to be of generalized gas dynamics type. For simplicity,
we will restrict our attention to generalized gas dynamics systems here, although extensions
to more general separable systems can be found in [14].

For a gas dynamics system, there are two fundamental hierarchies of conserved
densities, each of the form

e okee

H V) = g -Gy (v) ,
2m+e(U>V) kz=40 (2kie)! V)

where € is 0 or 1, depending on whether n=2m + € is even or odd, and the functions
G, are generated recursively by

GtV = [ (v = WyHw)Gyw) dw,

where W(v) = H/H,,. The two hierarchies depend on the initial selection of Gg; the
first takes GO = 1, while the second has G = v. Thus, we have the explicit conserved

densities
Hy =1, I-IO =v,
H; =y, P~I1 =uv,
H,=1u? + Gy(v), i, =2u?v + Gy, (5.3)
H3=%u3 +u Gy(v), I-I3=%u3v+uC~}l(v),
Hy = ;—4u4 + ;—uz G(v) + Gy(v), P~I4 = -1221-u4v +u? Gl(v) + C~}2(v),

etc. Note that the elastic Hamiltonian appears in the first hierarchy as H,, whereas the gas

22



dynamics Hamiltonian appears in the alternative hierarchy as — I~{2.

Each of these Hamiltonian functions generates a Hamiltonian flow, governed by the
corresponding evolutionary system. We let

Q, = BEMH,] = Hyu, (5.4)

cf. (5.1), denote the right hand side of this equation, which is also the characteristic for the
symmetry vector field v, =Q9,. We define H~n, (in and v, for the alternative

hierarchy ﬁn similarly. All the Hamiltonians H, and ﬁn are in involution with respect
to the Poisson bracket determined by the Hamiltonian operator &,

In the case of polytropic gas dynamics, there are two additional first order
Hamiltonian structures. Using the Hamiltonian hierarchies, we find that we can write the
polytropic gas dynamics equations in the alternative Hamiltonian forms

u, = 8, E( 1;ﬁl) - B,E(H),

with the two Hamiltonian operators, [8],

vI2D, + D,V (=1)uD, +u,

5, =
1 ’
(v-Du'D, + (¥-2)u, v-D, +D, v
v-1
uv?2.D_+ D, -uv?2 {%(}L—l)u2 + 2‘%_?}'1_))( +uu, + viI%y
1 2 vi- -2
E(y—l)u + 2—1- Dy + (Y-2)uu, + v v, uv-D, + D, -uv
’Y_

The Hamiltonian operators &, &,, &, are mutually compatible, leading to three distinct

Hamiltonian pairs. The corresponding recursion operators
-1 _ Lo -1 _ Sl

are trivially related by the identity R, = R3-R;, but are otherwise distinct. Nevertheless,

they both give rise to the same series of gas dynamics Hamiltonians, since
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Rl(Qn) = Qo fR'Z(Qn) = Qpy2

and similarly for the alternative hierarchy V. Strangely, there does not appear to be a

counterpart of these two recursion operators in the general non-polytropic case, i.e. when

the pressure is not proportional to a power of the density.
There is, in addition, a third order Hamiltonian operator, analogous to (4.6), for
any generalized gas dynamics system. Let M(v) = J.(‘)' i(s) ds, and define the matrix

variable

U(u,v) = (u M(-V)] .

\4 u

We use the notation

= B ROV and U_1=l
Ve Uy 8

X

where O = ui - u(v)-vi , for the total x derivative of the matrix U and its matrix

inverse. A nonfrivial calculation proves that the operator
ulp ules.D =D Ul uT.
€ =D, U D, U 6D, =D, U/ D, 6,U D,

is Hamiltonian. The operators € and & form a Hamiltonian pair; however, for
polytropic gas dynamics, the Hamiltonian operators € and &, are not compatible, nor
are the Hamiltonian operators € and £,

Theorem 13. Let H(u,v) be any generalized gas dynamics Hamiltonian density.
Then there exists a second zeroth order conserved density H* such that the corresponding
Hamiltonian system (5.1) can be written in biHamiltonian form

u, = SEH] = € E[H"].

If the Hamiltonian density H in Theorem 13 is one of the densities H in the
hierarchy (35.3), then it is not hard to see that the corresponding density H*(u,v) can be
taken to be the density H, ,,; similarly, if H= }~In, then H* = P~In o
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A
According to Theorem 9, the operator R = €-85! = DX-U;1-D <Ux 1 s a

recursion operator which, just as in the one-dimensional case, is the square of a simpler

recursion operator R = DX-U;I. On the zeroth order symmetries, R(Q,) =Q,_;,

‘R(Qn) = 6n—1‘ In the polytropic case, R is the "inverse" to the recursion operator R

on the hierarchies (5.3), although as always, this is special to these particular hierarchies.
There is also an additional hierarchy of higher order symmetries.

Theorem 14. Let H = H, be one of the nth order generalized gas dynamics
Hamiltonians, and let v, be the corresponding first order Hamiltonian flow. Let Om

denote the generalized vector field of order m with characteristic .
- 1
ém = R™M(xu,) = R™ L. (O) .

Then /x\'m is a symmetry for the flow generated by v, provided m 2n — 1. Similarly,

A

vV, is a symmetry for the flow generated by v, corresponding to the Hamiltonian H =

ﬁn provided m 2 n.

In polytropic gas dynamics, we can construct additional recursion operators by
combining the Hamiltonian operator € with the operators &, &,, even though they are

not compatible. However, the resulting higher order symmetries appear to always be non-
local since we cannot explicitly invert &, or £,.

Finally, we indicate how to construct higher order conservation laws for any

generalized gas dynamics system. First note that, if (5.1) is of gas dynamics type, it is
equivalent to the matrix evolution equation U, = H-U,. This, and the fact that the matrices

H and U, commute, immediately leads to the important matrix identity
-1 -1 -1 -1
D,-(Uy ) - D (H-U, ) = —(HX-UX +U; -Hx), (5.5)

which holds on solutions to the system (5.1). In particular, the (2,1)-entry of (5.5) reads

H v, -H _-u
Dt[‘é—x]"'Dx( uu x8 uv X]=_2Huuu'

For classical gas dynamics, H =0, and we recover the conserved density
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v v
H,[u,v] = E" - k : (5.6)

uy - pv)vg

due to Verosky, [17]. For more general gas dynamics Hamiltonians, H, , will no longer

be 0, and 8—1'VX will no longer be a conserved density; however, we can simply modify
A

it to get a time-dependent conservation law with density H’{ = 8‘1-Vx + 2t Hy -

A
Equivalently, the integral 3, = JS‘I-VX dx, when it converges, is a linear function of t.

The first order conserved density IA{I = S_I'VX leads to a Hamiltonian flow using
the basic Hamiltonian operator &,. This will allow us to apply Theorem 9 to the

Hamiltonian pair € and £, and thereby generate a new hierarchy of higher order

conservation laws in gas dynamics. We find that, as with the Riemann equation, the
A - . . . » "
symmetry v, is Hamiltonian with respect to the Hamiltonian pair &, € and the corres-

ponding conserved density is —2 times Verosky's density (5.6). Therefore, there is a
A
hierarchy of mth order Hamiltonian densities H,, m=12,.. and corresponding

commuting biHamiltonian systems
A A
U = 62m+1 = BgEM, ] = € E[H, (], m> 1.

These Hamiltonians are in involution with respect to both the &, and € Poisson
brackets. More generally, if H = H is a Hamiltonian density in the first generalized gas

dynamics hierarchy, then the higher order density I/-\Im is conserved for the Hamiltonian

system (5.4) provided n <2m+1. If H= ﬁn is in the second generalized gas dynamics
hierarchy, then ﬁm is conserved provided n <2m+2.

Extensions to higher dimensional hyperbolic systems, cf. [18], and applications to

discontinuous solutions and shock waves, as in [3], are under investigation.
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