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Abstract

We show that, for both the conformal and projective groups, all the differential

invariants of a generic surface in three-dimensional space can be written as combinations

of the invariant derivatives of a single differential invariant. The proof is based on the

equivariant method of moving frames.

1 Introduction

According to Cartan, the local geometry of submanifolds under transformation groups, in-
cluding equivalence and symmetry properties, are entirely governed by their differential in-
variants. Familiar examples are curvature and torsion of a curve in three-dimensional Eu-
clidean space, and the Gauss and mean curvatures of a surface, [11, 30, 37].

In general, given a Lie group G acting on a manifold M , we are interested in studying its
induced action on submanifolds S ⊂ M of a prescribed dimension, say p < m = dimM .
To this end, we prolong the group action to the submanifold jet bundles Jn = Jn(M,p) of
order n ≥ 0, [30]. A differential invariant is a (perhaps locally defined) real-valued function
I : Jn → R that is invariant under the prolonged group action. Any finite-dimensional Lie
group action admits an infinite number of functionally independent differential invariants
of progressively higher and higher order. Moreover, there always exist p = dimS linearly
independent invariant differential operators D1, . . . ,Dp. For curves, the invariant differen-
tiation is with respect to the group-invariant arc length parameter; for Euclidean surfaces,
with respect to the diagonalizing Frenet frame, [11, 22, 24, 25, 26]. The Fundamental Basis

Theorem, first formulated by Lie, [23, p. 760], states that all the differential invariants can be
generated from a finite number of low order invariants by repeated invariant differentiation.
A modern statement and proof of Lie’s Theorem can be found, for instance, in [30].

A basic question, then, is to find a minimal set of generating differential invariants. For
curves, where p = 1, the answer is known: under mild restrictions on the group action
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(specifically transitivity and no pseudo-stabilization under prolongation), there are exactly
m − 1 generating differential invariants, and any other differential invariant is a function
of the generating invariants and their successive derivatives with respect to arc length [30].
Thus, for instance, the differential invariants of a space curve C ⊂ R

3 under the action of
the Euclidean group SE(3), are generated by m − 1 = 2 differential invariants, namely its
curvature and torsion.

In [34], it was proved, surprisingly that, for generic surfaces in three-dimensional space under
the action of either the Euclidean or equi-affine (volume-preserving affine) groups, a mini-
mal system of generating differential invariants consists of a single differential invariant. In
the Euclidean case, the mean curvature serves as a generator of the Euclidean differential
invariants under invariant differentiation. In particular, an explicit, apparently new formula
expressing the Gauss curvature as a rational function of derivatives of the mean curvature
with respect to the Frenet frame was found. In the equi-affine case, there is a single third or-
der differential invariant, known as the Pick invariant, [36, 37], which was shown to generate
all the equi-affine differential invariants through invariant differentiation.

In this paper, we extend this research program to study the differential invariants of surfaces
in R

3 under the action of the conformal and the projective groups. Tresse classified the
differential invariants in both cases in 1894, [38]. Subsequent developments in conformal
geometry can be found in [2, 3, 7, 39], as well as the work of Tom Branson and collaborators
surveyed in the papers in this special issue, while [1, 8, 27] present results on the projective
geometry of submanifolds.

The goal of this note is to prove that, just as in the Euclidean and equi-affine cases, the
differential invariants of both actions are generated by a single differential invariant though
invariant differentiation with respect to the induced Frenet frame. However, lest one be
tempted to näıvely generalize these results, [33] gives examples of finite-dimensional Lie
groups acting on surfaces in R

3 which require an arbitrarily large number of generating
differential invariants. Our two main results are:

Theorem 1 . Every differential invariant of a generic surface S ⊂ R
3 under the action of

the conformal group SO(4, 1) can be written in terms of a single third order invariant and its

invariant derivatives.

Theorem 2 . Every differential invariant of a generic surface S ⊂ R
3 under the action of

the projective group PSL(4) can be written in terms of a single fourth order invariant and its

invariant derivatives.

The proofs follow the methods developed in [34]. They are based on [6], where moving frames
were introduced as equivariant maps from the manifold to the group. A recent survey of the
many developments and applications this approach has entailed can be found in [32]. Further
extensions are in [18, 19, 16, 17, 33].

A moving frame induces an invariantization process that maps differential functions and
differential operators to differential invariants and (non-commuting) invariant differential
operators. Normalized differential invariants are the invariantizations of the standard jet
coordinates and are shown to generate differential invariants at each order: any differential

2



invariant can be written as a function of the normalized invariants. This rewriting is actually
a trivial replacement.

The key to the explicit, finite description of differential invariants of any order lies in the
recurrence formulae that explicitly relate the differentiated and normalized differential in-
variants. Those formulae show that any differential invariant can be written in terms of a
finite set of normalized differential invariants and their invariant derivatives. Combined with
the replacement rule, the formulae make the rewriting process effective. Remarkably, these
fundamental relations can be constructed using only the (prolonged) infinitesimal generators
of the group action and the moving frame normalization equations. One does not need to
know the explicit formulas for either the group action, or the moving frame, or even the
differential invariants and invariant differential operators, in order to completely characterize
generating sets of differential invariants and their syzygies. Moreover the syzygies and recur-
rence relations are given by rational functions and are thus amenable to algebraic algorithms
and symbolic software [13, 14, 15, 19] that we have used for this paper.

2 Moving Frames and Differential Invariants

In this section we review the construction of differential invariants and invariant derivations
proposed in [6]; see also [19, 16, 33, 34]. Let G be an r-dimensional Lie group that acts
(locally) on an m-dimensional manifold M . We are interested in the action of G on p-
dimensional submanifolds N ⊂M which, in local coordinates, we identify with the graphs of
functions u = f(x). For each positive integer n, let G(n) denote the prolonged group action
on the associated n-th order submanifold jet space Jn = Jn(M,p), defined as the set of
equivalence classes of p-dimensional submanifolds of M under the equivalence relation of n-
th order contact. Local coordinates on Jn are denoted z(n) = (x, u(n)) = ( . . . xi . . . uα

J . . . ),
with uα

J representing the partial derivatives of the dependent variables u = (u1, . . . , uq) with
respect to the independent variables x = (x1, . . . , xp), where p+ q = m, [30].

Assuming that the prolonged action is free1 on an open subset of Jn, then one can construct
a (locally defined) moving frame, which, according to [6], is an equivariant map ρ : V n → G

defined on an open subset V n ⊂ Jn. Equivariance can be with respect to either the right
or left multiplication action of G on itself. All classical moving frames, e.g., those appearing
in [5, 9, 10, 11, 21, 20], can be regarded as left equivariant maps, but the right equivariant
versions may be easier to compute, and will be the version used here. Of course, any right
moving frame can be converted to a left moving frame by composition with the inversion
map g 7→ g−1.

In practice, one constructs a moving frame by the process of normalization, relying on the
choice of a local cross-section Kn ⊂ Jn to the prolonged group orbits, meaning a submanifold

1A theorem of Ovsiannikov, [35], slightly corrected in [31], guarantees local freeness of the prolonged
action at sufficiently high order, provided G acts locally effectively on subsets of M . This is only a technical
restriction; for example, all analytic actions can be made effective by dividing by the global isotropy subgroup.
Although all known examples of prolonged effective group actions are, in fact, free on an open subset of a
sufficiently high order jet space, there is, frustratingly, as yet no general proof, nor known counterexample,
to this result.
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of the complementary dimension that intersects each orbit transversally. A general cross-
section is prescribed implicitly by setting r = dimG differential functions Z = (Z1, . . . , Zr)
to constants:

Z1(x, u
(n)) = c1, . . . Zr(x, u

(n)) = cr. (2.1)

Usually — but not always, [28, 34] — the functions are selected from the jet space coordinates
xi, uα

J , resulting in a coordinate cross-section. The corresponding value of the right moving
frame at a jet z(n) ∈ Jn is the unique group element g = ρ(n)(z(n)) ∈ G that maps it to the
cross-section:

ρ(n)(z(n)) · z(n) = g(n) · z(n) ∈ Kn. (2.2)

The moving frame ρ(n) clearly depends on the choice of cross-section, which is usually de-
signed so as to simplify the required computations as much as possible.

Once the cross-section has been fixed, the induced moving frame engenders an invarianti-
zation process, that effectively maps functions to invariants, differential forms to invariant
differential forms, and so on, [6, 32]. Geometrically, the invariantization of any object is
defined as the unique invariant object that coincides with its progenitor when restricted to
the cross-section. In the special case of functions, invariantization is actually entirely defined
by the cross-section, and therefore doesn’t require the action to be (locally) free. It is a pro-
jection from the ring of differential functions to the ring of differential invariants, the latter
being isomorphic to the ring of smooth functions on the cross-section [19].

Pragmatically, the invariantization of a differential function is constructed by first writing
out how it is transformed by the prolonged group action: F (z(n)) 7→ F (g(n) · z(n)). One
then replaces all the group parameters by their right moving frame formulae g = ρ(n)(z(n)),
resulting in the differential invariant

ι
[

F (z(n))
]

= F
(

ρ(n)(z(n)) · z(n)
)

. (2.3)

Differential forms and differential operators are handled in an analogous fashion — see [6, 22]
for complete details. Alternatively, the algebraic construction for the invariantization of
functions in [19] works with the knowledge of the cross-section only, i.e. without the explicit
formulae for the moving frame, and applies to non-free actions as well.

In particular, the normalized differential invariants induced by the moving frame are obtained
by invariantization of the basic jet coordinates:

Hi = ι(xi), Iα
J = ι(uα

J ), (2.4)

which we collectively denote by (H, I(n)) = (. . . Hi . . . Iα
J . . .) for #J ≤ n. In the case of

a coordinate cross-section, these naturally split into two classes: Those corresponding to
the cross-section functions Zκ are constant, and known as the phantom differential invari-

ants. The remainder, known as the basic differential invariants, form a complete system of
functionally independent differential invariants.

Once the normalized differential invariants are known, the invariantization process (2.3)
is implemented by simply replacing each jet coordinate by the corresponding normalized
differential invariant (2.4), so that

ι
[

F (x, u(n))
]

= ι
[

F ( . . . xi . . . uα
J . . . )

]

= F ( . . . Hi . . . Iα
J . . . ) = F (H, I(n)). (2.5)
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In particular, a differential invariant is not affected by invariantization, leading to the very
useful Replacement Theorem:

J(x, u(n)) = J(H, I(n)) whenever J is a differential invariant. (2.6)

This permits one to straightforwardly rewrite any known differential invariant in terms the
normalized invariants, and thereby establishes their completeness.

A contact-invariant coframe is obtained by taking the horizontal part (i.e., deleting any
contact forms) of the invariantization of the basic horizontal one-forms:

ωi ≡ ι(dxi) modulo contact forms, i = 1, . . . , p, (2.7)

Invariant differential operators D1, . . . ,Dp can then be defined as the associated dual differ-
ential operators, defined so that

dF ≡

p
∑

i=1

(DiF )ωi modulo contact forms,

for any differential function F . Details can be found in [6, 22]. The invariant differential
operators do not commute in general, but are subject to the commutation formulae

[Dj ,Dk ] =

p
∑

i=1

Y i
jk Di, (2.8)

where the coefficients Y i
jk = −Y i

kj are certain differential invariants known as the commutator

invariants.

3 Recurrence and Syzygies.

In general, invariantization and differentiation do not commute. By a recurrence relation,
we mean an equation expressing an invariantly differentiated invariant in terms of the basic
differential invariants. Remarkably, the recurrence relations can be deduced knowing only
the (prolonged) infinitesimal generators of the group action and the choice of cross-section.

Let v1, . . . ,vr be a basis for the infinitesimal generators of our transformation group. We
prolong each infinitesimal generator to Jn, resulting in the vector fields

v
(n)
κ =

p
∑

i=1

ξi
κ(x, u)

∂

∂xi
+

q
∑

α=1

n
∑

j=#J=0

ϕα
J,κ(x, u(j))

∂

∂uα
J

, κ = 1, . . . , r, (3.1)

on Jn. The coefficients ϕα
J,κ = v

(n)
κ (uα

J ) are given by the prolongation formula, [29, 30]:

ϕα
J,κ = DJ

(

ϕα
κ −

p
∑

i=1

ξi uα
i

)

+

p
∑

i=1

ξi
κu

α
J,i, (3.2)

5



whereD1, . . . , Dp are the usual (commuting) total derivative operators, andDJ = Dj1
· · · Djk

the corresponding iterated total derivative.

Given a collection F = (F1, . . . , Fk) of differential functions, let

v(F ) =
(

v
(n)
κ (Fj)

)

(3.3)

denote the k × r generalized Lie matrix obtained by applying the prolonged infinitesimal
generators to the differential functions. In particular, L(n)(x, u(n)) = v(x, u(n)) is the classical
Lie matrix of order n whose entries are the infinitesimal generator coefficients ξi

κ, ϕ
α
J,κ, [30, 33].

The rank of the classical Lie matrix L(n)(x, u(n)) equals the dimension of the prolonged group
orbit passing through the point (x, u(n)) ∈ Jn. We set

rn = max
{

rankL(n)(x, u(n))
∣

∣

∣
(x, u(n)) ∈ Jn

}

(3.4)

to be the maximal prolonged orbit dimension. Clearly, r0 ≤ r1 ≤ r1 ≤ · · · ≤ r = dimG,
and rn = r if and only if the action is locally free on an open subset of Jn. Assuming G

acts locally effectively on subsets, [31], this holds for n sufficiently large, and we define the
stabilization order s to be the minimal n such that rn = r. Locally, the number of functionally
independent differential invariants of order ≤ n equals dimJn − rn.

The fundamental moving frame recurrence formulae were first established in [6] and written
as follows; see also [33] for additional details.

Theorem 3 . The recurrence formulae for the normalized differential invariants have the

form

DiH
j = δ

j
i +

r
∑

κ=1

Rκ
i ι(ξ

j
κ), DiI

α
J = Iα

Ji +

r
∑

κ=1

Rκ
i ι(ϕ

α
J,κ), (3.5)

where δ
j
i is the usual Kronecker delta, and Rκ

i are certain differential invariants.

The recurrence formulae (3.5) imply the following commutator syzygies among the normalized
differential invariants:

DiI
α
Jj −DjI

α
Ji =

r
∑

κ=1

[

Rκ
i ι(ϕ

α
Jj,κ) −Rκ

j ι(ϕ
α
Ji,κ)

]

, (3.6)

for all 1 ≤ i, j ≤ p and all multi-indices J . We can show that a subset of these relationships
(3.5), (3.6) form a complete set of syzygies, [16]. By formally manipulating those syzygies,
performing differential elimination [4, 12, 13, 14], we are able to obtain expressions of some of
the differential invariants in terms of the invariant derivatives of others. This is the strategy
for the main results of this paper.

In the case of coordinate cross-section, if we single out the recurrence formulae for the constant
phantom differential invariants prescribed by the cross-section, the left hand sides are all zero,
and hence we obtain a linear algebraic system that can be uniquely solved for the invariants
Rκ

i . Substituting the resulting formulae back into the recurrence formulae for the remaining,
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non-constant basic differential invariants leads to a complete system of relations among the
normalized differential invariants [6, 33].

More generally, if we think of the Rκ
i as the entries of a p× r matrix

R =
(

Rκ
i

)

, (3.7)

then they are given explicitly by

R = − ι
[

D(Z)v(Z)−1
]

, (3.8)

where Z = (Z1, . . . , Zr) are the cross-section functions (2.1), while

D(Z) =
(

DiZj

)

(3.9)

is the p × r matrix of their total derivatives. The recurrence formulae are then covered by
the matricial equation [16]

D
(

ι(F )
)

= ι
(

D(F )
)

+R ι
(

v(F )
)

, (3.10)

for any set of differential functions F = (F1, . . . , Fk). The left hand side denotes the p × k

matrix
D
(

ι(F )
)

=
(

Di

(

ι(Fj)
) )

(3.11)

obtained by invariant differentiation.

The invariants Rκ
i actually arise in the proof of (3.5) as the coefficients of the horizontal

parts of the pull-back of the Maurer–Cartan forms via the moving frame, [6]. Explicitly,
if µ1, . . . , µr are a basis for the Maurer–Cartan forms on G dual to the Lie algebra basis
v1, . . . ,vr, then the horizontal part of their moving frame pull-back can be expressed in
terms of the contact-invariant coframe (2.7):

γκ = ρ∗µκ ≡

p
∑

i=1

Rκ
i ω

i modulo contact forms. (3.12)

We shall therefore refer to Rκ
i as the Maurer–Cartan invariants, while R in (3.7) will be

called the Maurer-Cartan matrix. In the case of curves, when G ⊂ GL(N) is a matrix Lie
group, the Maurer–Cartan matrix R = Dρ(n)(x, u(n)) · ρ(n)(x, u(n))−1 can be identified with
the Frenet–Serret matrix, [11, 26], with D the invariant arc-length derivative.

The identification (3.12) of the Maurer–Cartan invariants as the coefficients of the (horizontal
parts of) the pulled-back Maurer–Cartan forms can be used to deduce their syzygies, [17].
The Maurer-Cartan forms on G satisfy the usual Lie group structure equations

dµc = −
∑

a<b

Cc
ab µ

a ∧ µb, c = 1, . . . , r, (3.13)

where Cc
ab are the structure constants of the Lie algebra relative to the basis v1, . . . ,vr. It

follows that their pull-backs (3.12) satisfy the same equations:

dγc = −
∑

a<b

Cc
ab γ

a ∧ γb, c = 1, . . . , r. (3.14)

The purely horizontal components of these identities provide the following syzygies among
the Maurer–Cartan invariants, [17]:
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Theorem 4 . The Maurer–Cartan invariants satisfy the following identities :

Dj(R
i
c) −Di(R

j
c) +

∑

1≤a<b≤r

Cc
ab

(

Ri
aR

j
b − Rj

aR
i
b

)

+

p
∑

k=1

Y i
jk R

k
c = 0, (3.15)

for 1 ≤ c ≤ r, 1 ≤ i < j ≤ p, and where Y i
jk are the commutator invariants (2.8).

Finally, we note the recurrence formulas for the invariant differential forms established in [6]
produce the explicit formulas for the commutator invariants:

Y i
jk =

r
∑

κ=1

p
∑

j=1

Rκ
k ι(Djξ

i
κ) −Rκ

j ι(Dkξ
i
κ) . (3.16)

4 Generating Differential Invariants

A set of differential invariants I = {I1, . . . , Ik} is called generating if, locally, every differential
invariant can be expressed as a function of them and their iterated invariant derivatives DJIν .
A key issue is to find a minimal set of generating invariants, which (except for curves) must be
done on a case by case basis. Before investigating the minimality question in the conformal
and projective examples, let us state general results characterizing (usually non-minimal)
generating systems. These results are all consequences of the recurrence formulae (3.5) or,
equivalently, (3.10).

Let
In = {H1, . . . , Hp} ∪ { Iα

J | α = 1, . . . , q,#J ≤ n } (4.17)

denote the complete set of normalized differential invariants of order ≤ n. In particular,
assuming we choose a cross-section that projects to a cross-section on M (e.g., a minimal
order cross-section) then I0 = {H1, . . . , Hp, I1, . . . Iq } are the ordinary invariants for the
action on M . In particular, if, as in the examples treated here, the action is transitive on M ,
the normalized order 0 invariants are all constant, and hence are superfluous for the following
generating systems.

Theorem 5 . If the moving frame has order n, then the set of normalized differential in-

variants In+1 of order n+ 1 forms a generating set. Indeed, the rewriting process is effective

using the Replacement Rule (2.6).

For cross-section of minimal order there is an additional important set of invariants that is
generating. This was proved for coordinate cross-sections in [33] and then generalized in [16].
For each k ≥ 0, let rk denote the maximal orbit dimension of the action of G(k) on Jk.

Theorem 6 . Let Z = (Z1, . . . , Zr) define a minimal order cross-section in the sense that

for each k = 0, 1, . . . , s, where s is the stabilization order, Zk = (Z1, . . . , Zrk
) defines a

cross-section for the action of G(k) on Jk. Then I0 ∪ Z, where

Z =
{

ι(Di(Zj))
∣

∣ 1 ≤ i ≤ p, 1 ≤ j ≤ r
}

, (4.18)
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form a generating set of differential invariants.

Another interesting consequence of Theorem 3 observed in [17] is that the Maurer–Cartan
invariants

R = {Ri
a | 1 ≤ i ≤ p, 1 ≤ a ≤ r} (4.19)

also form a generating set when the action is transitive on M . More precisely:

Theorem 7 . The differential invariants I0 ∪ R form a generating set.

In [34], the following device for generating the commutator invariants was introduced, and
then applied to the differential invariants of Euclidean and equi-affine surfaces. We will
employ the same trick here.

Theorem 8 . Let I = (I1, . . . , Ip) be a set of differential invariants such that D(I), cf. (3.11),
forms a nonsingular p × p matrix of differentiated invariants. Then one can express the

commutator invariants as rational functions of the invariant derivatives, of order ≤ 2, of

I1, . . . , Ip.

Proof : In view of (2.8), we have

DiDjIl −DjDiIl =

p
∑

k=1

Y i
jk DkIl. (4.20)

We regard (4.20) as a system of p linear equations for the commutator invariants Y i
j1, . . . Y

i
jp.

Our assumption implies that coefficient matrix is nonsingular. Solving the linear system by,
say, Cramer’s rule, produces the formulae for the Y i

jk. Q.E.D.

In particular, if I is any single differential invariant with sufficiently many nontrivial invariant
derivatives, the differential invariants in the proposition can be taken as invariant derivatives
of I. Typically we choose I of order at least n, the order of the moving frame, and p− 1 of
its first order invariant derivatives. If I is a basic invariant, nonsingularity of the matrix of
differentiated invariants is then a consequence of the recurrence formulae. As a result, one
is, in fact, able to generate all of the commutator invariants as combinations of derivatives
of a single differential invariant !

5 Differential Invariants of Surfaces

Let us specialize the preceding general constructions to the case of two-dimensional surfaces
in three-dimensional space. Let G be a r-dimensional Lie group acting transitively and
effectively on M = R

3. Let Jn = Jn(R3, 2) denote the n-th order surface jet bundle, with
the usual induced coordinates z(n) = (x, y, u, ux, uy, uxx, . . . , ujk, . . . ) for j + k ≤ n.
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Let n ≥ s, the stabilization order of G. Given a cross-section Kn ⊂ Jn, let ρ : V n → G be
the induced right moving frame defined on a suitable open subset V n ⊂ Jn containing Kn.
Invariantization of the basic jet coordinates results in the normalized differential invariants

H1 = ι(x), H2 = ι(y), Ijk = ι(ujk), j, k ≥ 0. (5.21)

In view of our transitivity assumption, we will only consider cross-sections that normalize
the order 0 variables, x = y = u = 0, and so the order 0 normalized invariants are trivial:
H1 = H2 = I00 = 0. We use

I(n) = (0, I10, I01, I20, I11, . . . , I0n) = ι(u(n)) (5.22)

to denote all the normalized differential invariants, both phantom and basic, of order ≤ n

obtained by invariantizing the dependent variable u and its derivatives.

In addition, the two invariant differential operators are obtained by invariantizing the total
derivatives D1 = ι(Dx), D2 = ι(Dy), or, equivalently, are given as the dual differentiations
with respect to the contact-invariant coframe

ω1 = ι(dx), ω2 = ι(dy). (5.23)

Specializing the general moving frame recurrence formulae in Theorem 3, we have:

Theorem 9 . The recurrence formulae for the differentiated invariants are

D1Ijk = Ij+1,k +

8
∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

1 ,

D2Ijk = Ij,k+1 +

8
∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

2 ,

j + k ≥ 1, (5.24)

where Rκ
i are the Maurer–Cartan invariants, which multiply the invariantizations of the

coefficients of the prolonged infinitesimal generator

vκ = ξκ(x, y, u)
∂

∂x
+ ηκ(x, y, u)

∂

∂y
+

∑

0≤j+k≤n

ϕjk
κ (x, y, u(j+k))

∂

∂ujk

, (5.25)

which are given explicitly by the usual prolongation formula (3.2):

ϕjk
κ = Dj

xD
k
y

(

ϕκ − ξκ ux − ηκ uy

)

+ ξκ uj+1,k + ηκ uk,j+1. (5.26)
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6 Surfaces in Conformal Geometry

In this section, we focus our attention on the standard action of the conformal group SO(4, 1)
on surfaces in R

3, [2]. Note that dimSO(4, 1) = 10. A basis for its infinitesimal generators is

∂

∂x
,

∂

∂y
,

∂

∂u
, x

∂

∂y
− y

∂

∂x
, x

∂

∂u
− u

∂

∂x
, y

∂

∂u
− u

∂

∂y
, x

∂

∂x
+ y

∂

∂y
+ u

∂

∂u
,

(x2 − y2 − u2)
∂

∂x
+ 2 x y

∂

∂y
+ 2 xu

∂

∂u
, 2 x y

∂

∂x
+ (y2 − x2 − u2)

∂

∂y
+ 2 y u

∂

∂u
,

2 xu
∂

∂u
+ 2 y u

∂

∂y
+ (u2 − x2 − y2)

∂

∂u
.

The maximal prolonged orbit dimensions (3.4) are r0 = 3, r1 = 5, r2 = 8 and r3 = 10. The
stabilization order is thus s = 3. The action is transitive on an open subset of J2 and there
are two independent differential invariants of order 3. Thus, by Theorem 5, the differential
invariants of order 3 and 4 form a generating set. In this section we shall show that, under
a certain non-degeneracy condition, all the differential invariants can be written in terms of
the derivatives of a single third order differential invariant.

The argument goes in two steps. We first show that all the differential invariants of fourth
order can be written in terms of the two third order differential invariants and their monotone
derivatives, i.e., those obtained by applying the operators Di

1D
j
2. Then, the commutator trick

of Theorem 8 allows us to reduce to a single generator.

We give two computational proofs of the first step. First using the properties of normalized
invariants, Theorems 3 and 6, and a cross-section that corresponds to a hyperbolic quadratic
form, second by using the properties of the Maurer-Cartan invariants, thsmcgenmcsyz, along
with a cross-section that corresponds to a degenerate quadratic form. We have used the
symbolic computation software aida [15] to compute the Maurer-Cartan matrix, the com-
mutation rules and the syzygies, and the software diffalg [4, 13] to operate the differential
elimination.

6.1 Hyperbolic cross-section

The cross-section implicitly used in [38] is:

x = y = u = ux = uy = uxx = uyy = uxxy = uxyy = 0, uxy = 1. (6.27)

Thus, there are two basic third order differential invariants:

I30 = ι(uxxx), I03 = ι(uyyy),

and 5 of order 4, given by invariantization of the fourth order jet coordinates: Ijk = ι(ujk),
j + k = 4. Since (6.27) defines a minimal order cross-section, Theorem 6 implies that
{I30, I03, I31, I22, I13} is a generating set of differential invariants.

To prove Theorem 1, we first show that I31, I13 and I22 can be written in terms of {I30, I03}
and their monotone derivatives. Using formula (3.8), the Maurer-Cartan matrix is found to
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have the form

R = −

(

1 0 0 φ 0 1 0 κ σ φ

0 1 0 ψ 1 0 0 σ τ −ψ

)

, (6.28)

where
φ = − 1

4 I30, ψ = 1
4 I03, τ = 1 − 1

2 I13 −
1
8 I03

2,

σ = 1
8 I30I03 −

1
2 I22, κ = 1 − 1

2 I31 −
1
8 I30

2.

The first two are, in fact, the commutator invariants since, by (3.16), the invariant derivations
D1 and D2 satisfy the commutation rule:

[D2,D1] = φD1 + ψD2. (6.29)

Implementing (3.5), (3.6), we deduce the following relationships among {I30, I03, I31, I13, I22}:

E301 : D1(I30) − 3 I22 + 3
4 I30 I03 − I40,

E302 : D2(I30) − 3 I13 −
3
4 I03

2 + 6 − I31,

E031 : D1(I03) − 3 I31 −
3
4 I30

2 + 6 − I13,

E032 : D2(I03) − 3 I22 + 3
4 I30 I03 − I04,

S14 : D2(I13) −D1(I04) + 3
4 I03 I22 −

1
4 I03 I04 + I30 I13,

S23 : D2(I22) −D1(I13) −
3
2 I03 (I31 + I13) −

1
4 I30 (I22 + I04) −

1
4 I03 (I30

2 + I03
2 − 20),

S32 : D2(I31) −D1(I22) + 1
4 I03 (I40 + I22) + 3

2 I30 (I13 + I31) + 1
4 I30 (I03

2 + I30
2 − 20),

S41 : D2(I40) −D1(I31) − I03 I31 −
3
4 I30 I22 + 1

4 I30 I40.

Taking the combination E302 − 3E031 and E031 − 3E302 we obtain:

I31 = 3
2 − 1

8 D2(I30) + 3
8 D1(I03) + 3

32 (I03)
2
− 9

32 (I30)
2
,

I13 = 3
2 − 1

8 D1(I03) + 3
8 D2(I30) −

9
32 (I03)

2
+ 3

32 (I30)
2
.

Taking the combination

128D2(S32) − 48D1(S41) − 16D1(S23) − 36 I03S41 − 12 I03S23 + 108 I30S32 + 4 I30S14

− 48D1D2(E301) − 16D2
2(E302) + 48D2

2(E031) + 16D2
1(E031)

+ 36 I03D1(E031) + 88 I30D2(E031) − 12 I30D1(E301) − 4 I03D2(E301) + 36 I30D2(E302)

+
(

18 I03
2 + 40 I30

2 + 48D2(I30) + 24D1(I03)
)

E031

+ (18 I30I03 − 12D1(I30) + 32D2(I03))E301

+
(

42 I30
2 + 48D2(I30)

)

E302 + (2 I30I03 + 4D1(I30))E032

leads to:

I22 =
A22

64B22

,

12



where

A22 = − 48D2
1D2(I30) − 48D1D

2
2(I03) − 64D3

1(I03) + 64D3
2(I30) +

+
(

36D2
1(I03) + 48D2

2(I03) − 52D1D2(I30)
)

I03 −

−
(

36D2
2(I30) + 24D2

1(I30) − 28D1D2(I03)
)

I30 +

+ 36D2(I03)
2 − 24D1(I30)

2 + 24D1(I03)
2 − 24D2(I30)

2 − 12D2(I30)D1(I03) +

+ (30D1(I03) − 8D2(I30)) I03
2 + (52D2(I03) − 42D1(I30)) I30I03 −

− (30D2(I30) + 2D1(I03)) I30
2 + 64D1(I03) − 64D2(I30) +

+ 3 I03
4 − 3 I4

30 + 3 I03
2 − 3 I2

30,

and
B22 = D2(I03) −D1(I30).

We conclude that the two third order invariants I3,0 and I0,3 form a generating system.
Moreover, since the generating invariants are, up to constant multiple, commutator invari-
ants, we can use the commutator trick of Theorem 8 to generate them both from any single
differential invariant. Indeed, when D2φ 6= 0, the commutation rule (6.29) implies that

ψ =
D2D1φ−D1D2φ− φD1φ

D2φ
. (6.30)

Similarly, when D1ψ 6= 0 we have

φ =
D2D1ψ −D1D2ψ − ψD2ψ

D1ψ
. (6.31)

Therefore, under the assumption that

(D1ψ)2 + (D2φ)2 6= 0, (6.32)

a single differential invariant, of order 3, generates all the differential invariants for surfaces
in conformal geometry.

6.2 Degenerate cross-section

In our second approach, we choose the “degenerate” cross-section

x = y = u = ux = uy = uxx = uxy = uyy = uxxy = uxyy = 0. (6.33)

Implementing (3.8), the new Maurer-Cartan matrix is:

R = −

(

1 0 0 0 1 0 −ψ σ κ 0

0 1 0 0 0 0 φ τ −σ − 1
2 φ

)

, (6.34)

where
φ = I03, ψ = I30, τ = 1

2 I13, κ = − 1
2 I31, σ = 1

2 I22.
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Again, φ, ψ are the commutator invariants since [D2,D1] = φD1 + ψD2. Theorem 7 tells us
that the Maurer–Cartan invariants {φ, ψ, κ, τ, σ} form a generating set. We will show that
{κ, τ, σ} can be written in terms of {φ, ψ} and their derivatives. We write those as φi,j to

mean Di
1D

2
2(φ) and similarly for ψ, κ, τ, σ.

The non-zero syzygies of Theorem 4 are:

∆
7

: φ10 + ψ01 − 2 τ + 2 κ = 0,

∆
8

: σ01 − τ10 −
1
2 φ− 2φσ − 2ψ τ = 0,

∆
9

: σ10 + κ01 − 2φκ+ 2ψ σ = 0,

∆
10

: 1
2 φ10 − τ + ψ φ = 0.

The following combinations of the syzygies allow us to rewrite τ and κ in terms of φ, ψ and
their derivatives:

∆
7

+ 2 ∆
10

: κ = − 1
2 ψ01 + ψφ,

∆10 : τ = 1
2 φ10 + ψφ,

while the following combination

2D2(∆9) − 2D1(∆8) + 4 σ∆7 − 6ψ∆8 − 6φ∆9 − 2 ∆10

allows to express σ in terms of φ, ψ, τ, κ and their derivatives:

σ =
τ20 + κ02 = 5ψτ10 − 5φκ01 + 2ψ10τ − 2φ01κ+ 6φ2κ+ (6ψ2 + 1) τ + 1

2 ψφ

4(κ− τ)
.

Observe that this exhibits a singular behavior at umbilic points where κ = τ .

Finally, since the generating invariants are, up to constant multiple, commutator invariants,
we can generate one from the other by the same formulas (6.30), (6.31), under the assumption
that (6.32) holds.

7 Projective Surfaces

The infinitesimal generators of the projective action of PSL(4) on R
3 are

∂

∂x
,

∂

∂y
,

∂

∂u
,

x
∂

∂x
, y

∂

∂x
, u

∂

∂x
, x

∂

∂y
, y

∂

∂y
, u

∂

∂y
, x

∂

∂u
, y

∂

∂u
, u

∂

∂u
,

x2 ∂

∂x
+ x y

∂

∂y
+ xu

∂

∂u
, x y

∂

∂x
+ y2 ∂

∂y
+ y u

∂

∂u
, x u

∂

∂x
+ y u

∂

∂y
+ u2 ∂

∂u
.

The generic prolonged orbit dimensions are r0 = 3, r1 = 5, r2 = 8, r3 = 12 and r4 = 15 =
dimPSL(4), and so the stabilization order is s = 4.
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We adopt the same strategy as in previous section to show that the all the differential
invariants are generated by a single fourth order differential invariants. The computations
and formulae are nonetheless more challenging.

The section implicitly used in [38] is:

x = y = u = ux = uy = uxx = uyy = uxxy = uxyy = uxxxy = uxxyy = uxyyy = 0,

uxy = uxxx = uyyy = 1.
(7.35)

Thus, there are two basic fourth order differential invariants:

I40 = ι(uxxxx), I04 = ι(uyyyy),

and 6 of order 5, given by invariantization of the fifth order jet coordinates. Theorem 6 implies
that the invariants {I40, I04, I41, I32, I23, I14 } generate the algebra of projective differential
invariants.

The Maurer-Cartan matrix (3.8) is

R = −

(

1 0 0 −2ψ 0 κ − 1
2 −ψ τ 0 1 −3ψ −τ 1

4 − κ 1
2 σ − 3

8 ψ

0 1 0 φ − 1
2 σ 0 2φ η 1 0 3φ 1

4 − η −σ 3
8 φ+ 1

2 τ

)

,

(7.36)
where

φ = − 1
3 I04, ψ = 1

3 I40, η = − 1
2 I14 −

1
4 ,

τ = − 1
2 I23 + 1

4 I04, σ = − 1
2 I32 + 1

4 I40, κ = − 1
2 I41 −

1
4 .

The invariant derivations satisfy the commutation rule;

[D2,D1] = φD1 + ψD2

and so φ, ψ are the commutator invariants.

The nonzero syzygies (3.5), (3.6) of the generating set {φ, ψ, η, σ, τ, κ} are

∆4 : φ10 + 2ψ01 + 2 η − φψ − 1
2 = 0,

∆6 : σ10 − κ01 −
3
8 φ+ 3φκ+ 2ψ σ = 0,

∆8 : 2φ10 + ψ01 − 2 κ+ φψ + 1
2 = 0,

∆9 : η10 − τ01 −
3
8 ψ + 2φ τ + 3ψ η = 0,

∆12 : ∆4 + ∆8, ∆13 : −∆9, ∆14 : −∆6,

∆15 : 1
2 τ10 −

1
2 σ01 + 3

8 φ10 + 3
8 ψ01 −

1
4 κ+ 1

4 η + 2φσ + 2ψ τ = 0.

From ∆4 and ∆8 we immediately obtain:

η = 1
4 − 1

2 φ10 − ψ01 + 1
2 φψ, κ = 1

4 + φ10 + 1
2 ψ01 + 1

2 φψ.

Let P1, P2, P3 be the differential polynomials obtained from ∆6,∆9,∆15 after substitution of
κ and τ :

P1 = − 1
2 τ10 + 1

2 σ01 − 2φσ − 2 τ ψ,

P2 = 1
2 φ20 + ψ11 −

1
2 φ10ψ − 1

2 φψ10 + τ01 −
3
8 ψ − 2φ τ + 3

2 ψ φ10 + 3ψ ψ01 −
3
2 φψ

2,

P3 = −σ10 + φ11 + φφ10 + 3
2 ψφ01 + 1

2 ψ02 + 1
2 φψ01 −

3
8 φ− 3φφ10 −

3
2 φψ01 −

3
2 φ

2ψ − 2ψ σ.
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To obtain τ and σ we proceed with a differential elimination [12, 4, 13] on {P1, P2, P3}. We
use a ranking where

ψ < φ < ψ01 < φ01 < ψ10 < φ10 < ψ02 < ψ11 < φ11 < φ20 < · · ·
· · · < τ < σ < τ01 < σ01 < τ10 < σ10 < τ02 < σ02 < τ11 < σ11 < τ20 < σ20 < · · · .

For this ranking, the leaders of P1, P2, P3 are, respectively, τ10, τ01, σ10.

We first form the ∆-polynomial (cross-derivative) of P1 and P2 and reduce it with respect to
{P1, P2, P3}. We obtain a polynomial P4 with leader σ02. We then take the ∆-polynomial of
P3 and P4 and reduce it with respect to {P1, P2, P3, P4} to obtain a differential polynomial
P5 with leader σ01. On one hand, if we reduce now P4 by {P1, P2, P3, P5} we obtain a
differential polynomial P with leader σ. On the other hand, if we form the ∆-polynomial of
P3 and P5, reduce it by {P1, P2, P3, P5} we obtain a differential polynomial Q with leader σ.
The polynomial P and Q are linear in σ and τ so that we can solve for those two invariants in
terms of φ, ψ and their derivatives. The explicit formulas are rather long (available from the
authors on request), but not particularly enlightening. We conclude that the commutator
invariants φ, ψ form a generating set. Finally, we can use either (6.30) or (6.31), to generate
one commutator invariant from the other, and thereby establish Theorem 2.
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