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The purpose of this note is to explain how to use the equivariant method of mov-
ing frames, [2], to straightforwardly and algorithmically derive the equi-affine differential
invariants
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which were called “the two basic independent affine invariant descriptors” in [6]. In addi-
tion, we show that all higher order differential invariants can be generated from these by
the process of invariant differentiation.

Remark : An alternative approach, advocated in [4], is to use the infinitesimal in-
variance criteria, which requires solving a linear system of first order partial differential
equations based on the prolonged infinitesimal generators of the transformation group. In
contrast, the moving frame method is completely algebraic, typically much simpler, and,
moreover provides significantly more information, particularly the recurrence formulae to
be presented below that completely prescribe the structure of the underlying algebra of
differential invariants.

The starting point is the standard action of the equi-affine group SA(2) on the plane:

z = αx+ βy + a, w = γ x+ δ y + b, (2)

where the coefficients (group parameters) are subject to the unimodularity constraint

α δ − β γ = 1. (3)

Thus SA(2) has 5 independent parameters, and hence forms a five-dimensional Lie group.
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Remark : In [6] and much of the classical literature dating back to Blaschke, [1], the
action (2) is referred to as “affine geometry” but, in view of the unimodularity constraint
(3), the correct term is “equi-affine”, meaning area-preserving affine transformations.

There is an induced group action on plane curves C ⊂ R
2, but in the image processing

applications considered in [6], the curves are viewed as level sets of a function u = f(x, y).
We are interested in the induced action of SA(2) on the derivatives of the level set function,
known as the prolonged action. The differential invariants are, by definition, particular
combinations of derivatives that are not changed by the group action. The order of a
differential invariant is, by definition, the maximal order of derivative it depends upon.
Of course, the function u itself is a differential invariant, of order 0 since it involves no
derivatives.

The prolonged action on the derivatives of u is obtained by applying the operators
of implicit differentiation that relate derivatives of the function u with respect to the new
variable z, w to those with respect to x, y:

D
z
= δD

x
− γD

y
, D

w
= −βD

x
+ αD

y
, (4)

where D
x
, D

y
are the usual† differentiation operators. Thus the prolonged transformation

rules for the first and second order derivatives are simply
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(5)

To compute the equivariant moving frame, we must normalize the 5 = dimSA(2)
independent group parameters by setting 5 of the transformed variables in (2), (5) equal
to conveniently chosen constants — this corresponds to the choice of a cross-section to
the prolonged group orbits. The only constraint is that the resulting system of algebraic
equations be (locally) uniquely and smoothly solvable for a bona fide group element, which,
in this case, means that the unimodularity constraint (3) holds. In practice, the most
convenient normalization constants are usually 0 or, occasionally 1. In this case, we set

z = w = u
z
= u

zw
= 0, u

w
= 1. (6)

(The last one cannot be u
w

= 0 as this would lead to expressions for α, β, γ, δ whose
determinant is 0, not 1.) Using the formulas for z, w in (2) and solving the first two
normalization equations z = w = 0 for the translational parameters yields

a = −αx− βy, b = −γ x− δ y. (7)

† Technically they are total derivatives, [2, 4], which is the reason for the capital letters.
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However, since these parameters do not occur in the prolonged transformation formulas,
equations (7) will not be of significance for our purposes. Next, in view of (5), we can solve
the normalization equations u

z
= 0, u

w
= 1, for

β =
αu

y
− 1

u
x

, δ =
γ u

y

u
x

. (8)

Substituting these expressions into the unimodularity constraint (3) yields

α δ − β γ =
γ

u
x

= 1, hence γ = u
x
, and so δ = u

y
. (9)

Finally, substituting (8), (9) into the last normalization equation u
zw

= 0, as determined
by (5), allows us to solve for

α =
u
y
u
xx

− u
x
u
xy

J
, (10)

where the denominator J is the invariant (1). Replacing α, γ in (8) by their formulas
(10), (9) yields

α =
u
y
u
xx

− u
x
u
xy

J
, β =

u
y
u
xy

− u
x
u
yy

J
, γ = u

x
, δ = u

y
. (11)

The final formulas (11), combined with (7) after α, β, γ, δ have been replaced by their
expressions (11), serve to define the right equivariant moving frame, [2], for the prolonged
action of SA(2) corresponding to our choice of normalization equations.

The next phase of the moving frame calculus is to determine the (differential) in-
variants through the process of invariantization. In general, given any object, e.g., a
function of u and its derivatives, one produces the corresponding invariantized object by
first transforming the object according to the group transformations and then replacing all
occurrences of the group parameters in the transformed object by the previously derived
moving frame formulae. The result is guaranteed to be invariant. Invariantization is de-
noted by ι. For example, to compute ι(u

x
) — the invariantization of the function u

x
— we

first determine its transformation rule, namely the expression u
z
in (5), and then substitute

the formulas for γ, δ given in (11). Of course, in this case ι(u
x
) = 0 because we determined

the moving frame formulas (11) by solving, among others, the equation u
z
= 0. Indeed,

invariantizing the variables used to normalize the group parameters merely recovers the
constant values we prescribed during our normalization procedure. Thus,

ι(x) = ι(y) = ι(u
x
) = ι(u

xy
) = 0, ι(u

y
) = 1. (12)

These trivial constant invariants are sometimes referred to as the phantom invariants .
On the other hand, invariantizing any variable that was not used in the normalization
equations produces a nontrivial differential invariant, and, moreover, we are guaranteed
that these form a complete system of functionally independent differential invariants. In
particular, we find

ι(u) = u, ι(u
xx
) = J, ι(u

yy
) =

H

J
. (13)
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The first of these comes from the fact that u is already invariant. Indeed, invariantization
does not affect a differential invariant, and, in fact, defines a projection from the algebra
of functions of u and its derivatives to the algebra of differential invariants that, moreover,
respects all algebraic operations . The second and third expressions are found, after some
algebraic simplification, by substituting the moving frame formulae (11) directly into the
formulae (5) for the transformed second derivatives u

zz
, u

ww
. The conclusion is that u, J ,

and H/J — and hence u,H, and J — form a complete system of second order differential
invariants for the equi-affine action on level set functions, meaning that any other second
order differential invariant can be written as a function thereof. This justifies the basic
observation in [6]. In fact, by the Replacement Rule, which merely expresses the fact that
invariantization does not affect differential invariants and respects all algebraic operations,
if

I(x, y, u, u
x
, u

y
, u

xx
, u

xy
, u

yy
)

is any second order differential invariant, then

I = ι(I) = I(ι(x), ι(y), ι(u), ι(u
x
), ι(u

y
), ι(u

xx
), ι(u

xy
), ι(u

yy
))

= I(0, 0, u, 0, 1, J, 0,H/J)
(14)

immediately expresses I in terms of the fundamental differential invariants. (In computer
algebra, this is known as a “rewrite rule”, [3].)

There is no reason to stop at order two, and so applying the same invariantization
procedure produces a complete system of higher order differential invariants. For example,
to invariantize the third order derivative u

xxx
we first compute its transformation using

the implicit differentiation operators (4):

u
zzz

= D3

z
u = D

z
(u

zz
) = δ3u

xxx
− 3γ δ2 u

xxy
+ 3γ2 δu

xyy
− γ3u
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.

Replacing γ, δ by their moving frame formulas (11) produces the third order differential
invariant

K = ι(u
xxx

) = u3

y
u
xxx

− 3u
x
u2

y
u
xxy
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x
u
y
u
xyy

− u3

x
u
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. (15)

This, along with ι(u
xxy

), ι(u
xyy

), ι(u
yyy

), and the lower order differential invariants u,H, J

form a complete system of third order differential invariants, as guaranteed by the third
order version of the Replacement Rule (14).

However, there is a more powerful way to produce higher order differential invariants,
namely, by applying operators of invariant differentiation. These are found by invariantiz-
ing the basic differential operators D

x
, D

y
. As with functions, this is accomplished by

first transforming them by the group action, which are merely the implicit differentiation
operators (4). Substituting the moving frame formulae (11) for the group parameters in
(4) produces the two fundamental invariant differential operators:

D
1
= ι(D

x
) = u

y
D

x
− u

x
D

y
, D

2
= ι(D

y
) =

1

J
D̃

2
, (16)

where

D̃
2
= (u

x
u
yy

− u
y
u
xy
)D

x
+ (u

y
u
xx

− u
x
u
xy
)D

y
. (17)
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This implies that if I is any differential invariant, so are D
1
I and D

2
I. Observe that D

1
I

is just minus the total Jacobian determinant of the level set function u and the invariant
I, which we write as

D
1
I = −

D(u, I)

D(x, y)
. (18)

Further, since J is itself a differential invariant, D̃
2
I is also a differential invariant, and so

the operator D̃
2
is also an invariant differential operator, being the following total Jacobian

determinant:

D̃
2
I = −u2

x

D(u
y
/u

x
, I)

D(x, y)
= u2

y

D(u
x
/u

y
, I)

D(x, y)
, (19)

where u
y
/u

x
can be identified with the “projectivization” of the gradient or normal vector

∇u to the level set.

Consequently, starting with H and J , we can immediately produce an infinite hierar-
chy of higher and higher order differential invariants:

D
1
H, D

2
H, D

1
J, D

2
J, D2

1
H, D

1
D

2
H, D

2
D

1
H, D2

2
H, D2

1
J, . . . .

The first 4 have order 3, the next 8 have order 4 and so on. Keep in mind that the invariant
differential operators (16) do not in general commute. Here, it is not hard to show using
the moving frame calculus, or directly form their explicit expressions (16), (17), that their
commutator is given by

[D
1
,D

2
] = D

1
· D

2
−D

2
· D

1
= Y D

1
, (20)

where the coefficient

Y = − ι(u
xxy

)/J (21)

is itself a differential invariant, known as a commutator invariant . Alternatively, one can
replace D

2
by D̃

2
to produce the higher order differential invariants. Note finally that

D
1
u = 0, D

2
u = 1, D̃

2
u = J. (22)

While invariantization commutes with all algebraic operations, it does not commute
with differentiation, and so, in general,

ι(D
x
F ) 6= ι(D

x
) ι(F ) = D

1
ι(F ).

However, the explicit relationships connecting the higher order differential invariants ob-
tained by invariantization and those obtained by invariant differentiation are provided by
the fundamental moving frame recurrence formulae. Remarkably, these can be derived
using only linear algebra and differentiation without even knowing the explicit formulas
for the differential invariants, or the moving frame, or even the group transformations!
We only need to know which coordinates are being normalized to which constants, along
with the well known formulas for the (prolonged) infinitesimal generators of the group
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action. We refer the reader to [2, 5] for complete details on how the recurrence formulae
are systematically found. In the present case, we merely state the results at third order:

ι(u
xxx

) = D
1
J, ι(u

xxy
) = D

2
J − 2H =

D̃
2
J

J
− 2H,

ι(u
xyy

) = D
1

(
H

J

)
, ι(u

yyy
) = D

2

(
H

J

)
+ 2

H2

J2
=

J D̃
2
H −H D̃

2
J + 2H2J

J3
.

(23)

They can, of course, be rather tediously checked by direct computation; however, the point
is that one can find them directly, completely bypassing the explicit expressions for the
invariantized third order derivatives and the moving frame.

Thus, the third order recurrence formulae (23) imply that we can generate all the
third order differential invariants by invariantly differentiating the second order differen-
tial invariants H, J . The higher order recurrence formulae can be similarly constructed.
However, in this case, since the moving frame has order 2, by a general theorem, [2], we
immediately conclude:

Theorem 1. A complete system of differential invariants for the action of the equi-

affine group SA(2) on level set functions is provided by the zero-th order differential invari-

ant u, the second order differential invariants H, J and the latter’s invariant derivatives

obtained by repeatedly applying the invariant differential operators D
1
,D

2
.

However, we can do better. Note that, according to (20), (21), and (23),

D
1
D

2
J −D

2
D

1
J = Y D

1
J =

(
2H −D

2
J
)D

1
J

J
,

hence

H =
J
(
D

1
D

2
J −D

2
D

1
J
)

2D
1
J

+ 1

2
D

2
J =

D
1
D̃

2
J − D̃

2
D

1
J

2D
1
J

, (24)

the second expression following from (16). Thus we can obtain H by invariantly differen-

tiating J . Moreover, since D̃
2
u = J , we deduce the following result:

Theorem 2. A complete system of differential invariants for the action of the equi-

affine group SA(2) on level set functions is provided by u and its invariant derivatives

obtained by repeatedly applying the invariant differential operators D
1
, D̃

2
.

One final remark: the above calculations implicitly assumed that J 6= 0. However,
since J is a differential invariant, it is not hard to see that one can clear denominators in
the recurrence formulae to produce a complete system of polynomial differential invariants,
generated by u and H by successively applying D

1
, D̃

2
. On the other hand, to obtain H

by invariantly differentiating u via equation (1) requires that D
1
J 6≡ 0, meaning that u

and J are functionally independent.
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