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Abstract. A new, elementary algorithm for constructing complete, minimal sets of
generating invariants for finite or, more generally, discrete group actions, both linear and
nonlinear, is proposed. The resulting fundamental invariants are piecewise analytic and
endowed with a rewrite rule that enables one to immediately express any other invariant
(polynomial, rational, smooth, analytic, etc.) as a function thereof. The construction is
inspired by the method of equivariant moving frames for Lie group actions.

The theory and computation of invariants of finite groups has a long and distinguished
history, [3, 5,21, 32]. Most of the effort has gone into constructing and classifying polyno-
mial invariants of linear actions, i.e., representations. The fundamental result is Noether’s
Theorem, [22], which guarantees the existence of a finite system of generating polynomial
invariants, meaning that any other polynomial invariant can be expressed as a polynomial
function of the generators. The existence of generating sets of rational invariants of linear
actions was earlier investigated by Burnside, [3]. Extensions to discrete groups are also of
interest, [4].

The present study of invariants of finite and discrete group actions was motivated
by recent applications in the computational chemistry of polyatomic molecules, [2,26],
where the proliferation of generating polynomial invariants is problematic for the design
of efficient and accurate computational algorithms. Further potential applications include
coding theory, [29], combinatorics, [32], algebraic topology, [21, 30], number theory and
geometry, [20], tilings, tessellations, and crystallography, [4], as well as discrete symmetry
groups, [12], and conservation laws, [28], of differential equations.
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In this note, we explain how to construct minimal generating sets of invariants of
finite and discrete group actions using techniques motivated by the method of equivariant
moving frames for Lie group actions, [6,23,25]. The one cautionary note is that the
resulting invariants are not, in general, algebraic or even smooth; they are piecewise ana-
lytic functions on the domain of definition of the group action, often, but not necessarily,
continuous. There are several rebuttals to the inevitable objections by algebraists. First,
the method is completely elementary, constructive, and algorithmic. Moreover, the gener-
ators are endowed with a rewrite rule, [11], that enables one to immediately and uniquely
express any other invariant (polynomial, rational, analytic, smooth, etc.) in terms of our
fundamental invariants. Finally, one should note the amazing successes of modern deep
learning algorithms, [7, 31], which are now based on compositions of elementary piecewise
linear, non-analytic functions — namely those based on the so-called “ReLU function”
f(x) = max{0,z} — after it was realized that constructions based on “nicer” analytic
or smooth functions are more technically complicated and perform no better. Thus, one
can envision similar efficient invariant computational algorithms based on the piecewise
analytic fundamental invariants constructed here.

Minimality is key, especially in practical applications, because, even though Noether’s
Theorem, [22], guarantees a finite system of generating polynomial invariants, the minimal
number of generators can be very large even for relatively small groups; see, for example,
the tables in [13]. Rational invariants are more well behaved; indeed, Burnside, [3], proves
that a linear action of a finite group on an m-dimensional space requires either m or m+ 1
generating rational invariants; in the former case they are algebraically independent, while
in the latter they satisfy a single algebraic syzygy. Classifying in which case a given action
belongs is known as Noether’s Problem, on which significant progress has been made
in recent years, [30,33]. However, I am unaware of any direct constructive algorithms
for producing Burnside’s rational generators. Another potential computational drawback
is the apparently unknown nature of the required denominators. General methods for
constructing rational invariants presented in Derksen and Kemper, [5], can presumably
be applied, although they are rather inefficient in that they require an initial computation
of the polynomial invariants and then analysis of the structure of the associated rational
combinations based on the underlying syzygies, which must also be classified. A more
promising approach might be an adaptation of the moving frame-based algorithm of Hubert
and Kogan, [11], for directly computing rational invariants.

Let us now present the general construction. Let G be a finite group acting on an open
subset’ M C R™. (In the final examples, we show how the method can be straightforwardly
adapted to infinite discrete groups.) The identity element /transformation is denoted by e.
The action can be either linear or nonlinear; indeed, the method to be described can be
applied, by working in local coordinates, to group actions on manifolds.

Given such an action, the orbit of a point z = (2, ..., 2,,) € M is, by definition, the
subset O, = {g-z|g € G}. The isotropy subgroup of a point z is the set of all group
elements that fix it, denoted by G, = {g € G| g- z = z}. The cardinality of its orbit is

t For specificity, we will work in the real category throughout, noting that the methods trivially
extend to actions on complex spaces.



#0O,=#G/#G,. Given g € G, we set
S,={zeM| g- 2=z}

to be the closed subset consisting of all points fixed by g, whereby g € G, if and only if
z €8, A group element g # e is said to act effectively if M,=M \ S, 1s an open dense
subset of M; in other words g does not act trivially on any open subset of M. If G acts
effectively, meaning that every g # e acts effectively, then

My= () M,={2eM| G,={e}}C M CR™
e#geG

is an open dense! subset of M, which we call the reqular subset. Its complement,

S=M\M,= U s,
e#geG
will be called the singular subset. The group G acts freely on M, meaning that for
all z € M,, the only group element that fixes z is the identity: G, = {e}. This is
equivalent to the requirement that the orbit through z has the same cardinality as the
group: # O, = # G. We will primarily focus our attention on the regular subset M.
By a (global) cross-section, we mean a subset K C M|, that intersects each orbit in a
single point:
#(K NO,) =1 forall ze M,. (1)

In the non-moving frame literature, a cross-section is usually referred to as a fundamental
domain for the group action. As we will see, a cross-section is, in general, the union of an
open subset and part of its boundary. Fixing the cross-section K, the point k € K N O, is
known as the corresponding canonical form or normal form of the point z € M. We note
that we can write the regular subset as the disjoint union of the images of the cross-section
under the individual group elements:

M, = UGQ'K- (2)

As in [6], the choice of cross-section allows us to define an equivariant moving frame
map p: M, — G, so that, given z € M,, its image g = p(z) € G is the group element that
maps z to its canonical form:

g-z=p(z)-2z=ke KN O.,. (3)

Freeness of the group action at z € M, implies that g = p(z) is uniquely determined by
this requirement. Further, it is not hard to see that, as constructed, the moving frame
map is right-equivariant:

plg-2)=pz)-g ", ge G, zelM,.

T This is trivial because G is finite. The result also holds for countable discrete groups by the
Baire Category Theorem, [14].



(Its left-equivariant counterpart p: M, — G is obtained by composition with the group
inversion: p(z) = p(z)~t.)
An invariant is a function® I: M, — R that is unaffected by the group action:

I(g-z)=1(z) forall geG, z¢€ M,. (4)

The moving frame map induces an invariantization process, [5,6], which we denote by
¢, that uniquely associates to any function F: M, — R an invariant I = «(F): M, — R,
defined as the unique invariant function that agrees with F' on the cross-section:

I(k) = F(k) forall ke K. (5)
Since [ is invariant, it is constant on the orbits, and so, in view of (3), must be given by
I(z) =1(p(z) - 2) = F(p(z) - z) forall ze M,.

In other words, to evaluate I = +(F') at a point z € M, one maps z to its canonical form
k = p(z)-z € K and then evaluates F' at k. In particular, by construction, invariantization
does not affect an invariant function: «(I) = I, which further implies that tor = ¢. In
other words, invariantization defines a projection from the space of functions to the space
of invariants. Moreover, by construction, invariantization respects all algebraic operations;
in other words, given functions Fj(z),..., Fj(z) and ®(¢,,...,t;), we have

UR(F (2),..., Fi(2)] = @(¢[Fi(2)],....t[Fi(2)]). (6)

Note: Here and in the sequel we will interchangeably write ¢[ F'(2)] = «(F')(2) as necessary.

In particular, invariantization of the individual coordinate functions F;(z) = z; pro-
duces the m = dim M fundamental invariants

Ii(2) = [ Fi(2) ] = u(2), j=1,...,m. (7)

By the above remark, the value of I,(z) at a point z € M, is given by the j* coordinate

of its canonical form k = p(z) - z € K. I claim that the fundamental invariants I,,..., I,
form a generating set of functionally independent invariants for the group action, meaning
that any other invariant can be uniquely expressed in terms of the fundamental invariants

I,,..., 1. To prove the claim, according to (6, 7),

L[F(Zl, .. .,zm)} = F(L(Zl>, .. .,L(zm)) = F(Il(z), . ..,Im(z)). (8)

In other words, to invariantize a function F(z) = F(zy,...,2,), one merely replaces each

z; in its coordinate expression by the associated fundamental invariant I,(z) = ¢(z;). In

particular, if F' = J is an invariant, then, as noted above, ¢(J) = J, and hence formula (8)
reduces to

J(z1, o zm) = J(1(2), ..., 1,(2)), (9)

T More generally, an invariant can be defined on all of M, or on any G-invariant subset thereof.



which is known as the Replacement Theorem, [6]. It allows one to immediately express any
invariant as a function of the fundamental invariants. In computer algebra applications,
equation (9) is referred to as a Rewrite Rule, [11].

The one cautionary note is that the fundamental invariants so constructed are not,
in general, algebraic or even smooth. They are obviously analytic on the interior of the
fundamental domain K, and hence also on the interior of its images g - K for any g € G.
In favorable situations, they extend to their boundaries, which include the singular subset
S = M\ M,, to define continuous, piecewise analytic functions on all of M, although more
generally they may have discontinuities across the boundaries.

This describes the basic construction. Serious applications will be deferred to future
investigations. Let us finish up by looking at a few elementary examples.

Example 1. Consider the standard linear action of the symmetric group G = S, on
M = R? that permutes the coordinates (z,y) = (21,2,). Let 7, € S, be the nonidentity
element. The regular subset is the off-diagonal component: M, = {x # y}, while S =
{x =y}. Suppose we choose the cross-section (fundamental domain)

K={z<y}CM,.

Then, according to the above construction, the corresponding moving frame map is given
by

€, <y,

e ={ 0TI @wen,

The two fundamental invariants are obtained by invariantizing the two coordinate functions
2 =T, %, =Yy, namely

(z,y), =<y,

(L2, ), (. y)) = plz,y) - (2,y) = { (v,2),  @>y

so that
Il(x,y):min{x,y}, IQ(x,y):maX{x,y}.

If J(z,y) is any invariant, then the Replacement Rule (9) is used to immediately rewrite
J in terms of the fundamental invariants:

J(@,y) = J (L (z,9), I(2,y)). (10)
For example, the standard elementary symmetric polynomial invariants are given by

Ji(z,y) =r+y =1 (2,y) + I,(z,y) = min{z,y } + max{z,y},
JQ(‘,E?y) =Xy = Il(fll,y)12<.’13,y) = Hllll{.’lj,y} X max{x,y},

as can easily be verified. Observe that in this case the fundamental invariants are contin-
uous and piecewise analytic on all of M = R2.

5



Example 2. Generalizing the preceding example, consider the standard action of the
symmetric group G = S, on M = R™ that permutes the coordinates of z = (z,..., z,,)-
The regular subset consists of all points with all unequal entries:

My={z#z|1<i<j<m}.
An evident cross-section is
K={z] 21 <2< -+ <2z,}.

Thus, given z € M, the permutation m = p(z) € S,, defined by the moving frame map
p: My — S, is the one that sorts the entries of z into ascending order. The value of the

fundamental invariant I; = ¢(z;) at a point 2 = (zy, ..., 2,,) is the jth smallest entry of z.
Thus, I,(z) = min{z,...,2,,}, while I,(z,...,2,,) is the second smallest entry, and so
on, up to I, (z) = max{z,..., 2, . The Replacement Rule is as usual, (9), allowing one

to immediately rewrite any invariant, including the elementary symmetric polynomials, in
terms of the fundamental invariants:

Ji(z)=z1+2+ o +2, =0E)+ L)+ - +1,(2),
Jy(z) = H Zi%5 = H I;(2) Ij(z>7

1<j 1<J

In(2) =212y - 2, = 11(2) [1(2) -+ L, (2).

m m

Example 3. Consider the linear action of G = Z, = Z/27Z ~ S, on M = R? with
the non-identity element —e € Z, acting by reflection: (x,y) — (—x, —y). The regular
subset is M, = M \ {0}. Let us choose the cross-section

K={z>0}U{(0,y)]y>0}.
The moving frame map is then given by

(e (xz,y) € K,
,o(at,y)—{ —e, (x,y) € My\ K.

The resulting fundamental invariants are

Y, x>0,
I (z,y) =u(z) =|x]|, L(z,y)=uy)=¢ —¥y, =<0,
ly|, ==0.

In this case the invariant I, is discontinuous across the y axis.
As in (10), we can immediately rewrite any invariant J(z,y) in terms of the funda-
mental invariants. For example, the three basic polynomial invariants are

Jl([l’,',y>:l'2:ll(l’,y)2, JQ(:L'?y):xy:II(xvy)IQ(:E?y)a J3($7y>:y2212(x7y)2'

Example 4. The following example arises in the chemistry of tetratomic molecules,
[2,26], and also in distance geometry, [1,16]. Generalizations to more complicated

6



molecules/point configurations are apparent and worth detailed investigation from both a
theoretical and computational standpoint.

Let 1<d € Z, with d = 3 the physically interesting case. Given a point p € R%, let || p ||
denote its Euclidean norm'. Given 4 points p,, py, ps,p, € R%, let ri; =715 = p; —

4
for 1 <4,7 <4 be the 6 = <2> interpoint distances. We consider

7= (719713, 14> 235 T245 T34)

as coordinates on a certain conical subset of the positive orthant, M C Ri, called the
Euclidean distance cone in [8], which, by Schoenberg’s Theorem, [27, 34], can be explicitly
prescribed by the positive semidefiniteness of the associated reduced Euclidean distance
matrix. The permutation group G = S, acts on the points p, py, 3, P4, and hence on their
interpoint distances, inducing an action on M. We use the moving frame construction to
deduce the fundamental invariants I, (r), ..., I4(r).

Let us concentrate on the subset ]\/4\0 C M, where the 6 interpoint distances are all dis-

tinct. (The regular subset M, C M includes that part of 8]\/4\0 determined by configurations
with one or more repeated distances but no nontrivial permutational symmetries.) To con-

struct a cross-section K C ]\/4\0, we need to fix a canonical form p;. = Prijy, J =14,

for the point configuration through application of a distinguished permutation 7 € S,. Let
us denote the interpoint distances of the canonical configuration by

k= (K12, k13, k145 Kogs Koy K3y) with kij = || p; —Dj+ | = Tixjx = Ta(i) w(5)

One evident candidate is to first select p;.,py. so that k5 is the smallest distance; this
choice also serves to fix p;., p,. up to interchanging the two members of each pair. We can
further specify p,. and ps. so that k5 is the smallest among the distances k4, kq4, ky3, Koy
between the two pairs. This choice serves to fix all 4 points p;.,py«, P3«, Py+, and hence
determines the canonical form of the original point configuration. The moving frame

p: ]/\4\0 — S, maps a set of distances r € ]/\4\0 to the permutation m = p(r) € S, that places
them in the above canonical form.

The resulting fundamental invariants are readily constructed as follows. First,
I15(r) = min{ Tij} = k1g = Tyes
is the smallest interpoint distance. Next,

113(7“) = kl?) = min{'fl*k,’r2*k | 1* ;é k’ ;é 2*} = T1*3*,

where we interchange the indices 1* «+— 2* prescribing k,, if necessary. This fixes the
ordering of the 4 points, and hence prescribes the moving frame permutation m = p(r) to

f Actually, the construction works for any norm.



maps the point configuration to its canonical form, p(r) - r = k, so that (1*,2* 3*,4*) =
m(1,2,3,4). In this manner, we have constructed all 6 fundamental invariants:

Iy = kg =7uge, Iy = k3 =130, Iy = kg = 11eges
Iy3 = kog = rouge, Iy = koy = rouye, I3y = kgy = rguys.

The Replacement Rule works exactly as before, so that if J(r) is any permutation-invariant
function of the interpoint distances, then

J(r1gs -y T34) = J(Il2(r)7 7134(7“»

gives its explicit formula in terms of the 6 fundamental invariants.

In contrast, the computations in [26] for a tetratomic molecule require 6 algebraically
independent polynomial invariants (a system of parameters) along with an additional 5
secondary invariants, dictated by the Cohen—Macaulay structure of the ring of polyno-
mial invariants, [9]. Similar constructions can evidently be applied to more complicated
polyatomic molecules, including those composed of different atoms that serve to reduce
the allowable permutations. See also [17] for more general types of molecular symmetry
groups.

Example 5. Finally, to see how the methods extend to infinite discrete group actions,
let us investigate two simple examples. Let G = Z? act on M = R? by translation:

(z,y) — (x+i,y+j) for  i,jeL

In this case, every point is regular, so M, = M. A cross-section (fundamental domain) is
provided by the unit square K = {0 < x,y < 1}, including the origin and 2 of its 4 sides.
The fundamental invariants are

I (z,y) = t(z) = mod 1, I(z,y) = t(y) =y mod 1,

which are discontinuous. As before, the Replacement Rule enables one to rewrite any Z?2
invariant function in terms of the fundamental invariants; for example

J(z,y) =sin(2rz +67y) =sin( 271, (z,y) + 671y (z,y) ).

Let us next supplement the preceding discrete translational group by the group Z, =
Z/AZ consisting of rotations around the origin through integer multiples of 90°. Thus, the
underlying group is the semidirect product G = Z, x Z? containing the transformations
that map (z,y) € M to the following points:

The singular subset S consists of the half integer lattice points (%z, % j), i,] € Z. A
convenient cross-section is provided by the square of size % along with one of its 4 sides:

K=K, U K,, where Ko={0<z,y<1i}, Klz{(:v,O)}0<x<%}.

Let M\o C M, be the open subset that maps to K, namely the set of points (z,y) such
that neither coordinate is an integer nor half integer. (We leave the treatment of the other
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regular points to the reader.) Given a point z = (x,y) € ]\/4\0, its canonical form is the
point k = (z*,y*) € K given by

~ o~ ~ o~ 1
(Z,9), 0<z,§ <3,
(1-7,7), 0<T<3<y<l, T =z mod 1,
k= (2" y") = ~ ~ ~ 1 o~ where R
(y,1—7=), O<y<sz<z<l, y =1y mod 1
(1-2,1-7), T <Z,y<1,

The values of the fundamental invariants are thus

I)(z,y) = u(z) = 2%, Iy(z,y) = u(y) = y~, (12)

where z*, y* are the canonical coordinates of (x,y) given in formula (11). As before, the
Replacement Rule (10) allows one to rewrite any G-invariant function in terms of our two
fundamental invariants (12).

Many additional examples can be straightforwardly analyzed using the preceding mov-
ing frame constructions. A general foundational question, then, is the existence and algo-
rithmic construction of a suitable cross-section (fundamental domain) for a given finite or
discrete group action. In the latter case, this requires imposing certain conditions, although
a fully general existence theorem is apparently not known. For example, in the case of the
discrete group action on R generated by the translation x — x+1 and the scaling = +— x/2,
every orbit is densef, and so there is no fundamental domain of the type postulated above.
Indeed, the only continuous invariant is a constant function, although the preceding mov-
ing frame construction could still be applied to produce non-constant totally discontinuous
invariants. One sufficient condition for existence of “nice” fundamental domains that has
been proposed is that the action be proper, or more fully, properly discontinuous, meaning
that, for every compact subset K C M, the set {g € G|g- K N K # @} is finite. How-
ever, there are examples of non-proper discrete actions which nevertheless possess suitable
fundamental domains; see the Mathoverflow discussion thread [10] for details. See also
[20] for the construction and use of fundamental domains for arithmetic subgroups of
semisimple Lie groups, of importance in geometry and number theory, including modular
forms.

Remark: It would be instructive to adapt the inductive/recursive moving frame con-
structions for Lie groups, [15, 24|, to the present context, enabling one to relate invariants
of subgroups to those of larger groups.

One final comment: I have shown how moving frame-based constructions can be
adapted to discrete group actions on continuous spaces. In [18,19], moving frames are

T Indeed, two points z, y € R belong to the same orbit if and only if their binary expansions
are identical after a finite number of digits, modulo a shift, or, equivalently, modulo multiplication

by an integer power of 2. In other words, if © = >, ;27 ", y = >; y;27°, where x;,y; € {0,1} are
their binary digits, then we require z; = y;4+,, for some fixed n and all sufficiently large ¢, with
the usual technical proviso that we identify expansions that are eventually all 0’s or all 1’s.



applied to actions of continuous groups on discrete spaces. It would clearly be of interest
to investigate applications of moving frame methods to finite and discrete group actions
on discrete spaces.
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