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Abstract. The action of a Lie pseudogroup G on a smooth man-
ifold M induces a prolonged pseudogroup action on the jet spaces
J
n of submanifolds of M . We prove in this paper that both the

local and global freeness of the action of G on J
n persist under

prolongation in the jet order n. Our results underlie the construc-
tion of complete moving frames and, indirectly, their applications
in the identification and analysis of the various invariant objects
for the prolonged pseudogroup actions.

1. Introduction

The results in this paper are motivated by recent developments in
the study of pseudogroups, their moving frames and invariants, and
a range of applications, [4], [26], [27], [28]. The classical treatments
[1], [7], [8], and [11] of moving frames are primarily concerned with
equivalence, symmetry and rigidity properties of submanifolds S ⊂
G/H of homogeneous spaces under the natural action of G. Moving
frames in these time-honored problems may in effect be identified as
suitably normalized equivariant local sections on S of the bundle G→
G/H , or as lifts to G of maps into G/H by means of such sections.
A more general point of view is adopted in [6], where an alternate
description of a moving frame is put forth as an equivariant section of
the action groupoid M ×G→ M associated with the Lie group action
on a manifold M . This reformulation served to open a wide range
of applications reaching well beyond those afforded by the classical
approach to moving frames. See [23] for a recent survey of activity in
this area.

Given an infinite dimensional pseudogroup G acting on M , our main
focus lies on its induced action on submanifolds S ⊂M . In this frame-
work the principal protagonists are the jet spaces G(n) of pseudogroup
transformations and Jn of submanifolds of M , each endowed with the
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natural action of G. For pseudogroups, which are characterized via
their action on a manifold, the proper analogue of the finite dimen-
sional action groupoid is furnished by the bundles E (n) → Jn composed
of pairs (z(n), g(n)) of jets z(n) ∈ Jn and g(n) ∈ G(n) with the same base
point in M . Moving frames can then be conceived as local sections of
E (n) equivariant under the joint action of G on the constituent spaces,
and are, in conformity with the finite dimensional situation, ordinarily
constructed via a normalization process based on a choice of a cross
section to the pseudogroup orbits in Jn, cf. [26].

In concrete applications one frequently deals with moving frames of
increasingly high order that are mutually compatible under the nat-
ural projections π̃n+k

n : Jn+k → Jn. These, by the way of projective
limits, collectively form a so-called complete moving frame on J∞. As
expounded in [26] and [27], complete moving frames, when combined
with Gröbner basis techniques, can be effectively used to identify dif-
ferential invariants, invariant differential forms, operators of invariant
differentiation, and so on, for the prolonged action of Lie pseudogroups
on J∞, and to uncover the algebraic structure of the invariants and of
the invariant variational bicomplex, [13]. We refer to [3], [4], [19], [28],
and [29] for recent applications involving the method of moving frames
for infinite dimensional pseudogroups.

In the finite dimensional situation of a Lie group action, the existence
of a moving frame requires that the action be locally free, [6]. However,
as bona fide infinite dimensional groups cannot have trivial isotropy,
one is lead to define (local) freeness of the action in terms of the jets
of group transformations fixing a point in Jn, [26]. The adapted defi-
nition relying on jets constrains the dimensions of the jet spaces G(n),
and provide a simpler alternative to the Spencer cohomological growth
conditions imposed by Kumpera, [14], in his analysis of differential in-
variants. Our notion of freeness, when applied to finite dimensional
group actions, proves to be slightly broader than the classical concept,
and, as we will elaborate in section 4 of the present paper, ensures the
existence of local moving frames for pseudogroup actions on Jn. By
contrast, extending the moving frame method and results to non-free
actions remains an open problem.

Since freeness is the essential attribute in our constructions, our first
order of business is to establish its persistence under prolongations.
Specifically, as the main contributions of the present paper, we prove
in Theorems 5.1 and 5.2 that if a pseudogroup acts (locally) freely at
z(n) ∈ Jn, then it also acts (locally) freely at any z(n+k) ∈ Jn+k, k ≥ 0,
with π̃n+k

n (z(n+k)) = z(n). These results, notably, are the key ingredients
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to the construction of complete moving frames and, indirectly, underlie
the various applications requiring invariant quantities for pseudogroup
actions and the analysis of their algebraic structure. The local result,
Theorem 5.1, appeared in its original form in [27], with a proof resting
on techniques from commutative algebra. Here we give an alternate,
direct proof of the Theorem requiring only basic linear algebra. The
global result of Theorem 5.2 is new and highlights the differences be-
tween the classical finite dimensional theory of group actions, [22], and
the infinite dimensional theory as developed in [26].

Our paper is organized as follows. We start in section 2 with an
overview of the nuts and bolts of continuous pseudogroups, which is
followed by an outline of prolonged pseudogroup actions on submani-
fold jet bundles in section 3. Then, in section 4, we review the method
of moving frames for pseudogroup actions on submanifold jet bundles
Jn. These appear in two guises — as locally and globally equivariant
sections of the bundle E (n) → Jn associated with the prolonged action
— and we discuss conditions guaranteeing the existence of each type.
The definitions and results of this section unify and make rigorous the
present authors’ earlier attempts in characterizing moving frames. Fi-
nally, in section 5, we establish the main results of this paper, namely,
the persistence of both local and global freeness of pseudogroup actions
under prolongation in the jet order.

2. Lie Pseudogroups

Let M be a smooth m-dimensional manifold. Denote by D = D(M)
the pseudogroup of all local diffeomorphisms ϕ of M with an open
domain domϕ ⊂M , and, for 0 ≤ n ≤ ∞, the bundle of their nth order
jets g(n) = jn

z
ϕ, z ∈ domϕ, by D(n) = D(n)(M). Write

(2.1) πk
n : D(k) −→ D(n), 0 ≤ n ≤ k,

for the canonical projections. The source map σ
(n) : D(n) → M and

target map τ
(n) : D(n) → M are given by

(2.2) σ
(n)(jn

z
ϕ) = z, τ

(n)(jn
z
ϕ) = ϕ(z),

respectively. Let D(n)
|z = (σ(n))−1(z) stand for the source fiber and

D(n)
z

= (σ(n))−1(z) ∩ (τ (n))−1(z) for the Lie group of isotropy jets at
z, the latter being isomorphic with the n-th order prolonged general

linear group, that is, the Lie group of n-jets of local diffeomorphisms
of Rm fixing the origin, [20, 31].
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The bundle D(n) possesses a Lie groupoid structure, [18], with the
partial multiplication induced by composition of mappings,

(2.3) Lϕg
(n) = jn

τ
(n)(g(n))

ϕ·g(n) and Rϕg
(n) = g(n)·jn

ϕ−1(σ(n)(g(n)))
ϕ,

The operation (2.3) also defines the actions

(2.4) Lϕg
(n) = jn

τ
(n)(g(n))

ϕ · g(n), Rϕg
(n) = g(n) · jn

z
ϕ,

of D on D(n) by left and right multiplication in an obvious fashion.
Given local coordinates z = (z1, . . . , zm), Z = (Z 1, . . . , Zm) on M

about z and Z = ϕ(z), respectively, the induced local coordinates of
g(n) = jn

z
ϕ ∈ D(n) are given by (z, Z(n)), where the components

(2.5) Za
b1b2···bk

=
∂kϕa

∂zb1∂zb2 · · ·∂zbk
(z), 1 ≤ a ≤ m, 0 ≤ k ≤ n,

of Z(n) represent the partial derivatives of the coordinate expression
ϕa = Za ◦ϕ evaluated at the source point z = σ

(n)(g(n)). Following
Cartan, we will use lower case letters, z, x, u, . . . for the source coor-
dinates and the corresponding upper case letters Z(n), X(n), U (n), . . .
for the derivative target coordinates of the diffeomorphism jet g(n).

Let X (M) denote the sheaf of locally defined smooth vector fields
on M , and write JnTM for the space of their nth order jets. Given
local coordinates z = (z1, . . . , zm) on M , a vector field is written in
component form as

(2.6) v =
m∑

a=1

ζa(z)
∂

∂za
,

and the coordinates on JnTM induced by (2.6) are designated by

(2.7) (z, ζ (n)) = (za, ζb, ζbc1, . . . , ζ
b
c1c2...cn

),

where the subscripts are symmetric under permutation of the indices,
with b and the ci’s all ranging from 1 to m

A vector field v ∈ X (M) lifts to a right-invariant vector field

(2.8) λ
(n)(v) ∈ X (D(n))

defined on (τ (n))−1(domv) ⊂ D(n) as the infinitesimal generator of the

left action of its flow map Φv

t on D(n), cf. [25]. The lift λ
(n)(v) is ver-

tical, that is, tangent to the source fibers D(n)
|z and has the expression

(2.9) λ
(n)(v) =

m∑

a=1

n∑

k=0

Dzb1Dzb2 · · ·Dzbk ζ
a(Z)

∂

∂Za
b1b2···bk
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in the local coordinates (2.5), where

(2.10) Dzb =
∂

∂zb
+ Zc

b

∂

∂Zc
+ Zc

bc1

∂

∂Zc
c1

+ Zc
bc1c2

∂

∂Zc
c1c2

+ · · ·

denotes the standard coordinate total derivative operators on D(∞).
The lift map λ

(n) is easily seen to respect the Lie brackets of vector
fields.

As is well known, the space Jn
o,zTM of n-jets at z of vector fields

vanishing at z becomes a Lie algebra when equipped with the bilinear
operation induced by the usual Lie bracket of vector fields. With this
operation, the lift map (2.11) can be seen to restrict to an isomorphism

(2.11) λ
(n)
z

: Jn
o,zTM −→ XR(D(n)

z
), z ∈M,

between Jn
o,zTM and the Lie algebra of right-invariant vector fields on

the isotropy subgroup D(n)
z

.
Recall that an n+ 1 jet jn+1

z
σ defines a linear map

 Ljn+1
z σ : T

z
M −→ Tjn

z
σD

(n) by  Ljn+1
z σv = (jnσ)∗v.

Now the prolongation pr(1) R ⊂ D(n+1) of a submanifold R ⊂ D(n)

consists of the n+ 1 jets jn+1
z

σ with the property that the image of the
associated linear map is tangent to R, that is,  Ljn+1

z σ(T
z
M) ⊂ Tjn

z
σR.

While it is customary to call a pseudogroup G ⊂ D Lie if transfor-
mations ϕ ∈ G satisfy the condition, originally introduced by Lie [17],
that they form the complete solution to a system of partial differential
equations, several variants of the precise technical definition of a Lie
pseudogroup existing in the literature, see e.g. [2, 9, 12, 14, 15, 30].
For the purposes of this paper the following will suffice.

Definition 2.1. A subset G ⊂ D is a Lie pseudogroup if, whenever ϕ,
ψ ∈ G, then also ϕ ◦ψ−1 ∈ G where defined, and, in addition, there is
an integer n∗ ≥ 1 so that for all n ≥ n∗,

1. the corresponding subgroupoid G(n) ⊂ D(n) forms a smooth, em-
bedded subbundle;

2. every smooth function ϕ ∈ D satisfying jn
z
ϕ ∈ G(n), z ∈ domϕ,

belongs to G;

3. G(n) = pr(n−n∗) G(n∗), n ≥ n∗, agrees with the repeated prolonga-
tion of G(n∗).

Thus on account of condition (1), for n ≥ n∗, the pseudogroup sub-
bundles G(n) ⊂ D(n) are defined in local coordinates by formally inte-
grable systems of nth order partial differential equations

(2.12) F (n)(z, Z(n)) = 0,
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the (local) determining equations for the pseudogroup, whose local so-
lutions Z = ϕ(z), by condition (2), are exactly the pseudogroup trans-
formations. Moreover, by condition (3), the determining equations of
order n > n∗ can be obtained from those of order n∗ by a repeated
application of the total derivative operators Dza defined in (2.10).
Remark : In [10], it is shown that, in the analytic category, the reg-

ularity condition (1) and Lie condition (2) imply the integrability con-
dition (3).

Note that the customary requirements that a pseudogroup be closed
under restriction of domains and concatenation of compatible local dif-
feomorphisms are built into condition (2). Thus our Lie pseudogroups
are always complete in the sense of [16]. The assumptions also imply,
as per the classical result of E. Cartan [32], that the isotropy jets

(2.13) G(n)
z

= {g(n) ∈ G(n) | σ(n)(g(n)) = τ
(n)(g(n)) = z} ⊂ D(n)

z

form a finite dimensional Lie group for all z ∈M and n ≥ n∗.
Given a Lie pseudogroup G, let g ⊂ X (M) denote the set of its

infinitesimal generators, or G vector fields for short. Thus g consists of
the locally defined smooth vector fields v on M with the property that
the flow maps Φv

t , for all fixed t, belong to G. As a consequence of the
group property in Definition 2.1, the Lie bracket of two G vector fields,
where defined, is again a G vector field.

Let Jng denote the space of n-jets of G vector fields. In local coordi-
nates (2.7), the subspace Jng ⊂ JnTM is specified by a linear system
of partial differential equations

(2.14) L(n)(z, ζ (n)) = 0, n ≥ n∗,

for the component functions ζa = ζa(z) of a vector field obtained by

linearizing the determining equations (2.12) at the n-jet I
(n)
z = jn

z
id of

the identity transformation. Equations (2.14) are called the linearized

or infinitesimal determining equations for the pseudogroup. As a con-
sequence of Definition 2.1, conversely, any vector field v satisfying the
infinitesimal determining equations (2.14) can be shown to be an infin-
itesimal generator for G, cf. [24]. Furthermore, as with the determining
equations (2.12) for pseudogroup transformations, the infinitesimal de-
termining equations (2.14) of order n ≥ n∗ can be obtained from those
of order n∗ by repeated differentiation.

While, by construction, the determining equations (2.12) for a pseudo-
group are locally solvable, that is, any (z, Z(n)) ∈ G(n) is the jet of some
ψ ∈ G, it is not known to us if, in the C∞ category, the same holds
true for the linearized version (2.14) of the equations. We will therefore
make the additional blanket assumption that every n-jet v(n) ∈ JnTM
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satisfying (2.14) can be realized as the n-jet of some G vector field,

that is, G is tame as defined in [24]. In this situation, the lift map λ
(n)
z

,
as given in (2.11), restricts to an isomorphism between the Lie algebra
Jn
o,zg of n-jets of G vector fields vanishing at z and the Lie algebra of

the isotropy subgroup G(n)
z

.
In the case of a symmetry group of a system of differential equations,

the linearized determining equations (2.14) are the completion of the
usual determining equations for the infinitesimal symmetries obtained
via Lie’s algorithm [21].

3. Jet Bundles

For 0 ≤ n ≤ ∞, let Jn = Jn(M, p) denote the nth order (extended)
jet bundle consisting of equivalence classes of p-dimensional subman-
ifolds S ⊂ M under the equivalence relation of nth order contact,
cf. [5, 21]. We use the standard local coordinates

(3.1) z(n) = (x, u(n)) = (xi, uα, uαj1, u
α
j1j2

, . . . , uαj1j2···jn)

on Jn induced by a splitting of the local coordinates z = (x, u) =
(x1, . . . , xp, u1, . . . , uq) on M = J0 into p independent and q = m − p
dependent variables. Let

π̃k
n : Jk −→ Jn, 0 ≤ n ≤ k,

denote the canonical projections.
Local diffeomorphisms ϕ ∈ D preserve the nth order contact between

submanifolds, and thus give rise to an action

(3.2) L̃ϕ(z(n)) = ϕ · z(n), where z(n) ∈ (π̃n
o )−1(domϕ) ⊂ Jn,

the so-called nth prolonged action of D on the jet bundle Jn. By the
chain rule, the action (3.2) induces a well-defined action

(3.3) L̃g(n)(z(n)) = g(n) · z(n), where σ
(n)(g(n)) = π̃n

o (z(n)),

of the diffeomorphism jet groupoid D(n) on Jn.
It will be useful to combine the two bundles D(n) and Jn into a new

bundle E (n) → Jn by pulling back σ
(n) : D(n) → M via the standard

projection π̃n
o : Jn →M . Thus E (n) consists of pairs of jets,

(z(n), g(n)) ∈ Jn ×D(n),

with z(n) ∈ Jn and g(n) ∈ G(n) based at the same point z = π̃n
o (z(n)) =

σ
(n)(g(n)) ∈ M . Technically, the bundle E (n) → Jn is the action

groupoid associated with the action of D(n) on π̃n
o : Jn →M , [18].
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Local coordinates on E (n) are written as

(3.4) Z(n) = (z(n), Z(n)),

where z(n) = (x, u(n)) = (xi, uα, uαj1, u
α
j1j2

, . . . , uαj1j2···jn) indicate sub-
manifold jet coordinates, while

Z(n) = (Za, Za
b1
, . . . , Za

b1b2···bn
) = (X(n), U (n))

= (X i, Uα, X i
b1
, Uα

b1
, . . . , X i

b1b2···bn
, Uα

b1b2···bn
)

indicate the target derivative coordinates of a diffeomorphism. The
source σ̂

(n) : E (n) → Jn and target τ̂
(n) : E (n) → Jn maps on E (n) are

respectively defined by

(3.5) σ̂
(n)(z(n), g(n)) = z(n), τ̂

(n)(z(n), g(n)) = g(n) · z(n).

Thus the latter simply represents the action of D(n) on Jn.
A local diffeomorphism ϕ ∈ D acts on the set

{(z(n), g(n)) ∈ E (n) | π̃n
o (z(n)) ∈ domϕ} ⊂ E (n)

by

(3.6) L̂ϕ · (z(n), g(n)) = (jn
z
ϕ · z(n), g(n)· jnϕ(z)ϕ

−1),

where π̃n
o (z(n)) = z. The action (3.6) obviously factors into an action

of D(n) on E (n), which we will again designate by the symbol L̂. Note

that the target map τ̂
(n) is manifestly invariant under the action (3.6)

of the diffeomorphism pseudogroup,

(3.7) τ̂
(n)(L̂ϕ · (z(n), g(n))) = τ̂

(n)(z(n), g(n)).

In local coordinates, the standard lifted total derivative operators on
E (∞) are given by

(3.8) Dxj = Dxj +

q∑

α=1

uαj Duα +
∑

k≥ 1

uαjj1j2···jk
∂

∂uαj1j2···jk
,

where Dxj , Duα are the total derivative operators (2.10) on D(∞). The

lifted invariant total derivative operators on E (∞) are, in turn, given by

(3.9) DXj =

p∑

k=1

W k
j Dxk , where W k

j = (DxkXj)−1

indicates the entries in the inverse of the total Jacobian matrix, cf. [26].
Then, by virtue of the chain rule, the expressions for the higher-order

prolonged action of D(n) on Jn, that is, the coordinates Ûα
J of the
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target map τ̂
(n) : E (n) → Jn, are obtained by successively applying the

derivative operators (3.9) to the target dependent variables Uα,

(3.10) Ûα
j1j2···jk

= DXj1 DXj2 · · ·DXjkU
α.

Note that we employ hats in (3.10) to distinguish between the target
jet coordinates of submanifolds and those of diffeomorphisms.

Let v ⊂ X (M) be a smooth vector field with the flow map Φv

t . By
definition, the prolongation pr(n)v of v is the infinitesimal generator
of the prolonged action of Φv

t on (π̃n
o )−1(domv) ⊂ Jn. Write

v =

p∑

i=1

ξi
∂

∂xi
+

q∑

α=1

φα ∂

∂uα

in the coordinates (3.1). Then the components φ̂α
j1j2···jk

of

(3.11) pr(n)v =

p∑

i=1

ξi
∂

∂xi
+

q∑

α=1

∑

k≤n

φ̂α
j1j2···jk

∂

∂uαj1j2···jk

are given by the standard prolongation formula, cf. [21, 22],

(3.12) φ̂α
j1j2···jk

= Dxj1Dxj2 · · ·DxjkQ
α +

p∑

i=1

ξiuαij1j2···jk ,

where

(3.13) Qα = φα − ξiuαi , α = 1, . . . , q,

denotes the components of the characteristic of v and Dxj stands for
the total derivative operators (3.8) restricted to J∞, identified as the
image of the identity section

E (∞)
|I(∞) = {(z(∞), I(∞)

z
) | z(∞) ∈ J∞, z = π̃∞

o (z(∞))}

in E (∞).
Finally, in view of (3.12), the prolongation pr(n)v |

z(n) of a vector

field at z(n) ∈ Jn depends only on the n-jet jn
z
v of v at z = π̃n

o (z(n))
and, consequently, the prolongation process induces well-defined linear
mappings

(3.14) pr
z(n) : Jn

z
TM −→ T

z(n)Jn, z = π̃n
o (z(n)).

4. Moving Frames

Given a Lie pseudogroup G ⊂ D, we let H(n) ⊂ E (n) denote the
subbundle corresponding to the jets of transformations belonging to G.
Specifically,

(4.1) H(n) = {(z(n), g(n)) ∈ E (n) | g(n) ∈ G(n)}.
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We will furthermore designate the restrictions of the source and target

maps (3.5) to H(n) by σ̂
(n)
H , τ̂

(n)
H . Let U ⊂ Jn be open and connected.

Then a local moving frame ρ(n) on U for the action of G on Jn is a
section of

σ̂
(n)
H : H(n)

|U −→ U

that is locally equivariant, that is, there is an open set

(4.2) W ⊂ (σ̂
(n)
H )−1(U) ∩ (τ̂

(n)
H )−1(U)

containing the image of the identity section {(z(n), I
(n)
z ) | z(n) ∈ U} ⊂ W

so that

(4.3) ρ(n)(g(n) · z(n)) = L̂g(n)ρ(z(n)), for all (z(n), g(n)) ∈ W .

Note that if (4.3) holds in the open sets W1, W2 ⊂ H(n), then it also
holds in the union W1 ∪W2, so that one can always assume that W is
the maximal set with the required properties.

A section of H(n)
|U → U is called a global moving frame, or simply a

moving frame, if U is stable under the action of G(n), that is, U is the
union of the orbits of the G(n) action on Jn, and if W in the equivariance
condition (4.3) can be chosen to be the entire set W = H(n)

|U . Call a

local moving frame ρ(n) : U → H(n) normalized if ρ(n)(z(n)) = (z(n), I
(n)
z )

for some z(n) ∈ U .
Moving frames ρ

(n)
1 : U (n) → H(n), ρ

(k)
2 : U (k) → H(k), k > n, are said

to be compatible if π̃k
n(U (k)) = U (n) and

(4.4) ρ
(n)
1 ◦ π̃k

n(z(k)) = π̂k
n
◦ρ

(k)
2 (z(k))

for all z(k) ∈ U (k), where π̂k
n : H(k) → H(n) stands for the canonical

projection. A complete moving frame is provided by the projective
limit of a mutually compatible collection ρ(k) : U (k) → H(k) of moving
frames of all orders k ≥ n for some n. As expounded in [26], complete
moving frames can be effectively used to construct complete sets of
differential invariants, invariant total derivative operators, invariant
coframes, and so on, and to analyze the structure of the algebra of
differential invariants for the action of pseudogroups on extended jet
bundles.

As for Lie transformation groups [6], the existence of a moving frame
hinges on a suitable notion of freeness of the pseudogroup action on the
jet bundles Jn. However, in contrast with the finite dimensional case,
bona fide infinite dimensional transformation groups cannot have trivial
isotropy, and, as a result, we are lead to define freeness of the action in
terms of jets of local diffeomorphisms stabilizing a given submanifold
jet.
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Recall that as a consequence of Definition 2.1, the isotropy subgroup

G
(n)

z(n) = {g(n) ∈ G(n)
z

| g(n) ·z(n) = z(n)}

of a point z(n) ∈ Jn, as a closed subgroup, forms a Lie subgroup of
G(n)

z
, where z = π̃n

o (z(n)). In addition, one can show that the Lie alge-

bra of G
(n)

z(n) can be identified with the kernel of the restriction of the

prolongation map pr
z(n) in (3.14) to Jn

o,zg; see [27] for details.

Definition 4.1. A pseudogroup G acts freely at z(n)o ∈ Jn if its isotropy

subgroup is trivial, G
(n)

z
(n)
o

= {I
(n)
zo }, and locally freely if G

(n)

z
(n)
o

is discrete.

Thus the pseudogroup G acts locally freely at z(n)o precisely when the
prolongation map pr

z
(n)
o

: Jn
zo
g → T

z
(n)
o
Jn is injective. In this situation

the mappings pr
z(n) : Jn

z
g → T

z(n)Jn have maximal rank for all z(n)

contained in some neighborhood Ṽ ⊂ Jn of z(n)o and thus their images

define an involutive distribution on Ṽ whose integral submanifolds are
the intersections of G-orbits on Jn with Ṽ . A cross section, or transver-
sal, K(n) to the orbits of G through z(n)o is an embedded submanifold
of Jn containing z(n)o so that

(4.5) T
z(n)Jn = T

z(n)K(n) ⊕ im pr
z(n) , for all z(n) ∈ K(n).

Note that the existence of cross sections for locally free actions is a
simple consequence of the classical Frobenius theorem, [21].

Theorem 4.2. Suppose G acts locally freely at z
(n)
o ∈ Jn. Then G

admits a normalized local moving frame on some neighborhood U ⊂ Jn

of z(n)o . Suppose furthermore that one can choose a cross section K(n)

through z
(n)
o so that G(n) acts freely at each k

(n) ∈ K(n) and that any

G-orbit intersects K(n) in at most one point. Then G admits a global

moving frame in some open set U ⊂ Jn containing z
(n)
o .

Proof. By assumption, the mappings pr
z(n) : Jn

z
g → T

z(n)Jn have max-

imal rank for all z(n) contained in some neighborhood Ṽ ⊂ Jn of z(n)o .

Let K(n) ⊂ Ṽ be a cross section to the orbits through z(n)o and write

H(n)
|K(n) = (σ̂

(n)
H )−1(K(n)). Let

(4.6) µ(n) = τ̂
(n)
H H(n)

K(n)

: H(n)

K(n)
−→ Jn

denote the target map restricted to H(n)
|K(n). By (4.5), the Jacobian

of µ(n) is non-singular at (z(n)o , I(n)
zo

), and so, by the inverse function

theorem, µ(n) restricts to a diffeomorphism from a neighborhood V ⊂
H(n)

|K(n) of (z(n)o , I(n)
zo

) onto a neighborhood U ⊂ Jn of z(n)o . Write
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η(n) = (ι(n), γ(n)) : U → V for the inverse function and define a section
ρ(n) : U → H(n) by

ρ(n)(z(n)) = (z(n), γ(n)(z(n))−1),

where the exponent indicates the groupoid inverse on G(n). A direct
computation shows that for z(n) = µ(n)(k(n), h(n)), where (k(n), h(n)) ∈ V ,
the equivariance condition

(4.7) ρ(n)(g(n) · z(n)) = L̂
g(n)ρ(z(n))

is satisfied provided that (k(n), g(n) · h(n)) ∈ V . But it is easy to see
that the pairs (z(n), g(n)) fulfilling this condition form an open set W ⊂
H(n)

|U containing the image of the identity section, and, consequently,

ρ(n) provides a normalized local moving frame in the neighborhood U
of z(n)o .

Next assume that K(n) is a cross section through z(n)o so that G(n)

acts freely at every k(n) ∈ K(n) and that each G(n) orbit intersects K(n)

at most at one point. These conditions are equivalent to the mapping
µ(n) defined in (4.6) being one-to-one, and so the steps used above
to construct a local moving frame will also prove the existence of the
global counterpart provided that the rank of µ(n) is maximal at every
point.

To compute the rank of µ(n) at (k(n)o , h(n)o ) ∈ H(n)
|K(n), write h(n)o =

jn
zo
ϕ, ϕ ∈ G, and consider the mapping

Mϕ : (π̃n
o
◦µ(n))−1(domϕ) ⊂ H(n)

|K(n) −→ H(n)
|K(n);

Mϕ(k(n), h(n)) = (k(n), jn
τ
(n)(h(n))

ϕ · h(n)).
(4.8)

Then obviously

µ(n)
◦Mϕ = L̃ϕ ◦µ(n),

so

µ(n)
∗ |

(k
(n)
o ,h

(n)
o )

◦Mϕ∗ |(k(n)
o ,I

(n)
zo )

= (L̃ϕ)∗ |k(n)
o

◦µ(n)
∗ |

(k
(n)
o ,I

(n)
zo )

.

By assumption, the ranks of the differentials on the right-hand side of
the equation are maximal, so µ(n) must indeed have maximal rank at
(k(n)o , h(n)o ) ∈ H(n)

|K(n). This completes the proof of the theorem. �

5. Persistence of Freeness

In this final section we state and prove the main results of the paper
establishing the persistence of both local and global freeness under
prolongation of the pseudogroup action.
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Theorem 5.1. Suppose G acts locally freely at z(n)o ∈ Jn, where n ≥ n∗.

Then it acts locally freely at any z
(n+k)
o ∈ Jn+k with π̃n+k

n (z(n+k)
o ) = z

(n)
o .

Proof. It suffices to consider the case k = 1 only. Let us work at a fixed
submanifold jet z(n+1)

o ∈ Jn+1 with π̃n+1
n (z(n+1)

o ) = z(n)o . Recall that G
acts locally freely at z(n+1)

o ∈ Jn+1 if and only if the restriction of the
prolongation map

pr
z
(n+1)
o

: Jn+1
zo

g −→ T
z
(n+1)
o

Jn+1

is injective, that is,

(5.1) Jn+1
zo

g ∩ kerpr
z
(n+1)
o

= {0}.

Let v(n+1)
o ∈ Jn+1

zo
g∩ kerpr

z
(n+1)
o

. Then obviously the projection v(n)o

of v(n+1)
o into JnTM satisfies

v(n)o ∈ Jn
zo
g ∩ kerpr

z
(n)
o
,

so, by assumption, v(n)o must vanish. Thus in local coordinates,

(5.2) v(n+1)
o = (zao , 0, . . . , 0, ζo,

b
c1c2···cn+1

),

where the components ζo,
b
c1c2···cn+1

are determined by the requirements

that the jet v(n+1)
o satisfy the infinitesimal determining equations (2.14)

of order n+ 1 and be contained in the kernel of the prolongation map
kerpr

z
(n+1)
o

.

Recall that the infinitesimal determining equations of order n+1 can
be obtained from those of order n by differentiation. Thus an equation

∑

0≤k≤n

Lc1...ck
A,b (za)ζbc1...ck = 0

of order n yields the equations

(5.3) Lc1...cn
A,b (zao )ζo,

b
c1...cncn+1

= 0, cn+1 = 1, . . . , m,

for the coordinates ζo,
b
c1c2···cn+1

, and v(n+1)
o ∈ Jn+1

g precisely when all
the derived equations of this form are satisfied. Here and in the sequel
we sum over repeated indices.

Divide, as usual, the local coordinates (za) = (xi, uα) of M into inde-
pendent and dependent variables, and denote the induced coordinates
on JnTM by

(ζac1c2···ck) = (ξic1c2···ck , φ
α
c1c2···ck

).

Next define the differential operators

(5.4) di = Dxi + uαo,iDuα
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on J∞TM , where Dxi, Duα denote the standard total derivative oper-
ators on J∞TM and uαo,i is the (constant) first order derivative coordi-

nate of the jet z(n+1)
o .

Then, thanks to (5.2), the components of the derivative variables

in pr
z
(n+1)
o

v(n+1)
o of order k ≤ n vanish, while the vanishing of the

uαi1i2···in+1
-component φ̂α

o,i1i1···in+1
of pr

z
(n+1)
o

v(n+1)
o , cf. (3.12), yields the

equations

(5.5) φ̂α
o,i1i2···in+1

= di1di2 · · ·din+1(φ
α − uαo,jξ

j) = 0

for the coordinates ζo,
b
c1c2···cn+1

of v(n+1)
o .

Fix 1 ≤ i ≤ p, and let w
(n)
i ∈ Jn

zo
TM denote the jet with coordinates

(5.6) w
(n)
i = (zao , 0, . . . , 0, ζ

b
c1c2···cn

= ζo,
b
ic1c2···cn

+ uαo,iζo,
b
αc1c2···cn

).

Then, on account of equations (5.3), (5.5), we have that

w
(n)
i ∈ Jn

zo
g ∩ kerpr

z
(n)
o

= {0},

and so, by the assumptions,

(5.7) ζo,
b
ic1c2···cn

+ uαo,iζo,
b
αc1c2···cn

= 0, i = 1, . . . , p.

Finally, let ŵ
(n)
e ∈ Jn

zo
TM , 1 ≤ e ≤ m, be the jet with coordinates

(5.8) ŵ
(n)
e = (zao , 0, . . . , 0, ζo,

b
c1c2···cne).

Then, by virtue of (5.3), (5.7), we have that

ŵ
(n)
e ∈ Jn

zo
g ∩ kerpr

z
(n)
o

= {0}.

Consequently, ζo,
b
c1c2···cne

= 0, which concludes the proof of the Theo-
rem. �

Next, we will employ our local persistence of freeness result to es-
tablish a global counterpart.

Theorem 5.2. Suppose G acts freely at z(n)o , where n ≥ n∗ + 1. Then

it acts freely at any z
(n+k)
o ∈ Jn+k with π̃n+k

n (z(n+k)
o ) = z

(n)
o .

Proof. It suffices to prove that G acts freely at any submanifold jet

z(n+1)
o ∈ Jn+1 with π̃n+1

n (z(n+1)
o ) = z(n)o . Let g(n+1)

o ∈ G
(n+1)

z
(n+1)
o

.

Then obviously πn+1
n (g(n+1)

o ) ∈ G
(n)

z
(n)
o

, so by assumption, g(n+1)
o agrees

with the jet of the identity transformation up to order n, that is,
πn+1
n (g(n+1)

o ) = I
(n)
zo

. Thus in local coordinates,

g(n+1)
o = (za = zao , Z

a = zao , Z
a
b = δab , Z

a
b1b2

= 0, . . . ,

Za
b1···bn

= 0, Za
b1···bn+1

= Zo,
a
b1···bn+1

)
(5.9)



PERSISTENCE OF FREENESS 15

for some Zo,
a
b1···bn+1

. These coordinates are determined by two sets of

equations, the first one specifying that g(n+1)
o belongs to G(n+1) and the

second one imposing the condition that the transformation on the fiber

J
(n+1)
|zo

induced by g(n+1)
o fixes z(n+1)

o .

We start with the first set of conditions. Since n ≥ n∗ + 1, we can,
on account of Definition 2.1, prolong the determining equations for G
of order n − 1 to conclude that there is a neighborhood V ⊂ D(n) of

I
(n)
zo so that G(n) ∩ V is the solution set of a system of equations of the

form

Fα
b1···bn
,a (z, Z(n−1))Za

b1···bn
+Gα(z, Z(n−1)) = 0,

Hβ(z, Z(n−1)) = 0.
(5.10)

Furthermore, condition 3 of Definition 2.1 stipulates that, in addition
to system (5.10), pseudogroup jets g(n+1) ∈ G(n+1) are determined by
the equations

Fα
b1···bn
,a (z, Z(n−1))Za

b1···bne + (DeFα,
b1···bn
a )(z, Z(n))Za

b1···bn

+ (DeGα)(z, Z(n)) = 0, e = 1, . . . , m,
(5.11)

on the entire cylinder V1 = (πn+1
n )−1(V ).

Now evaluate equations (5.11) at g(n+1)
o as given in (5.9) to see that

Fα
b1···bn
,a (zco, z

c
o, δ

c
d, 0, . . . , 0)Zo,

a
b1···bne

+
∂Gα

∂ze
(zco, z

c
o, δ

c
d, 0, . . . , 0) +

∂Gα

∂Ze
(zco, z

c
o, δ

c
d, 0, . . . , 0) = 0.

(5.12)

On the other hand, equation (5.10), when evaluated at the identity jet

I
(n)
z becomes

(5.13) Gα(zc, zc, δcd, 0, . . . , 0) = 0,

which, after differentiation with respect to ze, shows that (5.12) reduces
to a system of linear, homogeneous equations

(5.14) Fα
b1···bn
,a (zco, z

c
o, δ

c
d, 0, . . . , 0)Zo,

a
b1···bne

= 0, e = 1, . . . , m,

for the coordinates Zo,
a
b1···bn+1

.

Next we use formulas (3.10) to compute the action of g(n+1)
o at z(n+1)

o .
The components of interest are those of order n+1, and these are given
by

Ûα
j1···jn+1

= DXj1 · · ·DXjn+1U
α

= (W k1
j1

Dxk1 ) · · · (W
kn+1

jn+1
Dxkn+1 )Uα.

(5.15)
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On account of (5.9), the only non-zero terms in (5.15) arise from

W k1
j1

· · ·W
kn+1

jn+1
Dxk1 · · ·Dxkn+1U

α and

W k1
j1

· · ·W kn
jn

(Dxk1 · · ·DxknW
kn+1

jn+1
)(Dxkn+1U

α).
(5.16)

After some manipulations we see that

Ûα
j1···jn+1

= uαo,j1···jn+1
+ (Dxj1 + uγ1o,j1Duγ1 ) · · · (Dxjn+1 + u

γn+1

o,jn+1
Duγn+1 )Uα

− uαo,kn+1
(Dxj1 + uγ1o,j1Duγ1 ) · · · (Dxjn+1 + u

γn+1

o,jn+1
Duγn+1 )Xkn+1,

(5.17)

where uαo,j1···jk denote the coordinates of z(n+1)
o . Hence the conditions

Ûα
j1···jn+1

= uαo,j1···jn+1
lead to another system of linear, homogeneous

equations for the coordinates Zo,
a
b1···bn+1

in addition to (5.14).

Since G acts freely at z(n)o , it also acts locally freely at z(n)o , and, conse-
quently, also at z(n+1)

o by Theorem 5.1. This implies that the solution
set to the homogeneous linear system obtained by combining (5.14)
and the equations resulting from (5.17) must discrete. Consequently,

it must be trivial, and hence G acts freely at z(n+1)
o . �
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Complètes, Part. II, Vol. 2, pp. 571–714, Gauthier–Villars, Paris, 1953.
[3] Cheh, J., Olver, P.J., Pohjanpelto, J., Maurer–Cartan equations for Lie sym-

metry pseudo-groups of differential equations, J. Math. Phys. 46 (2005),
023504.

[4] Cheh, J., Olver, P.J., Pohjanpelto, J., Algorithms for differential invariants of
symmetry groups of differential equations, Found. Comput. Math. 8 (2008),
501–532.
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[17] Lie, S., Über unendlichen kontinuierliche Gruppen, Christ. Forh. Aar. 8 (1883),
1–47; also in Gesammelte Abhandlungen, Vol. 5, pp. 314–360, B.G. Teubner,
Leipzig, 1924.

[18] Mackenzie, K., General Theory of Lie Groupoids and Lie Algebroids, London
Math. Soc. Lecture Notes 213, Cambridge Univ. Press, Cambridge, 2005.

[19] Morozov, O.I., Structure of symmetry groups via Cartans method: survey of
four approaches, SIGMA 1 (2005), 006.

[20] Olver, P.J., Symmetry groups and group invariant solutions of partial differ-
ential equations, J. Diff. Geom. 14 (1979), 497–542.

[21] Olver, P.J., Applications of Lie Groups to Differential Equations, 2nd ed.,
Graduate Texts in Mathematics 107, Springer, New York, 1993.

[22] Olver, P.J., Equivalence, Invariants, and Symmetry, Cambridge University
Press, Cambridge, 1995.

[23] Olver, P.J., A survey of moving frames, in: Computer Algebra and Geometric

Algebra with Applications, pp. 105–138, H. Li, P.J. Olver and G. Sommer, eds.,
Lecture Notes in Computer Science 3519, Springer, New York, 2005.

[24] Olver, P.J., Pohjanpelto, J., Regularity of pseudogroup orbits, in Symme-

try and Perturbation Theory, pp. 244–254, G. Gaeta, B. Prinari, S. Rauch-
Wojciechowski, S. Terracini, eds., World Scientific, Singapore, 2005.

[25] Olver, P.J., Pohjanpelto, J., Maurer–Cartan forms and the structure of Lie
pseudo-groups, Selecta Math. 11 (2005), 99–126.

[26] Olver, P.J., Pohjanpelto, J., Moving frames for Lie pseudo–groups, Canadian
J. Math. 60 (2008), 1336–1386.

[27] Olver, P.J., Pohjanpelto, J., Differential invariant algebras of Lie pseudo-
groups, Adv. Math. 222 (2009), 1746–1792.

[28] Pohjanpelto, J., Reduction of exterior differential systems with infinite dimen-
sional symmetry groups, BIT Numerical Mathematics 48 (2008), 337–355.

[29] Shemyakova, E., Mansfield, E.L., Moving frames for Laplace invariants, Pro-
ceedings ISSAC2008, pp. 295-302, Jeffrey, ed., ACM, New York, 2008.

[30] Singer, I.M., Sternberg, S., The infinite groups of Lie and Cartan, part I, (The
transitive groups), J. Anal. Math. 15 (1965), 1–114.

[31] Terng, C.L., Natural vector bundles and natural differential operators, Amer.

J. Math. 100 (1978), 775–828.



18 PETER OLVER AND JUHA POHJANPELTO

[32] Varadarajan, V.S., Lie Groups, Lie Algebras, and Their Representations,
Springer, New York, 1984.

School of Mathematics, University of Minnesota, Minneapolis, MN

55455, U.S.A.

E-mail address : olver@math.umn.edu
URL: http://www.math.umn.edu/~olver/

Department of Mathematics, Oregon State University, Corvallis,

OR 97331, U.S.A.

E-mail address : juha@math.oregonstate.edu
URL: http://oregonstate.edu/~pohjanpp/


