Corrections to

Olver, P.J., Invariant submanifold flows, J. Phys. A 41 (2008), 344017.
Last updated: October 21, 2015.
page 7, equation (3.11):
Switch the j and k subscripts on the R 's in the second formula:
$d_{\mathcal{H}} \varpi^{i}=-\sum_{j<k} Y_{j k}^{i} \varpi^{j} \wedge \varpi^{k}, \quad$ where $\quad Y_{j k}^{i}=\sum_{\kappa=1}^{r} \sum_{j=1}^{p}\left[R_{k}^{\kappa} \iota\left(D_{j} \xi_{\kappa}^{i}\right)-R_{j}^{\kappa} \iota\left(D_{k} \xi_{\kappa}^{i}\right)\right]$
page 8 , line -1 :
Change $\mathcal{E}_{J}^{\alpha}=\left(\mathcal{E}_{J}^{\alpha}, \ldots, \mathcal{E}_{J}^{\alpha}\right)$ to $\mathcal{E}_{J}^{\alpha}=\left(\mathcal{E}_{J, 1}^{\alpha}, \ldots, \mathcal{E}_{J, q}^{\alpha}\right)$
page 11, third displayed formula:
The last 3 expressions should have a minus sign in front:

$$
\begin{aligned}
d_{\mathcal{H}} d_{\mathcal{V}} K=-d_{\mathcal{V}} d_{\mathcal{H}} K & =-d_{\mathcal{V}}\left[\sum_{j=1}^{p}\left(\mathcal{D}_{j} K\right) \varpi^{j}\right] \\
& =-\sum_{j=1}^{p}\left[d_{\mathcal{V}}\left(\mathcal{D}_{j} K\right) \wedge \varpi^{j}+\left(\mathcal{D}_{j} K\right) d_{\mathcal{V}} \varpi^{j}\right] \\
& =-\sum_{j=1}^{p}\left[\mathcal{A}_{\mathcal{D}_{j} K}(\vartheta)+\sum_{i=1}^{p}\left(\mathcal{D}_{i} K\right) \mathcal{B}_{j}^{i}(\vartheta)\right] \wedge \varpi^{j} .
\end{aligned}
$$

page 12 , line 7 :
Change " nth order differential functions" to " $n+1)^{\text {st }}$ order differential functions" page 12 , line 10 :

Change n to $n+1$ twice in the formula $\left(x, u^{(n+1)}\right)=\left.\mathrm{j}_{n+1} S\right|_{z}$.
page 14, equation (4.10):
The first summation should only be over k :

$$
\begin{equation*}
\mathcal{D}_{j} I^{i}+\sum_{k=1}^{p} Y_{j k}^{i} I^{k}+\sum_{\alpha=1}^{q} \mathcal{B}_{j \alpha}^{i}\left(J^{\alpha}\right)=0 \tag{4.10}
\end{equation*}
$$

page 15 , equation (4.11):
There is a missing minus sign on the right hand sides:

$$
\begin{equation*}
\mathcal{D} I=-\mathcal{B}(J)=-\sum_{\alpha=1}^{q} \mathcal{B}_{\alpha}\left(J^{\alpha}\right) \tag{4.11}
\end{equation*}
$$

page 15 , equation (4.12):
There is a missing " $\wedge \varpi$ " on the right hand sides:

$$
\begin{equation*}
d_{\mathcal{V}} \varpi=\mathcal{B}(\vartheta) \wedge \varpi=\sum_{\alpha=1}^{q} \mathcal{B}_{\alpha}\left(\vartheta^{\alpha}\right) \wedge \varpi \tag{4.12}
\end{equation*}
$$

page 15 , equation (4.13):
Delete the minus sign on the right hand side:

$$
\begin{equation*}
\mathcal{D} I=\kappa J \tag{4.13}
\end{equation*}
$$

page 15 , line 12 :
Change $I=-\frac{1}{2} \kappa^{2}$ to $I=\frac{1}{2} \kappa^{2}$.
page 18 , line -10 :
Insert a minus sign in $\mathcal{B}=(-\kappa, 0)$.
page 18 , line -8 :
Change the term $K \mathbf{t}_{2}$ to $K \mathbf{n}_{2}$.
page 18 , revise last sentence:
In particular, the flow with $J=0, K=\kappa$ induces the vortex filament flow

$$
\binom{\kappa_{t}}{\tau_{t}}=\mathcal{R}\binom{0}{\kappa}
$$

which is integrable and can be mapped to the nonlinear Schrödinger equation via the Hasimoto transformation, $[\mathbf{2 5}, \mathbf{3 2}, \mathbf{3 7}]$. Similarly, the flow with $J=\kappa_{s}, K=\kappa \tau$, maps to the integrable complex modified Korteweg-deVries equation in the nonlinear Schrödinger hierarchy.

* Thanks to Joe Benson and Francis Valiquette for pointing out a number of these corrections.

