Corrections to

Kogan, I.A., and Olver, P.J., Invariant Euler-Lagrange equations and the invariant variational bicomplex, Acta Appl. Math. 76 (2003), 137-193.

Last updated: November 16, 2018.

- Unfortunately, the variable κ is used to index the infinitesimal generators, Maurer-Cartan forms, etc., and also to denote curvature invariants, leading to notation clashes such as in equation (7.14) where it appears in both roles. To avoid this, the index κ should be everywhere changed to ℓ, which always runs from 1 to $r=\operatorname{dim} G$.
- Second paragraph of section 3: change $\mathrm{J}^{n}(m, p)$ to $\mathrm{J}^{n}(M, p)$.
- In the second equation in (5.25), the term $\varphi_{K, \ell}^{\alpha}$ is missing its second index, now denoted by ℓ :

$$
\begin{align*}
d_{\mathcal{V}} H^{i} & =\iota\left(\sum_{\ell=1}^{r} \xi_{\ell}^{i} \beta^{\ell}\right)=\sum_{\ell=1}^{r} \Xi_{\ell}^{i} \varepsilon^{\ell}, \\
d_{\mathcal{V}} I_{K}^{\alpha} & =\iota\left(\theta_{K}^{\alpha}+\sum_{\ell=1}^{r} \varphi_{K, \ell}^{\alpha} \beta^{\ell}\right)=\vartheta_{K}^{\alpha}+\sum_{\ell=1}^{r} \Phi_{K, \ell}^{\alpha} \varepsilon^{\ell} . \tag{5.25}
\end{align*}
$$

- In the second formula in (5.28), delete the summation over j :

$$
\begin{equation*}
d_{\mathcal{H}} \varpi^{i}=\sum_{j<k} Y_{j k}^{i} \varpi^{j} \wedge \varpi^{k}, \quad \text { where } \quad Y_{j k}^{i}=\sum_{\ell=1}^{r} \iota\left(A_{j}^{\ell} D_{k} \xi_{\ell}^{i}-A_{k}^{\ell} D_{j} \xi_{\ell}^{i}\right) \tag{5.28}
\end{equation*}
$$

- page 164, third displayed formula: remove possibly confusing limits - the sum is over all multi-indices J :

$$
\mathbf{E}_{\alpha}(L)=\sum_{J}(-D)_{J} \frac{\partial L}{\partial u_{J}^{\alpha}}
$$

- In (7.14) and (7.15) the indices on Φ should both be subscripts to correspond to the notation used in (5.25). The summation index is now denoted by ℓ :

$$
\begin{gather*}
d_{\mathcal{V}} \kappa=\vartheta_{r-1}+\sum_{\ell=1}^{r} \Phi_{r-1, \ell} \varepsilon^{\ell}, \quad \text { where } \quad \varepsilon^{\ell}=\sum_{j} E_{j}^{\ell} \vartheta_{j}=\sum_{j} E_{j}^{\ell} \mathcal{F}_{j}(\vartheta) \equiv \mathcal{G}^{\ell}(\vartheta) \tag{7.14}\\
d_{\mathcal{V}} \kappa=\mathcal{A}(\vartheta), \quad \text { where } \quad \mathcal{A}=\mathcal{F}_{r-1}+\sum_{\ell=1}^{r} \Phi_{r-1, \ell} \mathcal{G}^{\ell} \tag{7.15}
\end{gather*}
$$

- In (7.16), the right hand side is missing a summation over what is now denoted by ℓ :

$$
\begin{equation*}
d_{\mathcal{V}} \varpi=\sum_{\ell=1}^{r}\left[\iota\left(\frac{\partial \xi_{\ell}}{\partial u}\right) \gamma^{\ell} \wedge \vartheta+\iota\left(D_{x} \xi_{\ell}\right) \varepsilon^{\ell} \wedge \varpi\right] . \tag{7.16}
\end{equation*}
$$

- In (7.17), the d should be $d_{\mathcal{V}}$. Again, the summation index is now ℓ :

$$
\begin{equation*}
d_{\mathcal{V}} \varpi=\mathcal{B}(\vartheta) \wedge \varpi, \quad \text { where } \quad \mathcal{B}=\sum_{\ell=1}^{r}\left[\iota\left(D_{x} \xi_{\ell}\right) \mathcal{G}^{\ell}-\iota\left(\frac{\partial \xi_{\ell}}{\partial u}\right) C^{\ell}\right] \tag{7.17}
\end{equation*}
$$

- On page 174 in the second-to-last displayed formula, the right hand side is missing a minus sign:

$$
d_{\mathcal{V}} \varpi=-\kappa \vartheta^{u} \wedge \varpi
$$

- On page 174 in the next-to-last displayed formula, both expressions are missing minus signs:

$$
\mathcal{B}=(-\kappa, 0) \quad \text { so that } \quad \mathcal{B}^{*}=\binom{-\kappa}{0}
$$

- In (9.11), the left hand side is missing a minus sign:

$$
\begin{equation*}
-F d_{\mathcal{H}} \sigma \wedge \varpi_{(j)} \equiv\left(\mathcal{D}_{j}^{\dagger} F\right) \sigma \wedge \varpi \tag{9.11}
\end{equation*}
$$

- In (9.13), the $=$ should be \equiv :

$$
\begin{equation*}
F\left(\mathcal{D}_{j} \psi\right) \wedge \varpi \equiv-\left(\mathcal{D}_{j}+Z_{j}\right) F \psi \wedge \varpi=\left(\mathcal{D}_{j}^{\dagger} F\right) \psi \wedge \varpi \tag{9.13}
\end{equation*}
$$

- In (9.20), the second formula is missing a summation over i :

$$
\begin{equation*}
d_{\mathcal{V}} I^{\alpha}=\sum_{\beta=1}^{q} \mathcal{A}_{\beta}^{\alpha}\left(\vartheta^{\beta}\right), \quad \quad d_{\mathcal{V}} \varpi^{j}=\sum_{i=1}^{p} \sum_{\beta=1}^{q} \mathcal{B}_{i, \beta}^{j}\left(\vartheta^{\beta}\right) \wedge \varpi^{i} \tag{9.20}
\end{equation*}
$$

- In (9.34), the Y 's in the second pair of formulas should be reversed:

$$
\begin{array}{ll}
d_{\mathcal{H}} \varpi_{(1)}=d_{\mathcal{H}} \varpi^{2}=-\frac{I_{12}}{I} \varpi, & \text { so } \tag{9.34}\\
d_{\mathcal{H}} \varpi_{(2)}=-d_{\mathcal{H}} \varpi^{1}=\frac{I_{11}}{I} \varpi, & Z_{2}=-Y_{12}^{1}=-\frac{I_{12}}{I} \\
I
\end{array}
$$

- In the published paper, a sign error in equation (9.43) propagated, affecting the subsequent displayed equation, equations (9.45), (9.46), and particularly (9.47). The corrected version of the affected text follows:

On the other hand,

$$
\begin{align*}
& d_{\mathcal{V}} \varpi^{1}=-\kappa^{1} \vartheta \wedge \varpi^{1}+\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{1} \mathcal{D}_{2}-Z_{2} \mathcal{D}_{1}\right) \vartheta \wedge \varpi^{2} \tag{9.43}\\
& d_{\mathcal{V}} \varpi^{2}=\frac{1}{\kappa^{2}-\kappa^{1}}\left(\mathcal{D}_{2} \mathcal{D}_{1}-Z_{1} \mathcal{D}_{2}\right) \vartheta \wedge \varpi^{1}-\kappa^{2} \vartheta \wedge \varpi^{2}
\end{align*}
$$

which yields the Hamiltonian operator complex

$$
\begin{aligned}
& \mathcal{B}_{1}^{1}=-\kappa^{1}, \\
& \mathcal{B}_{2}^{2}=-\kappa^{2},
\end{aligned} \quad \mathcal{B}_{2}^{1}=\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{1} \mathcal{D}_{2}-Z_{2} \mathcal{D}_{1}\right)=\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{2} \mathcal{D}_{1}-Z_{1} \mathcal{D}_{2}\right)=-\mathcal{B}_{1}^{2}
$$

the equality following from the commutation formula (9.35). Therefore, according to our fundamental formula (9.24), the Euler-Lagrange equations for a Euclidean-invariant variational problem (9.40) are

$$
\begin{align*}
0=\mathbf{E}(L)=[& \left.\left(\mathcal{D}_{1}+Z_{1}\right)^{2}-\left(\mathcal{D}_{2}+Z_{2}\right) \cdot Z_{2}+\left(\kappa^{1}\right)^{2}\right] \mathcal{E}_{1}(\widetilde{L}) \\
& +\left[\left(\mathcal{D}_{2}+Z_{2}\right)^{2}-\left(\mathcal{D}_{1}+Z_{1}\right) \cdot Z_{1}+\left(\kappa^{2}\right)^{2}\right] \mathcal{E}_{2}(\widetilde{L})+\kappa^{1} \mathcal{H}_{1}^{1}(\widetilde{L})+\kappa^{2} \mathcal{H}_{2}^{2}(\widetilde{L}) \\
& +\left[\left(\mathcal{D}_{2}+Z_{2}\right)\left(\mathcal{D}_{1}+Z_{1}\right)+\left(\mathcal{D}_{1}+Z_{1}\right) \cdot Z_{2}\right] \cdot\left(\frac{\mathcal{H}_{2}^{1}(\widetilde{L})-\mathcal{H}_{1}^{2}(\widetilde{L})}{\kappa^{1}-\kappa^{2}}\right) . \tag{9.44}
\end{align*}
$$

As before, $\mathcal{E}_{\alpha}(\widetilde{L})$ are the invariant Eulerians with respect to the principal curvatures κ^{α}, while $\mathcal{H}_{j}^{i}(\widetilde{L})$ are the invariant Hamiltonians based on (9.41).

In particular, if $\widetilde{L}\left(\kappa^{1}, \kappa^{2}\right)$ does not depend on any differentiated invariants, (9.44) reduces to

$$
\begin{equation*}
\mathbf{E}(L)=\left[\left(\mathcal{D}_{1}^{\dagger}\right)^{2}+\mathcal{D}_{2}^{\dagger} \cdot Z_{2}+\left(\kappa^{1}\right)^{2}\right] \frac{\partial \widetilde{L}}{\partial \kappa^{1}}+\left[\left(\mathcal{D}_{2}^{\dagger}\right)^{2}+\mathcal{D}_{1}^{\dagger} \cdot Z_{1}+\left(\kappa^{2}\right)^{2}\right] \frac{\partial \widetilde{L}}{\partial \kappa^{2}}-\left(\kappa^{1}+\kappa^{2}\right) \widetilde{L} \tag{9.45}
\end{equation*}
$$

For example, the problem of minimizing surface area has invariant Lagrangian $\widetilde{L}=1$, and so (9.45) gives the Euler-Lagrange equation

$$
\begin{equation*}
\mathbf{E}(L)=-\left(\kappa^{1}+\kappa^{2}\right)=-2 H=0 \tag{9.46}
\end{equation*}
$$

and so we conclude that minimal surfaces have vanishing mean curvature. As noted above, the Gauss-Bonnet Lagrangian $\widetilde{L}=K=\kappa^{1} \kappa^{2}$ is an invariant divergence, and hence its the Euler-Lagrange equation is identically zero. The mean curvature Lagrangian $\widetilde{L}=H=$ $\frac{1}{2}\left(\kappa^{1}+\kappa^{2}\right)$ has Euler-Lagrange equation

$$
\begin{equation*}
\frac{1}{2}\left[\left(\kappa^{1}\right)^{2}+\left(\kappa^{2}\right)^{2}-\left(\kappa^{1}+\kappa^{2}\right)^{2}\right]=-\kappa^{1} \kappa^{2}=-K=0 \tag{9.47}
\end{equation*}
$$

For the Willmore Lagrangian $\widetilde{L}=\frac{1}{2}\left(\kappa^{1}\right)^{2}+\frac{1}{2}\left(\kappa^{2}\right)^{2},[\mathbf{3}, \mathbf{6}]$, formula (9.44) immediately gives the known Euler-Lagrange equation

$$
\begin{equation*}
\mathbf{E}(L)=\Delta\left(\kappa^{1}+\kappa^{2}\right)+\frac{1}{2}\left(\kappa^{1}+\kappa^{2}\right)\left(\kappa^{1}-\kappa^{2}\right)^{2}=2 \Delta H+4\left(H^{2}-K\right) H=0, \tag{9.48}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\left(\mathcal{D}_{1}+Z_{1}\right) \mathcal{D}_{1}+\left(\mathcal{D}_{2}+Z_{2}\right) \mathcal{D}_{2}=-\mathcal{D}_{1}^{\dagger} \cdot \mathcal{D}_{1}-\mathcal{D}_{2}^{\dagger} \cdot \mathcal{D}_{2} \tag{9.49}
\end{equation*}
$$

is the Laplace-Beltrami operator on our surface.

- Thanks to Francis Valiquette and James Broomfield for their careful reading of the paper.

