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1. Introduction.

This paper is devoted to the algorithmic classification of joint invariants and joint
differential invariants for transformation groups. Applications to equivalence and sym-
metry properties of submanifolds, especially curves and surfaces, are discussed in detail.
Our approach relies on a new, practical extension of the Cartan theory of moving frames,
[14, 22, 21, 24], which was recently formulated by the author and M. Fels, [18, 19, 20].
The moving frame method provides a direct route to what Weyl, in the algebraic context,
calls the “First Main Theorem” for a transformation group, [43], namely the classification
of all its joint invariants as well as new classifications of joint differential invariants.

Recent applications of the moving frame method in computer vision, [17, 13], pro-
vide additional impetus for this general program. In [5, 6, 7, 13, 36], differential invariant
signature manifolds were introduced for invariantly characterizing object boundaries and
detecting symmetries. One significant difficulty has been the noise sensitivity of standard
differential invariants owing to their dependence on high order derivatives. An alternative
approach, [8, 11, 30, 38, 39], is to employ “noise-resistant” joint differential invariants, or,
as they are known in the computer vision literature, “semi-differential invariants”, which
may depend on lower order derivatives. Dhooghe, [16], initiated the systematic classifi-
cation of joint differential invariants, based on algebraic identities as well as Lie algebraic
methods; in [18] we showed how to apply moving frame methods, thereby enabling us to
handle a wide variety of new and interesting examples. The approximation of higher order
differential invariants by joint differential invariants and, generally, ordinary joint invari-
ants leads to fully invariant finite difference numerical schemes, first proposed in [12, 13].
Applications of these results to the construction of invariant numerical algorithms and the
theory of geometric integration, [10, 28], will be developed in a subsequent paper.

In this paper, we systematically build on the preliminary investigations announced in
[18]. We show how the method of moving frames can be readily used to compute complete
systems of joint differential invariants, and illustrate with examples of direct interest in
image processing. The particular groups used to illustrate the basic techniques are the
classical Euclidean, equi-affine, affine and projective groups acting on n-dimensional space,
with special emphasis on the cases of curves and surfaces in two and three dimensions.

The moving frame theory also shows precisely which joint differential invariants are
required to parametrize a signature that will uniquely characterize the original submani-
fold up to group transformations. The more points on the curve or surface that the joint
invariants depend on, the lower the order of differentiation required to compute the signa-
ture, thereby reducing the noise sensitivity of the resulting signature. With enough points,
one can completely characterize the submanifold by joint invariants alone, and thereby
entirely avoid differentiation. The trade-off is that the more points used, the higher the
dimension of the signature set, and so the more data that must be computed. However,
in all examples, there is only one fundamental joint invariant, and the signature set is ob-
tained by assembling the joint invariant, depending on various points on the submanifold,
in certain well-prescribed combinations.

For example, suppose we wish to characterize planar curves up to a Euclidean motion.
The “classical” signature relies on the fact that a planar curve C ⊂ R2 is uniquely charac-
terized up to a Euclidean transformation by its curvature as a function of arc length, κ(s),
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Figure 1. Four-Point Euclidean Curve Invariants.

cf. [24]. To eliminate the ambiguity caused by the choice of initial point from which to
measure the arc length s (an important consideration in occlusion problems), we proposed
to use the signature curve S = S(C), which is parameterized by the two functions κ, κs,
to characterize C, [13]. Both signatures require computing second and, in the latter ver-
sion, third order derivatives. A Euclidean joint invariant signature that does not require
differentiation can be obtained as follows. First, the basic joint Euclidean invariant is the
distance ‖ z−w ‖ between two points. To create a Euclidean signature set based entirely on
joint invariants, we must use four points z0, z1, z2, z3 on our curve C ⊂ R2. As illustrated
in Figure 1, there are six different interpoint distance invariants

a = ‖ z1 − z0 ‖, b = ‖ z2 − z0 ‖, c = ‖ z3 − z0 ‖,

d = ‖ z2 − z1 ‖, e = ‖ z3 − z1 ‖, f = ‖ z3 − z2 ‖.
(1.1)

As z0, z1, z2, z3 move on the curve, the distances (1.1) parametrize the joint signature

Ŝ = Ŝ(C), which, according to our general theory, uniquely characterizes the curve C up
to Euclidean motion. The important fact is that this signature requires no differentiation,
and so is not at all sensitive to noisy image data — unlike the curvature-based signature S,
the joint signature Ŝ is no more noisy than the original curve. Since a, b, c, d, e, f form six
functions of four variables (the four points on the curve), there are two syzygies (functional
relations)

Φ1(a, b, c, d, e, f) = 0, Φ2(a, b, c, d, e, f) = 0, (1.2)

among them. One of these is the Cayley–Menger syzygy

det

∣∣∣∣∣∣

2a2 a2 + b2 − d2 a2 + c2 − e2

a2 + b2 − d2 2b2 b2 + c2 − f2

a2 + c2 − e2 b2 + c2 − f2 2c2

∣∣∣∣∣∣
= 0, (1.3)
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which is valid for all possible configurations of the four points, and is a consequence of
their coplanarity, cf. [2, 29]. This identity is universal, meaning that it is independent
of the particular curve C. Therefore, the second syzygy in (1.2) is curve-dependent and
serves to effectively characterize the joint invariant signature. Euclidean symmetries of
the curve, both continuous and discrete, are characterized by the signature; for example,
the number of symmetries is equal to the “index” of the signature, meaning the number
of points in the original curve that map to a single, generic, point in S. Further details
appear in Example 8.2 below.

In this paper, we will systematically develop the general theory underlying this par-
ticular construction, in an algorithmic form that can be applied to arbitrary Lie transfor-
mation groups, acting on curves, surfaces, or more general submanifolds. Moreover, we
investigate in detail some of the principal applications, including planar curves, and space
curves and surfaces, under Euclidean, equi-affine and projective transformation groups.

2. Introduction to Moving Frames.

We begin with a summary of the general, algorithmic moving frame method developed
in [19]. We assume that G is an r-dimensional Lie group† acting smoothly on an m-
dimensional manifold M . In most computer vision applications, M = R2 or R3, and G is
a group of geometrical significance, e.g., the Euclidean group, equi-affine group, projective
group, etc. However, the advantage of our new approach is that the methods are applicable
to completely general Lie group actions.

Let us introduce some basic terminology. The isotropy subgroup of a point z ∈ M is
Gz = { g ∈ G | g · z = z }. The group is said to act freely if Gz = {e} for all z ∈ M . The
action is called locally free if each Gz forms a discrete subgroup of G; this is equivalent to
the condition that the orbits all have dimension r = dimG. The global isotropy subgroup

G∗M = { g ∈ G | g · z = z for all z ∈M } (2.1)

is a normal subgroup of G consisting of all group elements that have completely trivial
action on M . The action is effective if G∗M = {e}, and locally effective if G∗M is a discrete
subgroup. Any non-effective action can be converted into an equivalent effective action of
the quotient Lie group G/G∗M that essentially coincides with that of G, cf. [32]. The group
acts regularly if all its orbits have the same dimension and, moreover, each point z ∈ M
admits a system of neighborhoods having pathwise connected intersection with each group
orbit. The regularity condition avoids pathologies such as the irrational flow on the torus,
where the orbits return arbitrarily close to themselves.

We shall formulate Cartan’s concept of a moving frame (“repère mobile”), [14], in a
precise and general manner. The fundamental definition, as motivated by earlier work of
Griffiths, [22], and Green, [21], frees the theory from reliance on any sort of frame bundle
— an artifice that does not appear as naturally in non-geometrical situations. See [19] for
more discussion of this point.

† The moving frame methods can be extended to infinite-dimensional pseudo-group actions,
[18], but, for simplicity, we will only consider the finite-dimensional case here.
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Definition 2.1. A moving frame is a smooth, G-equivariant map ρ :M → G.

In general, if G acts on spaces M and N , a map ϕ:M → N is called equivariant

provided ϕ(g · z) = g · ϕ(z) for all g ∈ G, z ∈ M . In the case of a moving frame, there
are two natural actions of G on itself — by left multiplication h 7→ g · h or by right
multiplication h 7→ h · g−1 — leading to the concepts of left and right moving frames.
Classical geometry relies on left moving frames, but we shall sometimes find that a right
moving frame is more convenient to compute. Fortunately, there is a simple connection
between the two: if ρ(z) is any right-equivariant moving frame then ρ̃(z) = ρ(z)−1 is
a left-equivariant moving frame and conversely. The following simple theorem provides
immediate necessary and sufficient conditions for the local existence of a moving frame.

Theorem 2.2. A moving frame exists in a neighborhood of a point z ∈ M if and

only if G acts freely and regularly near z.

Of course, most interesting group actions, including all the geometrical examples to
be analyzed here, are not free, and therefore do not admit moving frames in the sense of
Definition 2.1. For example, the Euclidean group E(2) does not act freely onM = R2 since
all rotations centered at a given point will fix that point. The problem is, of course, that
the underlying manifold does not have a high enough dimension to admit r-dimensional
orbits — a Lie group may only act freely on manifolds of dimension at least as large as
that of the group.

There are two important methods for converting a non-free (but effective) action into
a free action. The first is to look at the joint or product action of G on several copies
of M . For example, the action of E(2) on the Cartesian product M×2 = M × M is
free on the off-diagonal part V = {z1 6= z2} ⊂ M×2 because the identity is the only
Euclidean transformation that fixes two distinct points. The extension of a group action
to a Cartesian product leads, naturally, to joint invariants, and the applications of our
moving frame methods to this situation will be discussed in Section 3.

The second method is to prolong the group action to the jet spaces coordinatized by the
derivatives (i.e., jets) of submanifolds. Jet space is the natural setting for the traditional
moving frames that appear in geometry, and lead to differential invariants; details will
appear in Section 4 below. Combining the two methods of prolongation and product will
lead to joint differential invariants and joint invariant signatures, whose analysis is the
main goal of this paper. Complete results appear starting in Section 7.

Given a free group action, the construction of a moving frame is based on Cartan’s
method of normalization, [14]; an early version can be found in Killing, [26]. The key
observation, [18, 19], is that normalization amounts to the choice of a cross-section to the
group orbits.

Definition 2.3. Let G be a Lie group that acts regularly on them-dimensional man-
ifold M with s-dimensional orbits. A cross-section is an (m− s) -dimensional submanifold
K ⊂ X that intersects each orbit transversally in exactly one point.

Remark : Typically, one may only be able to construct a local cross-sectionK, meaning
that it may intersect the orbits in either one or no points. However, we can trivially convert
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Figure 2. Moving Frame Associated with Cross–Section.

a local cross-section K into a global cross-section by replacing M by the open submanifold
M̃ = G ·K consisting of all the orbits that do intersect K, and so our restriction to global
cross-sections is not essential. Furthermore, we shall only consider cross-sections for free
group actions in this paper, in which case K has dimension m− r, where r = dimG.

The elements k ∈ K of the cross-section can be viewed as “canonical forms” for
general points z ∈ M , and hence their coordinates are invariant functions. Any regular
Lie group action admits many local cross-sections; the most important are the coordinate

cross-sections

K = { z1 = c1, . . . , zr = cr }, (2.2)

obtained by equating r of the coordinates in z = (z1, . . . , zm) (which, by relabeling if
necessary can be taken to be the first r coordinates) to constants. Of course, any cross-
section can be (locally) converted into a coordinate cross-section by a suitable choice of
local coordinates.

Theorem 2.4. Let G act freely, regularly on M , and let K be a cross-section to the

group orbits. Given z ∈ M , let k = k(z) ∈ Oz ∩ K be the unique cross-section element

lying in the orbit Oz = G · z through z — the canonical form of z. Further, let g = ρ(z)
be the unique group element such that g · z = k. Then the resulting map ρ :M → G is a

right moving frame for the group action.

Indeed, every right moving frame has this form — the corresponding cross-section is
just the inverse image of the identity: K = ρ−1{e}. The moving frame associated with the
chosen cross-section is found by solving the normalization equations

g · z = k ∈ K for g = ρ(z). (2.3)

In particular, if we choose the coordinate cross-section (2.2), and write out the group
transformations in coordinates as w(g, z) = g · z, then the right moving frame is obtained
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by solving the r = dimG implicit equations

w1(g, z) = c1, . . . wr(g, z) = cr, (2.4)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z = (z1, . . . , zm).

Remark : The corresponding left moving frame can be found by inversion ρ̃(z) =
ρ(z)−1. A direct method is to use the explicit formulae w̃(g, z) = g−1 · z for the inverse
group transformations and solve the associated “inverse” normalization equations

w̃1(g, z) = c1, . . . w̃r(g, z) = cr. (2.5)

The solution g̃ = ρ̃(z) = ρ(z)−1 is the unique group element mapping k ∈ K to z = g̃ · k.

Remark : In practice, one often normalizes “in stages”, solving some of the normal-
ization equations for some of the group parameters in terms of the coordinates z and the
remaining group parameters, and then substituting these expressions into the remaining
normalization equations in order to continue the process.

Given such a right moving frame, the non-constant coordinates of the canonical form
k(z) = ρ(z) · z ∈ K are the fundamental invariants for the group action.

Theorem 2.5. Given a free, regular Lie group action and coordinate cross-section

(2.2), let g = ρ(z) denote the solution to the normalization equations (2.4). Then the

functions

I1(z) = wr+1(ρ(z), z), . . . Im−r(z) = wm(ρ(z), z), (2.6)

obtained by substituting the moving frame formulae into the m− r unnormalized compo-

nents of w(g, z) = g · z form a complete system of functionally independent invariants.

An important observation is that the moving frame provides a natural way to associate
to each function on M a uniquely defined invariant.

Definition 2.6. Let ρ :M → G be a right moving frame. The invariantization of a
scalar function F :M → R with respect to ρ is the invariant function I = ι(F ) defined by

I(z) = F (ρ(z) · z). (2.7)

The value of the invariantization (2.7) at a point z ∈M equals the value of F (k) at the
canonical form k = ρ(z) · z ∈ K of z. In other words, I = ι(F ) is obtained by restricting F
to the cross-section, I |K = F |K, and then requiring that I be constant along the orbits.
In particular, if I(z) is an invariant, then ι(I) = I. Therefore, the invariantization process
defines a projection ι:F 7→ I, depending on the moving frame, from general functions to
invariants.

3. Classification of Joint Invariants.

Let us illustrate the basic moving frame constructions in the case of joint actions of
classical groups. One outcome will be complete classifications of joint invariants. These
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results are analogous to what Weyl, [43], calls the “First Main Theorem” for the transfor-
mation group. However, Weyl’s classifications of joint invariants are algebraic — meaning
up to polynomial independence. The moving frame classifications are geometric/analytic
— meaning up to functional independence — and so may require a much smaller collection
of joint invariants. Nevertheless, we find that in the algebraic situations treated in Weyl,
the two classifications lead to the same types of joint invariants, although the algebraic
context requires more of them. An important observation is the ease with which one con-
structs a complete system of functionally independent joint invariants, avoiding all of the
classical algebraic complications, as well as being readily able to handle much more general
situations that are either unknown or cannot be handled by standard algebraic techniques.
This distinction between functional and algebraic independence is emphasized by Weyl,
[43;p. 30], who states that “. . . the purely functional part — asserting that the valuesof all
invariants are determined by the values of the basic invariants — [is] almost trivial; the
essential difficulties lie in the algebraic part only.”

Given a Lie group G acting onM , we consider the joint action of G on the (n+1)-fold
Cartesian product M×(n+1) =M × · · · ×M given by

g · (z0, . . . , zn) = (g · z0, . . . , g · zn), g ∈ G, z0, . . . , zn ∈M. (3.1)

An invariant I(z0, . . . , zn) of such a Cartesian product action is known as an (n+1)-point
joint invariant of the original transformation group. Note that any (n+1)-point invariant
can be viewed as a k-point invariant for any k ≥ n+1 — indeed, in several different ways.
For example, a two-point invariant I(z0, z1) produces potentially six different three-point

invariants on M×3, namely Î(z0, z1, z2) = I(z0, z1) or I(z1, z0) or I(z0, z2) and so on. To
avoid this trivial extension, we will usually reserve the term (n + 1)-point invariant for a
joint invariant which does not depend on fewer points.

In many cases, if G acts effectively on M , then, for n ≫ 0 sufficiently large, the
product action is free on an open subset ofM×(n+1). However, this is not universally true,
as the following example illustrates.

Example 3.1. Let M = R2 \ {0}, with polar coordinates (r, θ). Consider the one-
parameter transformation group

(r, θ) 7−→ (r, θ + rt), t ∈ G = R.

The action is clearly effective and locally free; the orbits are the circles centered at the
origin. However, the product action is not free on the dense subset

{
rµ/r0 ∈ Q, µ = 1, . . . , n

}
⊂M×(n+1)

consisting of points whose radii are rational multiples of each other.

Despite the possibility of such pathologies, all of the classical geometrical actions of
Lie groups do become free on a suitable dense open subset of a sufficiently large Cartesian
product. Consequently, the moving frame method outlined in Section 2 can be applied to
such joint actions, and thereby establish complete classifications of joint invariants — a
geometric version of the First Main Theorem for the group action. We shall illustrate the
basic construction with several important examples.
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Example 3.2. Consider first the equi-affine group SA(m) = SL(m) ⋉ Rm acting as
volume-preserving affine transformations on multiple copies of M = Rm via

wk = Azk + d, k = 0, 1, 2, . . . , where detA = 1, d ∈ Rm. (3.2)

We begin by normalizing w0 = 0, which leads to the initial normalization d = −Az0 of the
translation component of the group element g = (A, d). Substituting the formula for d into
(3.2) yields the reduced transformation formulae wk = A (zk − z0). (This is an example
of “normalizing in stages”.) If the vectors z1 − z0, . . . , zm − z0 are linearly independent,
then we can impose the additional normalizations

w1 = e1, . . . wm−1 = em−1, wm = λ em. (3.3)

Here λ is an unspecified scalar, whose value is fixed by the normalization and thereby
becomes the first invariant. Solving (3.3) for the group parameters, we find

A = Λ Z−1, where Λ = diag ( 1, 1, . . . , 1, λ ) (3.4)

is a diagonal matrix, and

Z =
(
z1 − z0 . . . zm − z0

)
(3.5)

is the m ×m matrix with the indicated columns. Since detA = 1, equation (3.4) implies
that

λ = detZ = m! V ( 0, 1, . . . , m )

where

V ( 0, 1, . . . , m ) =
1

m!
detZ =

(−1)m

m!
det

∣∣∣∣
z0 z1 . . . zm

1 1 . . . 1

∣∣∣∣ (3.6)

is the (signed) volume of the m-dimensional simplex having vertices z0, z1, . . . , zm, which,
by our linear independence assumption, is non-zero. Indeed, SA(m) acts regularly and
freely on the dense open subset

Vm+1 =
{
(z0, . . . , zm) ∈M×(m+1)

∣∣∣ V ( 0, 1, . . . , m ) 6= 0
}
⊂M×(m+1). (3.7)

The induced right moving frame map ρ :Vm+1 → SA(m) is explicitly given by

A = diag ( 1, 1, . . . , 1, detZ ) Z−1, d = −Az0. (3.8)

The left moving frame is obtained by inverting the group element, (Ã, b̃) = (A, b)−1:

Ã = diag

(
1, 1, . . . , 1,

1

detZ

)
Z, d̃ = z0. (3.9)

The simplex volume (3.6) forms the unique (m+1)-point joint invariant for the equi-
affine group. For more than m + 1 points, the additional joint invariants are found by
substituting the moving frame formulae (3.8) into the components of wk = Azk + a for
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Figure 3. Triangular Area Syzygy.

k ≥ m+1. A simple application of Cramer’s rule gives the complete system of independent
joint invariants:

wk
i = [A(zk − z0)]i =





V ( 0, 1, . . . , i− 1, k, i+ 1, . . . , m )

V ( 0, 1, . . . , m )
, i = 1, . . . , m− 1,

m! V ( 1, . . . , m− 1, k ), i = m.

The Geometric First Main Theorem for the equi-affine group is then an immediate conse-
quence of Theorem 2.5; see Weyl, [43; Theorem 2.7.B], for the algebraic version.

Theorem 3.3. Every joint invariant of the equi-affine group SA(m) acting on Rm

is a function of the simplex volumes

V ( I ) = V ( i1, . . . , im+1 ) = V ( zi1 , . . . , zim+1 ) . (3.10)

In fact, a generating system of independent invariants is provided by the particular volumes

V ( 0, 1, . . . , m ), V ( 0, 1, . . . , i− 1, i+ 1, . . . , m, k ),
i = 1, . . . , m,

k ≥ m+ 1.
(3.11)

For example, in the planar case m = 2, every four-point joint invariant is a function
of the three triangular areas V ( 0, 1, 2 ), V ( 0, 1, 3 ), V ( 0, 2, 3 ) indicated in Figure 3. In
particular, the remaining triangular area satisfies the evident syzygy

V ( 1, 2, 3 ) = V ( 0, 1, 2 ) + V ( 0, 2, 3 )− V ( 0, 1, 3 )

and is hence superfluous for a minimal generating set of invariants.

Example 3.4. The full affine group A(m) = GL(m)⋉Rm acting on Rm is handled
in a very similar fashion. The preliminary normalizations are identical, excepting only
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that we can take λ = 1 in (3.3) since we are no longer restricted to unimodular matrices
A. Therefore, the left moving frame is simply given by

Ã = Z, d̃ = z0.

The resulting affine joint invariants are ratios of simplex volumes depending on m + 2
points. We therefore deduce the First Main Theorem for the full affine group.

Theorem 3.5. Every joint invariant of the affine group A(m) acting on Rm is a

function of the simplex volume ratios V ( I )/V (J ). In fact, a generating system is provided

by the particular ratios

V ( 0, 1, . . . , i− 1, i+ 1, . . . , m, k )

V ( 0, 1, . . . , m )
, i = 1, . . . , m, k ≥ m+ 1. (3.12)

Example 3.6. The Euclidean group E(m) = O(m) ⋉Rm consists of all isometries

w = Rz + d, R ∈ O(m), d ∈ Rm, z ∈ Rm,

of Euclidean space. Its orientation-preserving counterpart is the proper Euclidean group
SE(m) = SO(m)⋉Rm generated by rotations and translations. Their joint action is regular
and free on the subset Vm+1 ⊂M×(m+1) defined in (3.7), because the identity is the only
orthogonal transformation that fixes m linearly independent vectors in Rm. (Actually,
for the proper Euclidean group, freeness occurs on a larger subset since a rotation that
fixes m − 1 linearly independent vectors is necessarily the identity — although there is a
reflection that fixes them.)

As in the equi-affine computation, we begin by normalizing w0 = 0 by setting d =
−R z0. We then normalize the next m vectors wk = R (zk − z0), k = 1, . . . , m, which
now only depend on the rotation group parameters. This is accomplished by performing
a QR decomposition, [37], of the matrix Z defined in (3.5). More specifically, we factor
Z = QU where Q ∈ SO(m) or O(m), and U is upper triangular. In the non-oriented case
Q ∈ O(m), we can require that all the diagonal entries of U be positive, which serves to
uniquely specify the orthogonal matrix Q. We then normalize R = QT so that

RZ = U. (3.13)

The solution to (3.13) defines the Euclidean moving frame

ρ : (z0, . . . , zm) 7−→ R = U Z−1, d = −Rz0. (3.14)

The nonzero entries of U provide the (m+ 1)-point Euclidean joint invariants. Since QR
factorization is implemented via the standard Gram–Schmidt algorithm, the entries of U
are certain particular combinations of the inner products (zi − z0) · (zj − z0) between
the various columns of Z. Moreover, if n > m then the entries of R · (zn − z0), which
are additional invariants, are also given in terms of such inner products. All such inner
products can be written as functions of the distances ‖ zk − zl ‖, and so we have proved a
geometric version of the First Main Theorem for the Euclidean group.
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Figure 4. Law of Cosines.

Theorem 3.7. Every joint invariant of the full Euclidean group E(m) acting on Rm

is a function of the interpoint distances ‖ zi − zj ‖.

In the orientation-preserving case, the last diagonal entry of the upper triangular
matrix U cannot necessarily be arranged to be positive, although it will be non-zero.
The sign of this entry depends on the sign of the volume V ( 0, 1, . . . , m ), which is an
orientation-preserving invariant. Therefore, we have the analogous classification result.

Theorem 3.8. Every joint invariant of the special Euclidean group SE(m) acting

on Rm is a function of the interpoint distances ‖ zi − zj ‖ and a single (nonzero) signed

simplex volume V ( 0, 1, . . . , m ).

In particular, all other signed simplex volumes are uniquely determined by the in-
terpoint distances and the indicated volume invariant. Furthermore, the squared volume
V ( 0, 1, . . . , m )2 can be written as a polynomial in the distances.

Remark : One can use the invariantization procedure to determine explicit syzygies
among invariants. As a simple example, consider the three-point invariants of the planar
Euclidean group SE(2). According to our normalization, the fundamental invariants are

y0 7−→ 0, y1 7−→ 0, y2 7−→ ‖ z2 − z0 ‖ sinφ,

v0 7−→ 0, v1 7−→ ‖ z1 − z0 ‖, v2 7−→ ‖ z2 − z0 ‖ cosφ,

where φ is the angle between the two chords z2 − z0 and z1 − z0, as indicated in Figure 4.
The distance

I = ‖ z2 − z1 ‖2 = (x2 − x1)2 + (u2 − u1)2

is not on the list and so, by Theorem 2.5, must be a function of the fundamental invariants.
To find the function, we invariantize I = ι(I) by replacing each variable by its invariantized
counterpart, so

‖ z2 − z1 ‖2 = I = ι(I) = ‖ z2 − z0 ‖2 sin2 φ+ (‖ z2 − z0 ‖ cosφ− ‖ z1 − z0 ‖)2

= ‖ z1 − z0 ‖2 + ‖ z2 − z0 ‖2 − 2 cosφ ‖ z1 − z0 ‖ ‖ z2 − z0 ‖,

12



thereby producing a “simple” moving frame proof of the Law of Cosines!

Example 3.9. As a final example, consider the projective action of PSL(m+1,R) on
m-dimensional projective space† M = RPm. The action is given in projective coordinates

z 7−→ w =
Az + b

c · z + d
, where

(
A b
cT d

)
∈ GL(m+ 1,R), z ∈ Rm. (3.15)

Here A is an m × m matrix, b, c are vectors and d is a scalar. The point z lies in the
open subset Rm ⊂ RPm; the remainder RPm \ Rm ≃ RPm−1 consists of the projective
directions “at ∞”. We require n ≥ m + 2 in order that the action be free on an open
subset ofM×(n+1). We begin by normalizing w0 = 0, which requires b = −Az0. The most
convenient normalizations‡ are to send the next m points w1, . . . , wm off to ∞ along the
coordinate directions, which we write as wk = ∞ ek. This requires that

A(zk − z0) = λkek, c · zk + d = 0, k = 1, . . . , m,

where the λk’s are unspecified scalars. The solution to this linear system is given by

A = ΛZ−1, c · zk + d = µ V ( 1, 2, . . . , m, k ), k = 1, 2, . . . , (3.16)

where µ ∈ R is a scalar, Λ = diag (λ1, . . . , λm ) is a diagonal matrix, and the matrix Z
is as in (3.5). Note that the normalization (3.16) implies that the individual entries of
vk = A(zk − z0) are given by

vki = [A(zk − z0)]i = m! λi
V ( 0, 1, . . . , i− 1, k, i+ 1, . . . , m )

V (0, 1, . . . , m)
,

i = 1, . . . , m,

k = 0, 1, 2, . . .
(3.17)

Substituting these formulae back into (3.15), we find that the resulting components of

wm+1 =
A (zm+1 − z0)

c · (zm+1 − z1)

are

wm+1
i = ±

λi
µ

V ( 0, . . . , i− 1, i+ 1, . . . , m+ 1 )

V (0, 1, . . . , m) V ( 1, 2, . . . , m+ 1 )
, i = 1, . . . , m. (3.18)

We can thus normalize wm+1 = (1, 1, . . . , 1) by setting

λi =
µ V (0, 1, . . . , m) V ( 1, 2, . . . , m+ 1 )

V ( 0, . . . , i− 1, i+ 1, . . . , m+ 1 )
, k = 1, . . . , m. (3.19)

The last remaining group parameter µ cannot be normalized, indicative of the fact that
GL(m+1) does not act effectively on projective space. (One can prescribe the value of µ by

requiring that the matrix

(
A b
cT d

)
be unimodular, but this is unnecessary.) Substituting

† The same computations apply to the complex action of SL(m+ 1,C) on M = CP
m.

‡ However, see Example 8.9 below.
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Figure 5. Projective Area Cross Ratio Invariant.

the full moving frame formulae (3.17), (3.19) into wk for k ≥ m+ 2, we discover that the
fundamental m-dimensional projective joint invariants are the volume cross-ratios

C(i0, . . . , im−2; j, k, l, n) =
V ( i0, . . . , im−2, j, k ) V ( i0, . . . , im−2, l, n )

V ( i0, . . . , im−2, j, l ) V ( i0, . . . , im−2, k, n )
. (3.20)

We have therefore produced a Geometric First Main Theorem for the Projective Group,
a case only briefly mentioned in Weyl, [43; pp. 112–114]. Earlier, Veblen and Young, [42;
§27], derived the volume cross-ratios as basic projective invariants, but did not prove their
completeness, nor did they discuss minimal generating sets.

Theorem 3.10. Every joint invariant of the projective group PSL(m+ 1) is a func-

tion of the fundamental volume cross-ratios

C(0, 1, . . . , i− 1, i+ 1, . . . , m− 1; i,m,m+ 1, k),
i = 0, . . . , m− 1,

k = m+ 2, m+ 3, . . . .
(3.21)

In the one-dimensional case, these joint invariants reduce to the ordinary cross-ratios:

C(0, 1, 2, 3) =
(z1 − z0)(z3 − z2)

(z1 − z2)(z3 − z0)
. (3.22)

Thus, Theorem 3.10 reduces to the classical result, cf. [32], that every joint invariant
of the projective group PSL(2) on RP1 is a function of the cross-ratios C(0, 1, 2, k) for
k = 3, 4, . . . . In the two-dimensional case, the five-point joint invariants are generated by
the following two ratios of triangular areas

C(0; 1, 2, 3, 4) =
V ( 0, 1, 2 ) V ( 0, 3, 4 )

V ( 0, 1, 3 ) V ( 0, 2, 4 )
, C(1; 0, 2, 3, 4) =

V ( 0, 1, 2 ) V ( 1, 3, 4 )

V ( 0, 1, 3 ) V ( 1, 2, 4 )
. (3.23)

For example, C(0;1,2,3,4) equals the product of the areas of the two shaded triangles
divided by the product of the areas of the two white triangles in Figure 5. All other
five-point area cross-ratios can be obtained as functions of these two.
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Similarly, in the three-dimensional case, there are 3 fundamental 6-point simplex
(tetrahedron) volume cross-ratios:

C(0, 1; 2, 3, 4, 5), C(0, 2; 1, 3, 4, 5), C(1, 2; 0, 3, 4, 5). (3.24)

Geometrically, C(0, 1; 2, 3, 4, 5) is obtained as a ratio of the volumes of the four simplices in
the union of two pyramids, having a common quadrilateral base with vertices z2, z3, z4, z5,
and respective apices† (apexes) z0, z1. Joining the apices by an additional line segment
decomposes the double pyramid into the required four simplices. Figure 5 can be reinter-
preted as a bird’s eye view of this pyramidal configuration. Again, all additional 6-point
volume cross-ratios are suitable functional combinations of these three. The explicit syzy-
gies can be effectively constructed using invariantization.

These examples serve to illustrate some of the power of the normalization approach
to moving frames for producing complete classifications of joint invariants for very general
Lie group actions. We now turn to the applications to differential invariants.

4. Prolongation and Differential Invariants.

Whenever a group acts on functions, there is an induced action on their derivatives,
known as “prolongation”. The prolonged group transformations act on the jet bundle
over the original manifold, cf. [31, 32]. Jet space is the natural setting for the traditional
moving frames in geometry, for the Lie theory of symmetry groups of differential equations,
and for describing differential invariants. A sufficiently high order prolongation will make
the group action (locally) free, and hence a moving frame can be constructed on a suitably
high order jet bundle. In this section, we briefly review the basic ideas — as they apply to
general parametrized submanifolds — and then show how the moving frame construction
can be employed to produce complete classifications of differential invariants.

Let Jn = Jn(M, p) denote the nth order (extended) jet bundle consisting of equiv-
alence classes of p-dimensional submanifolds S ⊂ M under the equivalence relation of
nth order contact, cf. [31; Chapter 3]. We let jnS ⊂ Jn denote the n-jet of the subman-
ifold S. We introduce local coordinates z = (x, u) on M , considering the first p compo-
nents x = (x1, . . . , xp) as independent variables, and the latter q = m − p components

u = (u1, . . . , uq) as dependent variables. The induced local coordinates on Jn are denoted
by z(n) = (x, u(n)), with components uαJ = DJu

α representing the partial derivatives of
the dependent variables with respect to the independent variables. We use the notation
DJ = Dxj1

· · ·Dxjk
, 1 ≤ jν ≤ p, for the usual total derivative operators of order k = #J .

For a p-dimensional submanifold S ⊂ M parametrized by z(t) = (x(t), u(t)), where
t = (t1, . . . , tp) ∈ T ⊂ Rp, the jet coordinates of jnS are obtained by implicit differentiation.

If we write the “horizontal” one-forms dx = (dx1, . . . , dxp)
T as components of a column

vector, then the chain rule implies

dx = Dtx · dt, (4.1)

† It is not often one gets to use the plurals of “vertex”, “simplex”, and “apex” in the same
sentence!
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where Dtx =
(
Dti

xj
)
denotes the p×p Jacobian matrix of x(t). The dual total differential

operators Dx = (Dx1
, . . . , Dxp

)T are then given by

Dx = (Dtx)
−TDt . (4.2)

One recursively applies these operators to the dependent variables uα to obtain the jet
coordinates uαJ = DJu

α of a general parametrized submanifold. The resulting formulae
are clearly independent of the parametrization.

Let G be a Lie group acting smoothly on M ; in terms of local coordinates z = (x, u)
we write the group transformations w = (y, v) = g · z as

w = (y(g, z), v(g, z)) = (y(g, x, u), v(g, x, u)).

Given a submanifold S parametrized by z(t) = (x(t), u(t)), the transformed submanifold
S = g · S is parametrized by

w(t) = g · z(t) = (y(g, z(t)), v(g, z(t))).

Since smooth transformations preserve the order of contact between submanifolds, there
is an induced action, denoted by G(n), on the nth order jet bundle Jn, known as the nth

prolongation of the group action. Explicit formulae for the prolonged group transforma-
tions

w(n) = (y, v(n)) = g(n) · (x, u(n)) (4.3)

are found by implicit differentiation of the transformed dependent variables v(g, z) with re-
spect to the transformed independent variables y(g, z). We use the chain rule to determine
the horizontal one-forms

dy = Dty · dt =
[
Dzy ·Dtz

]
dt, (4.4)

and thereby obtain the associated total derivative operators

Dy =
(
Dty

)−T
Dt =

[
Dzy ·Dtz

]−T
Dt . (4.5)

As before, the resulting prolongation formulae

vαJ = Dyj1
· · ·Dyjk

vα, (4.6)

for the coordinates of w(n) = g(n) · z(n) are independent of parametrization.

Example 4.1. The planar Euclidean group SE(2) acts onM = R2, mapping a point
z = (x, u) to

y = x cos θ − u sin θ + a, v = x sin θ + u cos θ + b. (4.7)

For a parametrized curve, z(t) = (x(t), u(t)), we have

dx = xt dt, and so Dx =
1

xt
Dt. (4.8)
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The parametric curve’s second order jet coordinates are then given by

(x, u, ux, uxx) =

(
x, u,

ut
xt
,
xtutt − utxtt

x3t

)
, (4.9)

Similarly, for the transformed curve w(t) = (y(t), v(t)), we have

dy = (xt cos θ − ut sin θ) dt,

and so the implicit differentiation operator (4.5) is given by

Dy =
1

xt cos θ − ut sin θ
Dt. (4.10)

Therefore, a Euclidean transformation g ∈ SE(2) has second order prolongation that maps
the jet (4.9) to (y, v, vy, vyy) = g(2) · (x, u, ux, uxx), where y, v are given by (4.7) and

vy =
dv

dy
=
xt sin θ + ut cos θ

xt cos θ − ut sin θ
, vyy =

d2v

dy2
=

xtutt − xttut
(xt cos θ − ut sin θ)

3
. (4.11)

These formulae, of course, depend only on the jets (4.9) and not the particular paramet-
rization.

An nth order moving frame ρ(n): Jn → G is an equivariant map defined on an open
subset of the jet space. Application of our moving frame construction requires freeness
and regularity of the prolonged group action. At present, the most general result in this
direction is based on a theorem of Ovsiannikov, cf. [35, 32]; additional details, including
a correct extension of this result to smooth actions, can be found in [34].

Theorem 4.2. Let G be an analytic transformation group acting locally effectively

on M . For n ≫ 0 sufficiently large, the nth order prolongation G(n) acts locally freely on

a dense open subset Vn ⊂ Jn(M, p).

An outstanding conjecture is that, in the analytic category, G(n) actually acts freely
and regularly on an open subset of a sufficiently high order jet bundle Jn. Unfortunately,
the proof of Theorem 4.2 is based on infinitesimal methods and so cannot prove this more
general result. Nevertheless, freeness does happen in all known examples.

Definition 4.3. A jet z(n) ∈ Jn is called regular if G acts (locally) freely in an
neighborhood z(n) ∈ U ⊂ Jn thereof.

Theorem 4.2 implies that almost all jets of sufficiently high order are regular. The
next result is an immediate consequence of Theorem 2.2.

Theorem 4.4. If G acts analytically and effectively, then an nth order moving frame

exists in a neighborhood of a point z(n) ∈ Jn if and only if z(n) ∈ Vn is a regular jet.
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We can now apply our normalization construction to produce a moving frame and a
complete system of differential invariants in the neighborhood of any regular jet. We begin
by using implicit differentiation (4.6) to compute the prolonged transformation formulae

w(n)(g, z(n)) = g(n) · z(n). (4.12)

For simplicity, we restrict to a coordinate cross-section

K = {z1 = c1, . . . , zr = cr} ⊂ Jn, (4.13)

choosing r = dimG components w1, . . . , wr of w(n) to normalize to constants. Solving the
associated normalization equations

w1(g, z
(n)) = c1, . . . wr(g, z

(n)) = cr, (4.14)

for the group transformations leads to the explicit formulae

g = ρ(n)(z(n)) (4.15)

for the right moving frame ρ(n) : Jn → G. In classical situations, the left counterpart
ρ̃(n)(z(n)) = ρ(n)(z(n))−1, when restricted to the submanifold jnS, can be identified with
the usual geometric moving frame, cf. [21, 22, 24].

Remark : Composing an nth order moving frame ρ(n): Jn → G with the standard jet
bundle projection πk

n: J
k → Jn for any k ≥ n automatically produces a moving frame

ρ(k) = ρ(n) ◦πk
n on (an open subset of) the jet bundle Jk. In this manner, moving frames

are immediately applied to compute all higher order differential invariants.

Definition 4.5. A differential invariant is an invariant function for a prolonged
transformation group.

According to Theorem 2.5, substituting the moving frame formulae (4.15) into the
unnormalized components of w(n), or, more generally, w(k) for any k ≥ n, leads to a
complete system of kth order differential invariants.

Definition 4.6. The fundamental nth order differential invariants associated with a
moving frame ρ(n) of order n (or less) are given by

I(n)(z(n)) = w(n)(ρ(n)(z(n)), z(n)) = ρ(n)(z(n)) · z(n). (4.16)

In terms of the local coordinates w(n) = (y, v(n)), the fundamental differential invari-
ants will be denoted by

yi 7−→ Hi(x, u
(n)) = yi(ρ

(n)(x, u(n)), x, u), i = 1, . . . , p, (4.17)

vαK 7−→ IαK(x, u(k)) = vαK(ρ(n)(x, u(n)), x, u(k)), α = 1, . . . , q, k = #K ≥ 0.

In particular, the fundamental differential invariants corresponding to the normalization
components (4.14) of w(n) will be constant, and are known as the phantom differential

invariants . According to Theorem 2.5, the other components of w(n) will define a com-
plete system of functionally independent differential invariants defined on the domain of
definition of the moving frame map.
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Theorem 4.7. Let ρ(n): Jn → G be a moving frame of order ≤ n. Every nth order

differential invariant can be locally written as a function J = Φ(I(n)) of the fundamental

nth order differential invariants. The function Φ is unique provided it does not depend on

the phantom invariants.

The invariantization of a differential function F : Jn → R with respect to the given
moving frame is the differential invariant J = ι(F ) = F ◦ I(n). As before, invariantization
defines a projection, depending on the moving frame, from the space of differential functions
to the space of differential invariants.

Example 4.8. The classical moving frame, [24], for curves under the planar Eu-
clidean group consists of the point z = (x, u)T on the curve along with the unit tangent
and unit normal vectors

t =
zt

‖ zt ‖
=

1√
x2t + u2t

(
xt
ut

)
, n = t⊥ =

1√
x2t + u2t

(
−ut
xt

)
. (4.18)

These provide a left moving frame ρ : J1 → SE(2) in the sense of Definition 2.1 when we

identify d̃ = −RT d = z as the translation component and R̃ = RT = ( t n ) as the rotation
component of g̃ = ρ̃(1)(z(1)). If we substitute the moving frame normalizations (4.18) into
the prolonged transformation formulae for, say, the second, third and fourth derivatives,
cf. (4.11), we obtain the fundamental normalized differential invariants

vyy 7−→ κ, vyyy 7−→
dκ

ds
, vyyyy 7−→

d2κ

ds2
+ 3κ3, (4.19)

where

κ =
zt ∧ ztt
‖ zt ‖

3
=
xtutt − xttut
(x2t + u2t )

3/2
. (4.20)

is the Euclidean curvature invariant, and

Ds =
1√

x2t + u2t
Dt =

1

‖ zt ‖
Dt (4.21)

denotes differentiation with respect to the Euclidean arc length element, which may also
be obtained by normalization:

dy = (xt cos θ + ut sin θ) dt 7−→ ds =
√
x2t + u2t dt = ‖ zt ‖ dt. (4.22)

(See the discussion in the following section.) A complete system of differential invariants
for the planar Euclidean group is provided by the curvature and its successive derivatives
with respect to arc length: κ, κs, κss, . . . .

There are, however, some interesting subtleties in this standard construction which
can now be appreciated. First, the classical moving frame (4.18) is only equivariant for
oriented curves under the orientation-preserving Euclidean group SE(2). Indeed, reversing
the parametrization, t 7→ −t, reverses the direction of the tangent vector t, while applying
a reflection changes the direction of n. Moreover, the Euclidean curvature κ changes sign
under either operation, while the sign of the arc length element ds changes under reversal
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of parametrization. Thus, while all of these quantities are intrinsic to oriented curves (e.g.,
closed curves parametrized in a counterclockwise direction) in the oriented Euclidean plane,
they all have sign ambiguities in the more general setting considered here.

Let us see how these ambiguities can be resolved in this simple example. We write
the Euclidean group element as

z 7−→ R̃T (z − d̃), where R̃ = ( a b )

belongs to either SO(2) or O(2) with orthonormal frame vectors a,b. The classical moving
frame is based on the simple coordinate cross-section

K(1) =
{
x = u = ux = 0

}
.

However, the action (4.7), (4.11) is only locally free on J1 and requires prolonging further
to become free and thereby produce a legitimate cross-section. Ignoring this detail for a
moment, the associated normalization equations

y = a · (z − d̃) = 0, v = b · (z − d̃) = 0, vy =
b · zt
a · zt

= 0, (4.23)

have the general solution

a = ε t = ε
zt

‖ zt ‖
, b = σ εn = σ ε t⊥, d̃ = z.

where σ, ε = ±1 with σ = 1 when G = SE(2). In the case of an oriented curve, the direction
of t is fixed, and so ε = 1 is specified, while the restriction to the proper Euclidean group
SE(2) specifies σ = +1, and hence we recover the classical moving frame (4.18). However,
in general there remain 1 or 2 sign ambiguities to resolve, stemming from the local but not
global freeness of the first order prolongation.

To resolve the sign ambiguities, we must consider the action on higher order deriva-
tives. As before, the arc length form is obtained by normalizing

dy = (a · zt) dt 7−→ ε ds = ε ‖ zt ‖ dt.

The second order derivative becomes

vyy =
(a · zt)(b · ztt)− (a · ztt)(b · zt)

(a · zt)
3

=
σ zt ∧ ztt
(a · zt)

3
7−→ σ ε κ,

where κ is the signed Euclidean curvature (4.20). Therefore, provided we are not at an
inflection point† where κ = 0, we can specify

σ ε = sgn κ,

producing the differential invariant | κ |. The third order derivative reduces to

vyyy 7−→ σ
‖ zt ‖

2(zt ∧ zttt)− (zt · ztt)(zt ∧ ztt)

‖ zt ‖
5

= σ κs.

† A moving frame, of higher order, can be constructed near nondegenerate inflection points.
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Therefore, in the case of E(2), one can set σ = sgn κs.

Summarizing, in the oriented case of SE(2), freeness requires a second order cross-
section

K(2) =
{
x = u = ux = 0, uxx > 0

}
,

and the corresponding left moving frame is given by

R̃ = (sgn κ) ( t n ), d̃ = z.

The fundamental differential invariant and invariant one form are

| κ |, (sgn κ) ds = (sgn κ) ‖ zt ‖ dt.

All higher order differential invariants, κs, (sgn κ) κss, etc., are obtained via invariant dif-
ferentiation. In the non-oriented case of E(2), we require a third order cross-section

K(3) =
{
x = u = ux = 0, uxx > 0, uxxx > 0

}
,

and the corresponding left moving frame is

R̃ =
(
(sgn κs) t , (sgn κ)n

)
, d̃ = z.

The fundamental differential invariant and invariant one form are

| κ |, sgn (κκs) ds = sgn (κκs) ‖ zt ‖ dt.

All higher order differential invariants, | κs |, sgn (κ) κss and so on, are found by invariant
differentiation.

5. Recurrence Formulae and Syzygies.

In general, higher order differential invariants can all be obtained by invariantly dif-
ferentiating certain fundamental differential invariants. On the other hand, one can obtain
higher order differential invariants directly by normalizing using the moving frame, the
result being the fundamental differential invariants (4.17). The fact that the normal-
ized higher order invariants do not , in general, agree with the differentiated invariants is
of crucial significance. A general algorithm, first found in [19, 20], for determining the
“correction terms” — for example, the 3κ3 in the last formula in (4.19) — will now be
presented.

Each moving frame ρ(n): Jn → G produces an associated collection of invariant differ-
ential operators, which are obtained by applying the normalization formulae to the implicit
differential operators (4.5). First, normalizing the one-forms (4.4),

dy = Dty(g, z
(1)) dt 7−→ ω = Dty(ρ

(n)(z(n)), z(1)) dt ≡ P (z(n)) dt, (5.1)

leads to a system of p linearly independent invariant one-forms ω = (ω1, . . . , ωp)
T , known as

an invariant horizontal coframe of order n. The associated invariant differential operators
D1, . . . ,Dp are uniquely defined so that

dF =

p∑

j=1

(DiF ) ωi, for any F : Jn → R. (5.2)
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They may be obtained directly by substituting the normalization formulae g = ρ(n)(z(n))
into the implicit differentiation operators (4.5):

Dy = Dty(g, z
(1))−T Dt 7−→ D = Dty(ρ

(n)(z(n)), z(1))−T Dt = P (z(n))−T Dt. (5.3)

The invariant differential operators (5.3) will map differential invariants to higher order
differential invariants.

Theorem 5.1. Let ρ(n):Vn → G be an nth order moving frame defined on an open

subset Vn ⊂ Jn. Then for any k ≥ n + 1, a complete system of kth order differential

invariants on Vk = (πk
n)

−1Vn ⊂ Jk can be found by successively applying the invariant

differential operators D1, . . . ,Dp to the non-constant (non-phantom) components of the

fundamental differential invariants I(n+1) of order at most n+ 1.

As we noted in (4.19), the differentiated invariants do not in general coincide with the
normalized differential invariants. The fundamental recurrence formulae

DjHi = δij − Li
j , DjI

α
K = IαK,j −Mα

K,j, (5.4)

for the differentiated invariants (4.17) are of critical importance in practical applications.
First, they permit one to straightforwardly produce a minimal generating system of dif-
ferential invariants, with the property that every other differential invariant is obtained by
invariant differentiation. Although Theorem 5.1 requires all of the fundamental invariants
of order ≤ n+1 to generate the higher order differential invariants, one typically can also
generate a number of the components of I(n+1) in this manner, and so a minimal system
of generating differential invariants is some subset of the non-phantom differential invari-
ants of order ≤ n + 1. Furthermore, the syzygies or functional relationships among the
differentiated invariants can be systematically determined by analysis of the recurrence
formulae (5.4); see [19, 20] for details. Finally, the recurrence formulae are basic to the
detailed analysis of the differential invariant and joint invariant signatures resulting from
the moving frame construction, as we shall see in the examples below.

Remark : In Weyl’s algebraic formulation of the “Second Main Theorem” for the group
action, [43], syzygies are defined as algebraic relations among the joint invariants. Here,
since we are classifying invariants up to functional independence, there are no algebraic
syzygies. Thus, the classification of differential syzygies is the proper setting for the Second
Main Theorem in the geometric/analytic context.

Fortunately, the correction terms Li
j, M

α
K,j in the recurrence formulae (5.4) can be

effectively computed using the following infinitesimal algorithm, first presented in [20].
The remarkable fact is that they can be found — and hence complete classifications of
generating systems of differential invariants and syzygies can be established — without

knowledge of the explicit formulae for the normalized differential invariants ! All one needs
is the normalization constants (4.14) and the well-known prolongation formulae for the
infinitesimal generators of the transformation group, cf. [31, 32].

Choose a basis {v1, . . . ,vr} for the Lie algebra g of infinitesimal generators of the
group action on M . Let {pr(n) v1, . . . , pr

(n) vr} denote the corresponding basis for the Lie
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algebra g
(n) of infinitesimal generators of the prolonged group action G(n). The prolonged

generators are obtained by truncating, at order n, the infinitely prolonged vector fields

pr vκ =

p∑

i=1

ξiκ(x, u)
∂

∂xi
+

q∑

α=1

∑

k=#J≥0

ϕα
J,κ(x, u

(k))
∂

∂uαJ
, where

ϕα
J,κ = DJQ

α
κ +

p∑

i=1

ξiκ u
α
J,i, Qα

κ(x, u
(1)) = ϕα

κ(x, u)−

p∑

i=1

ξiκ(x, u) u
α
i .

(5.5)

Here Qκ = (Q1
κ, . . . , Q

q
κ) is the characteristic of vκ, and DJ denotes total differentiation.

Definition 5.2. The Lie matrix of order n is defined as the r×
[
p+ q

(
p+n
n

)]
matrix

Ln(z
(n)) =



ξ11 . . . ξp1 ϕ1

1 . . . ϕq
1 . . . ϕα

J,1 . . .
...

. . .
...

...
. . .

...
. . .

...
. . .

ξ1r . . . ξpr ϕ1
r . . . ϕq

r . . . ϕα
J,r . . .


 , (5.6)

whose entries ξiκ, and ϕ
α
J,κ, 0 ≤ #J ≤ n, are the coefficients of the nth order prolongations

(5.5) of the basis infinitesimal generators of G.

Remark : Note that rankLn(z
(n)) equals the dimension of the subspace of the tangent

space TJn|z(n) spanned by the prolonged infinitesimal generators, and hence coincides with
the dimension of the orbit through z(n). In particular, z(n) is a locally regular jet if and
only if Ln(z

(n)) has maximal rank r = dimG.

Consider a moving frame ρ(n): Jn → G defined (for simplicity) by a coordinate cross-
section (4.14). We then form the invariantized Lie matrix

In = ι(Ln) = Ln(I
(n)), (5.7)

which is obtained by replacing the jet coordinates z(n) = (x, u(n)) by the normalized
differential invariants I(n) given in (4.16). We perform a Gauss–Jordan row reduction on
the matrix In so as to reduce the r×r minor whose columns correspond to the normalization
variables z1, . . . , zr to an r × r identity matrix. Let Kn denote the resulting matrix of
differential invariants.

Next, let Z(x, u(n)) = (Dizκ) denote the p × r matrix whose entries are the total
derivatives of the normalization coordinates z1, . . . , zr. Let

W = ι(Z) = Z(I(n)) (5.8)

be its invariantization. Then the correction terms in (5.4) are the entries of the matrix
product

W ·Kn = Mn =



L1
1 . . . Lp

1 M1
1 . . . M q

1 . . . Mα
K,1 . . .

...
. . .

...
...

. . .
...

. . .
...

. . .

L1
r . . . Lp

p M1
r . . . M q

r . . . Mα
K,r . . .


 , (5.9)

where Kn is Gauss–Jordan reduced version of the invariantized Lie matrix In.
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Note in particular that, since the non-phantom components of I(n) are always func-
tionally independent, we do not require their explicit formulae in order to perform this
computation. The only ingredients are the normalization coordinates z1, . . . , zr and con-
stants c1, . . . , cr that define our chosen jet cross-section (4.13), which are the constant
values attained by the phantom differential invariants.

Example 5.3. The infinitesimal generators of the planar Euclidean group SE(2) are

v1 = ∂x, v2 = ∂u, v3 = −u∂x + x∂u.

Applying the prolongation formulae (5.5), the fifth order Lie matrix L5 equals



1 0 0 0 0 0 0
0 1 0 0 0 0 0
−u x 1 + u2x 3uxuxx M3 M4 M5


 , (5.10)

where
M3 = 4uxuxxx + 3u2xx, M4 = 5uxuxxxxx + 10uxxuxxx,

M5 = 6uxuxxxxx + 15uxxuxxxx + 10u2xxx.

Under the normalizations† (4.23), the fundamental differential invariants are

y 7−→ H = 0, v 7−→ I = 0, vy 7−→ I1 = 0, vyy 7−→ I2 = κ, (5.11)

and, in general, vk = Dk
yv 7−→ Ik. The recurrence formulae will express each normalized

differential invariant Ik in terms of arc length derivatives of κ = I2.

The invariantized Lie matrix takes the form

ι(L5) = I5 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 3κ2 10κ I3 15κ I4 + 10(I3)

2


 .

Since our chosen cross-section (4.23) is based on the jet coordinates x, u, ux that index
the first three columns of these matrices, I5 is already in the appropriate row-reduced
form. Therefore K5 = I5. Moreover, differentiating the normalization variables and then
invariantizing produces the matrices

Z = ( 1 ux uxx ), ι(Z) = W = ( 1 0 I2 ) = ( 1 0 κ ).

Therefore, the fifth order correction matrix is

M5 = W ·K5 =
(
1 0 κ 0 3κ3 10κ2I3 15κ2I4 + 10κ(I3)

2
)
,

whose entries are the required the correction terms. The recurrence formulae (5.4) can
then be read off in order:

DH = D(0) = 1− 1, DI = D(0) = 0− 0, DI1 = D(0) = I2 − κ, DI2 = Dκ = I3 − 0,

DI3 = I4 − 3κ3, DI4 = I5 − 10κ2I3, DI5 = I6 − 15κ2I4 − 10κ (I3)
2,

† For simplicity, we consider the case of oriented curves under SE(2). However, the computa-
tions apply equally well to non-oriented curves and to E(2).
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where D = Ds is the invariant arc length derivative (4.21). We conclude that the higher
order normalized differential invariants are given in terms of arc length derivatives of the
curvature κ by

I2 = κ, I3 = κs, I4 = κss + 3κ3,

I5 = κsss + 19κ2κs, I6 = κssss + 34κ2κss + 48κκ2s + 45κ4κs,

and so on. The direct derivation of these (and subsequent, more complicated) formulae is,
needless to say, considerably more tedious.

6. Equivalence and Signatures.

Beyond the basic classification of differential invariants, the motivational application of
moving frame theory is to the problems of equivalence and symmetry (i.e., self-equivalence)
of submanifolds. Let G be a transformation group acting on the manifold M . Two sub-
manifolds S, S ⊂M are said to be equivalent (or congruent) under the action of G if there
is a group transformation g ∈ G mapping one to the other: S = g ·S. A symmetry of a sub-
manifold is a group transformation that maps S to itself; we let GS = { g ∈ G | g · S = S }
denote the symmetry (or isotropy) subgroup of S. As emphasized by Cartan, [14], the
solution to the equivalence and symmetry problems for submanifolds is based on the func-
tional interrelationships among the fundamental differential invariants restricted to the
submanifold, as we now review.

Recall first the Definition 4.3 of a regular jet. A submanifold is called regular of order
n at a point z0 ∈ N if its nth order jet jnN |z0 is regular. Any order n regular submanifold
admits a (locally defined) moving frame of that order — one merely restricts a moving
frame defined in a neighborhood of z0 to the submanifold: ρ(n) ◦ jnS. Thus, only those
submanifolds having singular jets at arbitrarily high order fail to admit any moving frame
whatsoever. The complete classification of such totally singular submanifolds was found
in [34].

Theorem 6.1. Suppose G acts effectively and analytically. An analytic submanifold

S ⊂M is totally singular if and only if its symmetry group GS does not act locally freely

on S itself.

For any k ≥ n, the functions on a regular submanifold S obtained by restricting the
fundamental differential invariants,

J (k) = I(k) |S = I(k) ◦ jkS, (6.1)

will be called the kth order restricted differential invariants for S. The kth order signa-

ture S(k) = S(k)(S) is the set parametrized by the restricted differential invariants. The
submanifold S is called fully regular † if the differential invariant map (6.1) has constant
rank 0 ≤ tk ≤ p = dimS for all k ≥ n. Note that tk equals the number of functionally

† One can generalize these results to include submanifolds for which rank J(k) is constant for
k ≫ 0 sufficiently large.
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independent kth order restricted differential invariants. In this case, the signature S(k)

forms a submanifold of dimension tk — perhaps with self-intersections, although these can
be resolved by further increasing the order, as discussed in [19]. In the fully regular case,
the signature ranks satisfy

tn < tn+1 < tn+2 < · · · < ts = ts+1 = · · · = t ≤ p,

where t is called the differential invariant rank and s the differential invariant order of
S. Let σ:S → S(s+1) denote the signature map from S to its order s + 1 signature, so
σ(z) = J (s+1)(z) for z ∈ S is parametrized by the restricted differential invariants of order
≤ s+ 1.

Example 6.2. The simplest and most familiar example of a signature appears in
the Euclidean geometry of oriented planar curves C ⊂ R2. The Euclidean signature curve
has order s + 1 = 3, and is parametrized by the two basic differential invariants — the
curvature κ and its derivative with respect to arc length, κs. The functional relationship
κs = H(κ) between the two uniquely determines the curve up to a Euclidean motion. This
is more or less equivalent to the classical result, [24], that a Euclidean curve is uniquely
characterized by curvature as a function of arc length κ = κ(s). The signature curve
version of this result has several advantages, of particular relevance in object recognition,
[13], in that it (a) is completely local, and (b) is completely unambiguous, whereas the
evaluation of the arc length s requires integration along the curve, and so is not local, and
depends upon the starting point, leaving a one-parameter ambiguity.

For a (generic) surface S ⊂ R3, the Euclidean signature has order s + 1 = 3, and is
parametrized by a total of six differential invariants — the Gaussian and mean curvatures
along with their first order derivatives with respect to the Frenet frame, [24]. Surfaces of
higher order occur when the Gaussian and mean curvatures are functionally dependent,
but one of their derivatives is not.

We will call a submanifold nonsingular if it has maximal differential invariant rank
t = p, which means that it admits p = dimS functionally independent restricted differen-
tial invariants. Generic submanifolds are nonsingular, and also have minimal differential
invariant order, which will be either s = n or s = n + 1. The former case occurs if
dim Jn − dimG ≥ p, and hence there are at least p independent differential invariants of
order n; otherwise one must go to order s = n + 1 in order to obtain at least p inde-
pendent differential invariants. Higher order submanifolds are exceptional, although they
are important, [19], in Ovsiannikov’s method of partially invariant solutions of partial
differential equations, [35]. Example 6.8 below illustrates the basic ideas.

The differential invariant rank of a submanifold is intimately related to the dimension
of its symmetry group GS . This means that the rank is an intrinsic invariant quantity,
independent of the particular moving frame used to compute it.

Theorem 6.3. Let S ⊂M be a fully regular p-dimensional submanifold of differen-

tial invariant rank t with respect to a moving frame ρ(n). Then the symmetry group GS

is an (r − t)–dimensional subgroup of G that acts locally freely on S.
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In particular, the symmetry group of a submanifold is discrete if and only if the
submanifold is nonsingular. Furthermore, the number of points in the submanifold S that
map to a single, generic point of its signature submanifold S(s+1) determines the number
of discrete symmetries of S.

Definition 6.4. The index of a nonsingular submanifold S of order s is defined as

indS = min
{
# σ−1{ζ}

∣∣∣ ζ ∈ S(s+1)
}
. (6.2)

Theorem 6.5. The cardinality of the discrete symmetry group of a nonsingular

submanifold equals its index: #GS = indS.

In other words, to count the number of symmetries of S, we need only determine
how many points in S map to one (generic) point of its signature. Incidentally, a point
on the signature is non-generic if and only if it is a point of self-intersection of S(s+1).
As discussed in [13], Theorem 6.5 has important potential applications to the detection
of discrete symmetries of objects in images; see [9, 23, 40, 41] for other methods. We
will develop the symmetry-detection consequences of our results on joint signatures in a
subsequent paper. See also [1, 33] for applications of these ideas to the classification of
symmetries of polynomials in classical invariant theory.

At the other extreme, a rank 0 submanifold has all constant differential invariants,
and so its signature degenerates to a single point. According to Theorem 6.3, the rank 0
submanifolds are maximally symmetric, since they admit a p-dimensional symmetry group.
(Totally singular submanifolds may admit an even higher-dimensional symmetry group,
but these are not covered by the moving frame construction.) In fact, the maximally
symmetric submanifolds can be explicitly characterized as the orbits of certain subgroups
of G, [14, 19, 25].

Theorem 6.6. Let G act effectively on M . A regular p-dimensional submanifold S
has differential invariant rank 0 if and only if it is the p-dimensional orbit, S = H · z0, of
a p-dimensional subgroup H = GS ⊂ G.

For example, in planar Euclidean geometry, the maximally symmetric curves have
constant Euclidean curvature, and are the circles and straight lines. Each is the orbit of a
one-parameter subgroup of SE(2), which also forms the symmetry group of the orbit.

The preceding symmetry results are all consequences of the fundamental equivalence
theorem, which states that the signature submanifold uniquely characterizes the original
submanifold up to a group transformation.

Theorem 6.7. Let S, S ⊂M be regular p-dimensional submanifolds with respect to

a moving frame map ρ(n). Then S and S are (locally) congruent, S = g · S, if and only

if they have the same differential invariant order s and their signature manifolds of order

s+ 1 are identical: S(s+1)(S) = S(s+1)(S).

Example 6.8. All of the complications already occur in the simplest example —
equivalence of surfaces S ⊂ M = R3 under the translation group G = R3 acting by
z 7→ w = z + a. The group acts freely on M , and so one can construct a moving frame of
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order n = 0 by choosing any single point {z0} as a cross-section. For simplicity, we take
z0 = 0, which leads to the normalization equations w = z − a = 0, and the moving frame
is ρ(z) = a. The group acts completely trivially on the derivatives, and so the generating
differential invariants for surfaces u = f(x, y) are just ux, uy, uxx, uxy, . . . .

A generic surface of rank p = 2 will have functionally independent first order differ-
ential invariants ux, uy, and differential invariant order s = n + 1 = 1. The signature of
such a surface will be parametrized by the differential invariants of order ≤ s + 1 = 2,
namely ux, uy, uxx, uxy, uyy. Thus, locally, a surface u = f(x, y) is uniquely determined up
to translation by the functional relationships

uxx = H1(ux, uy), uxy = H2(ux, uy), uyy = H3(ux, uy),

among these five differential invariants. These dependencies will (locally) prescribe the
signature surface S(2)(S).

A surface will have rank p = 2 and differential invariant order s = 2 if ux and uy are
functionally dependent, and so u = f(x, y) is a solution to a first order partial differential
equation of the form

uy = H(ux), (6.3)

but at least one of the second order differential invariants uxx, uxy, uyy is not functionally

dependent upon ux. An explicit example is provided by the surface u =
√
xy, which has

uy = 1/ux, but uxx is independent. Note that if we differentiate (6.3) we obtain two
functional dependencies among the second order differential invariants

uxy = H ′(ux) uxx, uyy = H ′(ux) uxy = H ′(ux)
2 uxx. (6.4)

In this case, the signature S(3)(S) is parametrized by the order s + 1 = 3 differential
invariants, and, in fact, we only need to know the dependency uxxx = K(ux, uxx) since the
remaining dependencies, and hence the form of S(3)(S) are found by differentiating (6.4).

A surface will have rank 1, and hence a one-parameter group of translational symme-
tries, if and only if uy, uxx, uxy, uyy are all functionally dependent upon ux. The surfaces

u(x, y) = h(x− ay) + bx

provide (most of the) examples. All rank 1 surfaces have differential invariant order s = 1
and hence they are characterized by the second order signature curve S(2)(S).

Finally, a rank 0 surface has all constant differential invariants, and hence its signature
degenerates to a single point. Such maximally symmetric surfaces are just the flat planes,
which are the only surfaces to admit a two-dimensional translation symmetry group.

As the example indicates, in practical applications, one rarely needs all of the order
s+1 differential invariants I(s+1) that parametrize the signature S(s+1) in order to uniquely
characterize S up to congruence. Recurrence relations and syzygies among the differenti-
ated invariants can often be used to eliminate many redundant invariants. In general, there
are two types of syzygies. First are the universal syzygies, which hold directly among the
differential invariants, and so do not depend on the particularities of the submanifold S.
Actually, if we employ the fundamental normalized differential invariants I(s+1), then the
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only universal syzygies are those given by the phantom invariants being constant. How-
ever, there may be good geometrical reasons for considering alternative sets of differential
invariants derived from the fundamental ones, which do admit some universal syzygies —
see the discussion at the end of Example 8.2. As far as the equivalence properties of S go,
then, we can ignore all differential invariants arising from such universal syzygies. Second
are the particular syzygies that arise because we have restricted the differential invariants
to the submanifold S. Indeed, since there are at most p functionally independent functions
on a p-dimensional submanifold, most of the restricted differential invariants will be related
via (local) syzygies. The particular syzygies will serve to characterize the signature, and
thereby uniquely characterize S up to equivalence.

Many of the syzygies can be deduced as a direct consequence of others, and so one
only requires a few fundamental syzygies in order to completely characterize the signature.
Consider a syzygy

Φ(J1, . . . , Jp) = 0 (6.5)

among the restricted differential invariants — which may be either universal or particular
to the submanifold S. If we apply the invariant differential operator Di to (6.5), we deduce
a new syzygy

p∑

k=1

DiJk ·
∂Φ

∂Jk
(J1, . . . , Jp) = 0 (6.6)

among the differentiated invariants. The derived syzygy (6.6) is completely determined
by the original syzygy (6.5), and hence is irrelevant for the unique specification of the
signature of S. (An example of this computation appears in (6.3), (6.4) in the example.)
A reduced signature of S is thereby constructed by discarding all the differential invariants
whose values are determined by the universal syzygies and all such derived syzygies. All
the syzygies of the resulting minimal system of differential invariants are now particular
to S, and serve to uniquely characterize it up to equivalence: any congruent submanifold
S = g · S must have the the same reduced signature, meaning the same minimal system of
restricted differential invariants and the same particular syzygies. Practical illustrations
of this reduction technique will appear in our examples.

7. Joint Differential Invariants.

Let us now adapt our general moving frame constructions to the case of primary
concern in this paper — Cartesian product actions of groups and their prolongations. Let
G act on M , and consider the induced action (3.1) on the Cartesian product space M×n

for some n > 1. If S ⊂ M is an ordinary p-dimensional submanifold, its n-fold Cartesian
product is the (np)–dimensional submanifold

S×n = S × · · · × S ⊂M×n.

Two submanifolds S, S ⊂ M are congruent, so S = g · S for some g ∈ G, if and only
if their Cartesian products are: S×n = g · S×n. The symmetry group of the product S×n

29



is the same as the symmetry group GS ⊂ G of S. If S is not totally singular, and so GS

acts locally freely on S, then

dimGS = k ≤ p < np = dimS×n.

More generally, two ordered n-tuples of p-dimensional submanifolds (S1, . . . , Sn) and
(S1, . . . , Sn) are simultaneously congruent, so Sk = g · Sk, k = 1, . . . , n, under the same

group element g ∈ G if and only if their Cartesian products S = S1 × · · · × Sn and
S = S1 × · · · × Sn are congruent submanifolds of M×n, meaning that S = g · S.

Proposition 7.1. A Cartesian product S = S1 × · · · × Sn ⊂M×n of p-dimensional

submanifolds S1, . . . , Sn ⊂M has symmetry group G
S
= GS1 ∩· · ·∩GSn If at least one of

the Sν is regular, then dimG
S
≤ p. In particular, S has a p-dimensional symmetry group

if and only if each Sν = H · zν , ν = 1, . . . , n, is a regular orbit of the same p-dimensional

subgroup H = G
S
⊂ G.

Remark : Proposition 7.1 implies that product submanifolds can never be maximally
symmetric inM×n since their symmetry groups have dimension at most p which is strictly
less than their own dimension. Consequently, the joint invariants (and, a fortiori the joint
differential invariants) of a product submanifold of M×n cannot all be constant!

Not every submanifold of M×n is a Cartesian product. Indeed, the “mixed jet deriva-
tives” — meaning derivatives with respect to the coordinates on different copies of M —
must all vanish on product submanifolds. Moreover, these conditions serve to uniquely
prescribe the product jet subbundle. More formally, the kth order jets of product subman-
ifolds S form submanifolds of the kth order jet bundle Jk(M×n, np). On the other hand,
we can identify

jkS = jkS
1 × · · · × jkS

n ⊂ Jk(M, p)× · · · × Jk(M, p) = Jk(M, p)×n = (Jk)×n

as a submanifold of the Cartesian product jet bundle. The latter forms the subbundle

Jk(M, p)×n ⊂ Jk(M×n, n · p)

which is traced out by the k-jets of n-fold product submanifolds S = S1×· · ·×Sn ⊂M×n.

Remark : One may also consider more general Cartesian products Jk1 × · · · × Jkn of
different order jet bundles, named “multi-space” in [16]. However, any such product can
be obtained by projection from a common jet space (Jk)×n, where k ≥ max kν , and so we
do not lose any generality by only considering Cartesian products of identical jet bundles.

The product action of the Lie group G on M×n induces a prolonged action on
Jk(M×n, np) which preserves the product subbundle (Jk)×n, and coincides with the n-
fold Cartesian product of the action on Jk(M, p). The invariants of the induced action of
G on (Jk)×n are known as joint differential invariants , [19], or, in the computer vision
literature, semi-differential invariants , [4, 38, 39], or multi-local invariants , [16]. Com-
bining the prolongation and product constructions of moving frames leads immediately to
a general moving frame algorithm for completely classifying joint differential invariants.
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If G acts freely on an open subset of (Jk)×n, then, according to Theorem 5.1, there ex-
ists a complete system of fundamental joint differential invariants of order ≤ k+1 such that
every other joint differential invariant can be obtained by invariant differentiation. Note
that, for p-dimensional submanifolds ofM , there are n ·p distinct invariant differentiations
Dν

i , where ν = 1, . . . , n and i = 1, . . . , p, where Dν
1 , . . . ,D

ν
p only involve differentiation with

respect to the coordinates belonging to the νth copy of M in M×n.

Remark : Mixed invariant derivatives of joint invariants do not necessarily vanish, even
when restricted to product submanifolds.

The fundamental equivalence and symmetry Theorems 6.7 and 6.3 apply as stated
to product submanifolds. The joint differential invariant rank t of a submanifold S ⊂ M
(or, more generally, an ordered n-tuple of submanifolds S1, . . . , Sn ⊂M) is the number of
functionally independent joint differential invariants on the product. Since the symmetry
group of the product submanifold S×n is the same as the symmetry group of S, Theorem 6.3
implies that the n-point joint differential invariant rank is related to the usual differential
invariant rank of S according to the equation

p− rankS = dimGS = dimGS×n = n p− rankS×n. (7.1)

This relation predicts the number of functionally independent joint differential invariants
on S.

The joint differential invariant order s of a product submanifold S = S1 × · · · × Sn

is the minimal order required to produce a generating system of functionally independent
joint differential invariants. Typically, the more points used, the lower the joint differential
invariant order. In particular, if G acts freely on M×n, then the joint differential invariant
order of a generic product submanifold S is s = 0, meaning that we can find a complete
system of t = rankS functionally independent joint invariants on S. In the generic case,
when S is nonsingular and only has discrete symmetries, rankS = np. If S ⊂ M×n

has joint differential invariant order 0, then Theorems 6.3, 6.5, and 6.7 imply that the
equivalence and symmetry properties of S are completely determined by the first order
joint signature submanifold S(1)(S), which is parametrized by the joint invariants and the
first order joint differential invariants.

In all the cases considered here, provided we use enough points on the submanifold,
all the joint differential invariants can be expressed as invariant derivatives of the joint
invariants. In many, but not all cases, it suffices to have one nontrivial joint invariant in
order to generate the joint differential invariants. Moreover, all the signature syzygies turn
out to be differential consequences, as in (6.6), of the syzygies among the joint invariants.
Both of these facts are consequences of the particular recurrence formulae for the group.
So far we have not determined how general this result might be.

If dimG = r and dimM = m, then we find that, in all our examples, G acts freely on
an open subset ofM×n provided nm ≥ r, and so there are nm−r functionally independent
joint invariants. Moreover, if nm − r > np, then there will be at least one zeroth order
syzygy among the restricted joint invariants. Consequently, a necessary condition for the
restricted signature of a generic n-point submanifold be defined solely by joint invariants
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is

n ≥
r

m− p
+ 1. (7.2)

It should be emphasized that this count applies to generic submanifolds, and exceptional
submanifolds of higher order — which require additional points in order to construct a
proper signature — as well as exceptional group actions can occur.

8. Joint Signatures for Curves.

We now illustrate the general theory with a number of particular examples, chosen
for their relevance to basic issues in geometry of curves and surfaces as well as potential
applications in computer vision. Needless to say, this is only a very small fraction of
the cases amenable to these techniques, and we will report on other, more complicated,
situations in later publications. See also [1, 27] for other non-traditional applications of
the moving frame method.

Let us look more closely at the joint signature submanifolds in the case of planar
curves. Consider an r-dimensional Lie group G acting effectively on an open subset of
M = R2. If, as happens in all our examples, G acts freely on M×n for 2n ≥ r, then
there exist 2n− r functionally independent n-point joint invariants. Moreover, there are n
additional joint differential invariants at each order k ≥ 1. In the planar cases considered
here, as long as 2n > r, the joint differential invariants are all obtained from the 2n − r
joint invariants by invariant differentiation. Therefore, the kth order signature submanifold
is parametrized by (k+2)n− r independent joint differential invariants. The same is true
even when the joint action on M×n is not free, as long as k ≥ r

n − 2 is sufficiently large to
ensure that G acts locally freely on (Jk)×n.

On the other hand, an n-point curve defines a product submanifold C×n ⊂M×n and
so, generically, one requires at least n + 1 invariants in order that at least one nontrivial
syzygy exist. Therefore, a zeroth order joint signature submanifold is possible only when
2n− r ≥ n+ 1, i.e., when n ≥ r + 1, in accordance with the general inequality (7.2).

Proposition 8.1. Let G be an r-dimensional group acting on planar curves. Then

the order k of the n-point joint signature submanifold of a curve will bounded from below

by the inequality k ≥
r + 1

n
− 1.

Let us now consider some particular geometric examples.

Example 8.2. Euclidean joint differential invariants. Consider the proper Euclidean
group SE(2) acting on oriented curves in the plane M = R2, as in Example 4.1. (The reso-
lution of the sign ambiguities in the cases of non-oriented curves and/or the full Euclidean
group E(2) are left to the reader.) We begin with the case of two-point invariants, corre-
sponding to the Cartesian product action onM×2 ≃ R4. Taking the simplest cross-section†

† We use a slightly different cross-section — better suited to the required computations —
than was used in Example 3.6.
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Figure 6. Joint Euclidean Angles.

x0 = u0 = x1 = 0, u1 > 0 leads to the normalization equations

y0 = 0, v0 = 0, y1 = 0. (8.1)

Solving, we obtain a left moving frame

θ̃ = − cot−1

(
u1 − u0

x1 − x0

)
, ã = x0, b̃ = u0, (8.2)

along with the fundamental interpoint distance invariant

v1 7−→ I = ‖ z1 − z0 ‖, (8.3)

reproducing the results of Example 3.6 in the planar case. Substituting (8.2) into the
prolongation formulae (4.11) leads to the explicit expressions

vky 7−→ Jk = −
(z1 − z0) · zkt
(z1 − z0) ∧ zkt

, vkyy 7−→ Kk = −
‖ z1 − z0 ‖3 (zkt ∧ zktt)[

(z1 − z0) ∧ z0t
]3 , (8.4)

for the normalized first and second order joint differential invariants. We require that the
chord z1 − z0 connecting the points not be tangent to the curve at either endpoint. The
first order two-point joint differential invariants are therefore

J0 = − cotφ0, J1 = +cotφ1, (8.5)

where φk = <) (z1 − z0, zkt ) denotes the angle from the chord to the tangent vector at zk,
as indicated in Figure 6. The modified second order joint differential invariant

K̂0 = −‖ z1 − z0 ‖−3K0 =
z0t ∧ z0tt[

(z1 − z0) ∧ z0t
]3 (8.6)
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z1

Figure 7. Second Order Joint Differential Invariant.

equals the ratio of the area of triangle whose sides are the first and second derivative
vectors z0t , z

0
tt at the point z0 over the cube of the area of triangle whose sides are the

chord from z0 to z1 and the tangent vector at z0; see Figure 7. This joint differential
invariant is, interestingly, invariant under the equi-affine group; see the following example.

On the other hand, we can construct the joint differential invariants by invariant
differentiation of the basic distance invariant I. The normalized invariant one-forms, that
assume the role of “joint arc length forms”, are

dyk = (xkt cos θ − ukt sin θ) dt
k 7−→ ωk = −

(z1 − z0) ∧ zkt
‖ z1 − z0 ‖

dtk, (8.7)

with corresponding invariant differential operators

Dyk 7−→ Dk = −
‖ z1 − z0 ‖

(z1 − z0) ∧ zkt
Dtk . (8.8)

It is not difficult to directly establish the recurrence formulae expressing the differ-
entiated invariants in terms of the fundamental normalized joint differential invariants.
However, the general infinitesimal algorithm presented in Section 5 is also available, and,
in more complicated examples, almost essential for obtaining the syzygies without un-
due computational effort. To prepare for such computations (which, for brevity, we shall
subsequently suppress), we present the full details in this relatively simple example.

In general, to construct the recurrence formulae for the n-point joint differential in-
variants of order k, one introduces the n-fold joint Lie matrix L×n

k obtained by juxtaposing
n copies of the ordinary order k Lie matrix (5.6), each copy being indexed by the corre-
sponding point on the curve (or submanifold). In the case of two-point joint Euclidean
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invariants, one starts with the second order (for simplicity — higher order recurrences are
readily found by the same algorithm) joint Lie matrix

L×2
2 =




1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

−u0 x0 1 + (u0x)
2 3u0xu

0
xx −u1 x1 1 + (u1x)

2 3u1xu
1
xx


 ,

based on (5.10). For the normalization (8.2), (8.3), the invariantized joint Lie matrix
I×2
2 = ι(L×2

2 ) is

I×2
2 =




1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 + J2

0 3J0K0 −I 0 1 + J2
1 3J1K1


 . (8.9)

Since in (8.1) we are normalizing the variables x0, u0, x1 that correspond to the first,
second and fifth columns of (8.9), the algorithm requires us to perform a Gauss–Jordan
row reduction that converts this particular 3×3 minor of I×2

2 into the identity matrix; the
net result is

K×2
2 =




1 0 (1 + J2
0 )/I 3J0K0/I 0 0 (1 + J2

1 )/I 3J1K1/I
0 1 0 0 0 1 0 0
0 0 −(1 + J2

0 )/I −3J0K0/I 1 0 −(1 + J2
1 )/I −3J1K1/I


 . (8.10)

On the other hand, the total derivative matrix corresponding to our normalization variables
x0, u0, x1 and its invariantized counterpart are

Z×2 =

(
1 u0x 0
0 0 1

)
, W×2 = ι(Z×2) =

(
1 J0 0
0 0 1

)
.

Note that we are explicitly restricting our attention to product curves C0 × C1 ⊂ M×2,
for which all the mixed derivatives, including all mixed-derivative normalized invariants,
will automatically vanish. The second order correction matrix is given by the product
M×2

2 = W×2 ·K×2
2 , and equals

M×2
2 =

(
1 J0 (1 + J2

0 )/I 3J0K0/I 0 J0 (1 + J2
1 )/I 3J1K1/I

0 0 −(1 + J2
0 )/I −3J0K0/I 1 0 −(1 + J2

1 )/I −3J1K1/I

)
.

(8.11)
The entries of M×2

2 are the correction terms in the basic recurrence formulae:

D0I = −J0, D1I = J1,

D0J0 = K0 −
1 + J2

0

I
, D1J0 =

1 + J2
0

I
,

D0J1 = −
1 + J2

1

I
, D1J1 = K1 +

1 + J2
1

I
,

D0K0 = L0 −
3J0K0

I
, D1K0 =

3J0K0

I
,

D0K1 = −
3J1K1

I
, D1K1 = L1 +

3J1K1

I
.

(8.12)
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Here vkyyy 7−→ Lk are the normalized joint differential invariants coming from the third
order derivatives. These formulae imply that all of the joint differential invariants can be
obtained from the basic distance invariant by invariant differentiation. Therefore, we have
proved the following result, cf. [19].

Proposition 8.3. Every two-point Euclidean joint differential invariant is a function

of the interpoint distance I = ‖ z1−z0 ‖ and its invariant derivatives with respect to (8.8).

For example, consider the Euclidean curvature

κ0 =
z0t ∧ z0tt
‖ z0t ‖

3
=

u0xx
(1 + (u0x)

2)3/2

at the point z0. To determine how to write it in terms of the normalized and differentiated
invariants, we can apply our invariantization procedure and (8.12):

κ0 = ι(κ0) =
K0

(1 + J2
0 )

3/2
= −

D2
0 I

(1 + (D0I)
2)3/2

+
1

I
√

1 + (D0I)
2
.

A generic product curve C = C0 × C1 ⊂ M×2 has joint differential invariant rank
2 = dimC. Since there is only one joint invariant, the minimal joint differential invariant
order of C is s = 1, and the required signature S(2)(C) will be parametrized by the joint
differential invariants I, J0, J1, K0, K1 of order ≤ 2. Since S(2)(C) is, by assumption, a
two-dimensional submanifold, there must exist a particular (local) syzygy

Φ(I, J0, J1) = 0 (8.13)

among the three first order joint differential invariants. Differentiating (8.13) and using
the recurrence formulae (8.12), we find

−J0
∂Φ

∂I
+

(
K0 −

1 + J2
0

I

)
∂Φ

∂J0
−

(
1 + J2

1

I

)
∂Φ

∂J1
= 0,

J1
∂Φ

∂I
+

(
1 + J2

0

I

)
∂Φ

∂J0
+

(
K1 +

1 + J2
1

I

)
∂Φ

∂J1
= 0.

Thus, the syzygies for second order joint differential invariant K0, K1 are uniquely deter-
mined, provided

∂Φ

∂J0
6= 0 and

∂Φ

∂J1
6= 0. (8.14)

Therefore, the surface parametrized by the first order joint differential invariants I, J0, J1
can be used as the reduced signature set to characterize such (generic) product curves.
Failure of (8.14) at isolated points is not a problem (at least in the analytic category)
since one can use analytic continuation to characterize the product curve. In general,
rank 2 product curves admit only a discrete symmetry group, whose cardinality equals the
signature index, meaning the number of pairs of points (z0, z1) ∈ C0 × C1 at which all
three invariants have the same (generic) value.
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Suppose the first order signature degenerates to a one-dimensional curve, locally given
by

J0 = − cotφ0 = Φ0(I), J1 = cotφ1 = Φ1(I). (8.15)

Differentiating these two syzygies and using (8.12) leads to the four derived syzygies

K0 = −J0 Φ
′
0(I) +

1 + J2
0

I
,

1 + J2
0

I
= J1 Φ

′
0(I),

K1 = J1 Φ
′
1(I)−

1 + J2
1

I
, −

1 + J2
1

I
= −J0 Φ

′
1(I).

(8.16)

The first of each pair prove that the second order joint differential invariants K0, K1 are
also functionally dependent upon I, and are automatically determined by the syzygies
(8.15). Therefore, the second order signature is also a one-dimensional curve. This proves
that there cannot be any product curves of joint differential invariant order s = 2.

According to Theorem 6.3, the product curve admits a one-parameter symmetry group
if and only if its signature is a one-dimensional curve. Proposition 7.1 implies that this
occurs if and only if the two curves are orbits of the same one-parameter subgroup. There-
fore, the two curves are either two parallel straight lines or two concentric circles. The
signature functions Φ0,Φ1 in (8.15) are not arbitrary: there is a two-parameter family of
such product curves, governed by the two radii of the concentric circles. According to the
second and fourth derived syzygies in (8.16), the parametrization (8.15) of the signature
curve must solve the coupled pair of nonlinear first order ordinary differential equations

dJ0
dI

=
1 + J2

0

I J1
,

dJ1
dI

=
1 + J2

1

I J0
. (8.17)

In particular, if the circles are identical, C1 = C2, then J0 = −J1, and the general solution
to (8.17) is

1 + J2
0 =

4r2

I2
,

where r is the radius of the circle. This relation can be verified directly using the Law of
Cosines, as illustrated in Figure 8. The corresponding figure for concentric, non-coincident
circles will produce the general solution to the nonlinear system of ordinary differential
equations (8.17).

Theorem 8.4. A curve C or, more generally, a pair of curves C0, C1 ⊂ R2, is

uniquely determined up to a Euclidean transformation by its reduced signature, which is

parametrized by the first order joint differential invariants I, J0, J1. The curve(s) have a

one-dimensional symmetry group if and only if their signature is a one-dimensional curve;

otherwise the signature is a two-dimensional surface, and the curve(s) have only discrete

symmetries.

Remark : As remarked above, a regular product curve cannot have a two-dimensional
symmetry group, or, equivalently, a zero-dimensional signature. Indeed, the only two-
dimensional subgroup of SE(2) is the translations R2, and so by Cartan’s Theorem 6.6,
the only surfaces with all constant differential invariants are the orbits of R2, which are
the affine planes {z0 − z1 = a} ⊂M×2. But these are not product curves, and so are not
relevant to our discussion.
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Figure 8. Triangle in Circle.

Next, consider an n-point Euclidean curve for n > 2. Using the two-point moving
frame (8.2), the additional joint invariants are

yk 7−→ Hk = ‖ zk − z0 ‖ cosψk, vk 7−→ Ik = ‖ zk − z0 ‖ sinψk,

where ψk = <) (zk−z0, z1−z0). Therefore, a complete system of joint invariants for SE(2)
consists of the angles ψk, k ≥ 2, and distances ‖ zk − z0 ‖, k ≥ 1. The other distances
‖ zi − zj ‖ and angles <) (zi − zj , zk − zl) can all be re-expressed as functions of these
particular ones.

Conversely, one can recover the absolute values of the angles |ψk | solely from knowl-
edge of the distances ‖ zi−zj ‖, which are full Euclidean invariants. The sign of an individ-
ual angle ψk is only a proper Euclidean invariant since it can be changed by a reflection.
However, the reflection will simultaneously reverse all of the signs of the angles, and so the
product of any two signs is a full Euclidean invariant. It is not hard to see that knowledge
of all the distances ‖ zi − zj ‖ uniquely specifies all these joint angle sign invariants; see
[33; Chapter 8]. Therefore, the distances provide a complete system of joint invariants of
E(2), while in the orientation-preserving case of SE(2), one requires one signed angle, or,
equivalently, one signed triangular area to build a complete list.

The first order differential invariants are the Jk defined in (8.4). Application of our
infinitesimal algorithm produces the recurrence formulae

D0I = −J0, D1I = J1,

D0Ik = −J0 −
Hk

I
, D1Ik =

Hk

I
, Dk(Ik) = Jk, k ≥ 2,

D0Hk =
Ik
I

− 1, D1Hk = −
Ik
I
, Dk(Hk) = 1.

(8.18)
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All other derivatives, i.e., Dl(Ik) and Dl(Hk) for l 6= 0, 1, k, are zero. Note that the joint
differential invariants can all be found by invariant differentiation of the joint invariants
Hk, Ik. In fact, one only needs the joint invariants I, I2, I3, . . ., to generate the rest,
since derivatives of the Ik yield the joint invariants Hk. Therefore, we have generalized
Proposition 8.3 and established a “First Main Theorem” for joint Euclidean differential
invariants.

Theorem 8.5. If n ≥ 2, then every n-point joint Euclidean differential invariant is a

function of the interpoint distances ‖ zi − zj ‖ and, in the case of SE(2), one signed trian-

gular area V ( 0, 1, 2 ), along with their derivatives with respect to the invariant differential

operators Dk given in (8.8).

In the particular case of three-point curves, the product C×3 ⊂ M×3 ≃ R6 is three-
dimensional. There are three independent joint invariants, namely the interpoint distances.
Let

T 3 = { (a, b, c) | a ≥ 0, b ≥ 0, c ≥ 0, a+ b ≥ c, a+ c ≥ b, b+ c ≥ a } ⊂ R3
+

denote the space of planar isometric triangles. For a generic curve, the three joint invariants
will cover a subdomain DC ⊂ T 3, namely the set of triangles which can be inscribed in
the curve. (If the curve is closed, DC is bounded.) One therefore cannot recover the local
geometry of the curve from DC — although an interesting question is to what extent its
boundary ∂DC determines C. This means that generic three-pointed Euclidean curves
still require a first order signature.

To create a Euclidean signature set based entirely on zeroth order joint invariants, we
must use at least four points on our curve. Theorem 3.7 implies that the six interpoint
distances

a = ‖ z1 − z0 ‖, b = ‖ z2 − z0 ‖, c = ‖ z3 − z0 ‖,

d = ‖ z2 − z1 ‖, e = ‖ z3 − z1 ‖, f = ‖ z3 − z2 ‖.
(8.19)

are the fundamental joint invariants, as illustrated in Figure 1. As remarked in the intro-
duction, these distances satisfy the universal Cayley–Menger syzygy (1.3), which can be
solved for one of the distances, say f , in terms of the other five. There are two distinct
solutions, corresponding to the two possible four-point configurations shown in Figure 9.
Note that the triangle with vertices z0, z1, z3 has been reflected through the line connecting
z0 and z1, which implies that the first five distances a, b, c, d, e are the same in both config-
urations. Therefore, adopting the more natural distance invariants in place of the moving
frame angular invariants requires us to compute the “extended signature” Ŝ ⊂ R6 param-
etrized by all six distances (8.19). There are, in fact, good practical reasons for taking this
approach. The extended signature clearly exposes certain discrete symmetry properties
of the signature of a multi-pointed curve. Namely, the symmetric group S4 acts on C×4

by permuting the points. Since this does not affect the interpoint distances, the extended
signature Ŝ is invariant under the induced action of S4 on R6. For example, interchanging
z0 ↔ z1 induces the distance permutation b↔ d, c↔ e. (This corresponds to the natural
embedding S4 →֒ S6 induced by the action of S4 on the six different two-element subsets of
a four-element set.) Note that there is a corresponding action of S4 on the original moving
frame signature S, which is parametrized by the angular invariants, but this permutational
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Figure 9. Four Point Euclidean Configurations.

symmetry is much less evident, since it relies on the complete system of angle and distance
syzygies.

Another important remark is that one does not actually need the entire signature to
reconstruct the curve. Let (a0, . . . , f0) be a point on Ŝ. The “slice”

S0 =
{
(a0, b0, c, d0, e, f)

}
⊂ Ŝ

obtained by fixing the positions of z0, z1, z2 and letting only z3 vary will uniquely prescribe
the position of z3, and thus uniquely reconstruct the curve. Therefore, the entire signature
is uniquely determined by a single slice S0. Moreover, the final distance f can take on
only two possible values, and hence, based on its initial value f0, is uniquely prescribed
by continuity. As a consequence, the reconstruction of the curve effectively relies on only
the two distances c, e that parametrize the slice. Similar remarks hold in more general
situations, and will be developed in detail in a subsequent paper devoted to the practical
applications of these results in image processing.

Remark : The Cayley–Menger identity (1.3) is equivalent to the fundamental inner
product syzygy det(vi · vj) = 0 between three coplanar vectors v1,v2,v3, in accordance
with Weyl’s Second Main Theorem for the Euclidean group, [43; p. 75]. The syzygies
among proper Euclidean invariants, which include an additional signed triangular area,
can also be found in [43; p. 77]. Incidentally, as with our earlier derivation of the Law of
Cosines, the invariantization method can be used to effect a quick proof of such identities;
details are left as an exercise for the interested reader.

Example 8.6. Equi-affine joint differential invariants. Consider next the special
affine group SA(2) = SL(2)⋉R2 acting on planar curves as in (3.2). We consider n-point
curves, with zk = zk(tk) parametrizing the kth point on the curve (or, more generally, a
point on the kth curve). We first introduce a useful bracket notation

[ i j ] = [ zi zj ] = zi ∧ zj = det( zi zj ),

[ i j k ] = [ zi zj zk ] = [ i j ] + [ j k ] + [ k i ] = (zj − zi) ∧ (zk − zi).
(8.20)
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Figure 10. Tangent Triangle.

Note that

[ i j k ] = 2V ( i, j, k )

is twice the triangular area (3.6). Furthermore, we will indicate differentiation with respect
to the parameters tk by a dot, so

�

zk = dzk/dtk. Note that dzk/dtj = 0 for j 6= k, so
one needs to pay attention to which parameter is being differentiated when utilizing this
notation. We also use dots over the bracket entries to indicate derivatives. In particular

[ i j
�

k ] = [ j
�

k ] + [
�

k i ] = (zj − zi) ∧
�

zk, [
�

k
�

l ] = [
�

zk
�

zl ] =
�

zk ∧
�

zl.

For example
d

dtk
[ i j k ] = [ i j

�

k ],
d

dtl
[ i l

�

k ] = [
�

l
�

k ].

In particular, V ( 0, 1,
�

0 ) = 1
2
[ 0 1

�

0 ] is the area of the tangent triangle drawn in Fig-
ure 10. Note that this is not an equi-affine invariant — it is not even invariant under
reparametrizations.

Let us first look at two-point joint differential invariants. We introduce the coordinate
cross-section corresponding to the basic normalization

y0 = v0 = 0, y1 = 0, v1 = 1, v0y = 0.

Solving for the group parameters, and then inverting, leads to the first order left moving
frame

Ã =

(
−

�

z0

[ 0 1
�

0 ]
, z1 − z0

)
, d̃ = z0. (8.21)
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The invariant one-forms and associated differential operators are

dyk 7−→ − [ 0 1
�

k ] dtk, Dyk 7−→ Dk = −
1

[ 0 1
�

k ]
Dtk . (8.22)

(The minus sign is only important when we derive the recurrence formulae.) There is a
single first order joint differential invariant:

v1y 7−→ I =
[
�

0
�

1 ]

[ 0 1
�

0 ][ 0 1
�

1 ]
, (8.23)

which, geometrically, is 1
4 times the ratio of the area of the parallelogram spanned by the

two tangent vectors over the product of the two tangent triangle areas. There are two
second order invariants

v0yy 7−→ J0 =
[
�

0
��

0 ]

[ 0 1
�

0 ]3
, v1yy 7−→ J1 =

[
�

1
��

1 ]

[ 0 1
�

1 ]3
. (8.24)

We have already encountered the joint differential invariant J0 in (8.6), and illustrated its
geometry in Figure 7.

The recurrence formulae for the differentiated invariants are readily found via our
infinitesimal algorithm, starting with the second order equi-affine Lie matrix

L2 =




1 0 0 0
0 1 0 0
−x u 2ux 3uxx
u 0 −u2x −3uxuxx
0 x 1 0


 . (8.25)

The most important of these are

D0I = −J0 − I2, D1I = J1 − I2, D0J0 = K0,

D1J0 = −3IJ0, D0J1 = −3IJ1, D1J1 = K1,
(8.26)

where viyyy 7→ Ki are the third order normalized invariants.

Theorem 8.7. Every two-point equi-affine joint differential invariant is a function of

the fundamental first order invariant (8.23) and its derivatives with respect to the invariant

differential operators (8.22).

In the generic case, the joint signature of a two-point curve will be a two-dimensional
surface, and, in view of the syzygies, one requires all three second order invariants I, J0, J1
to uniquely prescribe the reduced signature. There are no higher order product curves, so
a one-dimensional signature implies the existence of a one-parameter equi-affine symmetry
group for the product curve. The analysis is similar to the Euclidean case discussed above.

For three or more points, we normalize

y0 = v0 = 0, y1 = 0, v1 = 1, v2 = 0.
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Figure 11. Triangular Areas.

The corresponding left moving frame is of order 0, with

Ã =

(
z0 − z2

[ 0 1 2 ]
, z1 − z0

)
, d̃ = z0. (8.27)

The normalized values of

yk 7−→ Hk = − [ 0 1 k ] , vk 7−→ Ik =
[ 0 k 2 ]

[ 0 1 2 ]
,

provide the basic joint triangular area invariants, reproducing the results in Example 3.2.
The invariant differential operators are

Dk = −
1

[ 0 2
�

k ]
Dtk =

1

(z0 − z2) ∧
�

zk
Dtk , k = 0, 1, 2. (8.28)

The normalized first order joint differential invariants are

vky 7−→ Jk = − [ 0 1 2 ]
[ 0 1

�

k ]

[ 0 2
�

k ]
. (8.29)

Note that the joint differential invariant J0/[ 0 1 2 ] = [ 0 1
�

0 ]
/
[ 0 2

�

0 ] is the ratio of the
two tangent triangular areas indicated in Figure 11. The key recurrence formulae

D0Hk = Ik −HkJ0 − 1, D1Hk = HkJ1 − Ik, DkHk = 1, (8.30)

D0Ik =

(
Ik − 1 +

Hk

H2

)
J0, D1Ik = −I1J1, D2Ik = −

HkJ2
H2

, DkIk = Jk.
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Figure 12. The Order Zero Equi-Affine Signature.

are derived using our infinitesimal algorithm. The identities for the derivatives of Hk are
valid for k ≥ 2, whereas the formulae for the derivatives of Ik require k ≥ 3 to be valid since
I2 = 0. One can therefore generate the higher order differential invariants as derivatives of
the Hk, Ik. In particular, for three-point equi-affine curves, we only require a single joint
invariant — the triangular area V ( 0, 1, 2 ) = 1

2
[0 1 2] — to generate all others via invariant

differentiation. This establishes the First Main Theorem for joint equi-affine differential
invariants of planar curves.

Theorem 8.8. For n ≥ 3, every n-point equi-affine joint differential invariant is a

function of the fundamental area invariants V ( 0, 1, k ), V ( 0, 2, k ), k = 1, . . . , n − 1, and
their invariant derivatives using the differential operators (8.28).

In accordance with our general count, cf. Proposition 8.1, the signature curve for a
one-point equi-affine curve has order 5. It is parametrized by the equi-affine curvature
and its equi-affine arc-length derivative, [18, 24]. A generic two-point equi-affine curve
has second order signature surface. Three- and four- and five-point curves have first order
equi-affine signatures. One must use 6 = 1 + dimSA(2) distinct points on the curve to
construct a zeroth order equi-affine signature. The minimal zeroth order signature will be
parametrized by the seven area invariants V ( 0, 1, k ), V ( 0, 2, k ) for k = 2, 3, 4, 5 indicated
in Figure 12. As in the Euclidean case, there are permutation symmetries under S6 which
are most easily manifested if one includes all 20 triangular areas based on the six points.
However, here the syzygies are linear, and so their implementation on the minimal seven
independent triangular areas is not as complicated as the Euclidean version.

Example 8.9. The most complicated planar example treated in the literature is the
projective geometry of curves in the plane. The group is GL(3), or, rather, PSL(3), acting
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on M = RP2 or CP2 according to

y =
αx+ βu+ γ

ρx+ σu+ τ
, v =

λx+ µu+ ν

ρx+ σu+ τ
. (8.31)

The ordinary projective curvature and arc length invariants can be found in [15, 18], and,
for brevity, we will not repeat this computation here. We will, however, determine the
projective joint differential invariants, which appears to be a new result. See [5, 7, 11] for
a few particular examples and a discussion of applications in computer vision.

We begin with the easier case of n-point joint differential invariants when n ≥ 4, where
the moving frame has order 0. The joint invariants were already classified in Theorem 3.10.
Unfortunately, the simple “infinite” normalizations adopted there are not so applicable to
the prolonged joint action, since jets and infinitesimal generators at infinite points are not
easy to handle. Therefore, we need to implement a set of computationally trickier finite
normalizations before prolonging. The simplest finite normalizations

y0 = v0 = 0, y1 = 1, v1 = 0, y2 = 0, v2 = 1, y3 = v3 = 1. (8.32)

lead, after some algebra, to the explicit moving frame formulae

α = −ξ(u2 − u0), β = ξ(x2 − x0), γ = −αx0 − βu0 = ξ [ 0 2 ],

λ = −η(u1 − u0), µ = η(x1 − x0), ν = −λx0 − µu0 = η [ 0 1 ],

ρ = −ζ(u2 − u1)− (ξ + η)(u1 − u0), σ = ζ(x2 − x1) + (ξ + η)(x1 − x0),

τ = −ρx1 − σu1 + α(x1 − x0) + β(u1 − u0) = η [ 0 1 ] + ξ [ 0 2 ] + (ζ − ξ) [ 1 2 ],

(8.33)

where, using our bracket notation (8.20),

ξ = − θ [ 0 1 3 ] [ 1 2 3 ], η = − θ [ 0 2 3 ] [ 1 2 3 ],

ζ = θ [ 0 1 3 ]
(
[ 0 1 3 ]− [ 0 1 2 ]

)
.

(8.34)

Here the group parameter θ remains unspecified, although, if desired, the unimodularity
constraint can be used to fix its value. One finds that the remaining variables reduce to
the joint invariants

yk 7−→ Ik =
1

1 + C( 0; 1, k, 3, 2 )− C( 2; 0, 3, k, 1 )
,

vk 7−→ Jk =
1

1 + C( 0; 1, 3, k, 2 )− C( 1; 0, 3, k, 2 )
,

k ≥ 4,

depending on the same volume cross ratios (3.23) derived earlier via the “infinite” normal-
izations. One can recover the two independent cross-ratios as functions of Ik, Jk in view
of the syzygies

C( 0; 1, 3, k, 2 ) =
1

C( 0; 1, k, 3, 2 )
, C( 1; 0, 3, k, 2 ) =

C( 2; 0, 3, k, 1 )

C( 0; 1, k, 3, 2 )
.

The projectively invariant differential operators are

Dyk 7−→ Dk = −
Ak

[ 0 1 3 ] [ 0 2 3 ] [ 1 2 3 ]Bk

Dtk , (8.35)
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where

Ak =
(
[ 0 1 3 ] [ 0 2 3 ] [ 1 2 k ]− [ 0 1 3 ] [ 1 2 3 ] [ 0 2 k ]− [ 0 2 3 ] [ 1 2 3 ] [ 0 1 k ]

)2
,

Bk =
(
[ 0 1 3 ] [ 1 2 k ]− [ 1 2 3 ] [ 0 1 k ]

)
[ 0 2

�

k ]−

−
(
[ 0 1 3 ] [ 1 2

�

k ]− [ 1 2 3 ] [ 0 1
�

k ]
)
[ 0 2 k ].

The recurrence formulae for the differentiated invariants are determined by the same
infinitesimal algorithm, starting with the second order projective Lie matrix

L2 =




1 0 0 0
0 1 0 0
x 0 −ux −2uxx
u 0 −u2x −3uxuxx
0 x 1 0
0 u ux uxx
x2 xu u− xux −3xuxx
xu u2 −u2x −3xuxuxx




. (8.36)

Let vky 7→ Kk denote the normalized first order differential invariants — see (8.39) below.
The nontrivial recurrence formulae are

D0Ik = −Ik(Ik − 1)K0 − (Ik − 1)(Jk − 1), D1Ik = Ik(Ik − 1)K1 + Ik(Jk − 1),

D2Ik = Ik(Ik − 1)K2 + (Ik − 1)Jk, D3Ik = −Ik(Ik − 1)K3 − IkJk, DkIk = 1,

D0Jk = −(Ik − 1)(Jk − 1)K0 − Jk(Jk − 1), D1Jk = −Ik(Jk − 1)K1 + Jk(Jk − 1),

D2Jk = −(Ik − 1)JkK2 + Jk(Jk − 1), D3Jk = −IkJkK3 − Jk(Jk − 1), DkJk = Kk,
(8.37)

and all other derivatives are zero on product curves. Therefore, on the open subset of the
product jet space where

Ik (Ik − 1) Jk (Jk − 1) 6= 0, k = 0, 1, . . . , n,

all the first (and higher) order differential invariants are generated from the joint invariants
by invariant differentiation! We have thus established a First Main Theorem for joint
projective differential invariants.

Theorem 8.10. For n ≥ 5, every n-point joint projective differential invariant is

a function of the fundamental cross-ratio invariants C( 0; 1, 3, k, 2 ), C( 1; 0, 3, k, 2 ), k =
4, . . . , n−1, and their derivatives with respect to the invariant differential operators (8.35).

There are no four-point joint invariants, and so when n = 4 we can still use the same
order 0 moving frame, but must construct the first order differential invariants directly.
We substitute the moving frame expressions (8.33), (8.34) into the formulae

vy =
(λxt + µut)(ρx+ σu+ τ)− (ρxt + σut)(λx+ µu+ ν)

(αxt + βut)(ρx+ σu+ τ)− (ρxt + σut)(αx+ βu+ γ)
(8.38)
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for the first prolongation of (8.31). The result is that the derivatives v0y , v
1
y, v

2
y, v

3
y reduce

to the first order differential invariants

K0 = C( 0 ; 3, 2, 1,
�

0 ), K2 = C( 2 ; 3, 0, 2,
�

0 )− 1,

K1 =
1

C( 1 ; 3, 0, 2,
�

1 )− 1
, K3 =

C( 2 ; 3, 1, 0,
�

3 )− 1

C( 1 ; 3, 1, 0,
�

3 )− 1
,

(8.39)

where

C( i ; j, k, l,
�

m ) =
[ i j k ] [ i l

�

m ]

[ i j l ] [ i k
�

m ]
(8.40)

is a “derived” area cross-ratio, which, interestingly, is a particular ratio of equi-affine joint
differential invariants (8.29). An infinitesimal analysis of the resulting recurrence formulae
proves that all higher order differential invariants are obtained by invariant differentiation.

Theorem 8.11. Every 4-point joint projective differential invariant is a function of

the fundamental derived cross-ratio invariants (8.40) and their derivatives with respect to

the invariant differential operators (8.35).

For the 3-point joint differential invariants, we may begin with the order 0 normaliza-
tions

y0 = v0 = 0, y1 = 1, v1 = 0, y2 = 0, v2 = 1.

This leads to the same moving frame formulae (8.33) as before, but now ξ, η, ζ are as yet
unspecified group parameters, that must be normalized using the first order derivatives.
Substituting (8.33) into the prolongation formulae (8.38), we find that we can normalize
v0y = 1 and v1y = 1.

Caution: The more “natural” normalization v1y = −1 is, in fact, not allowed and does

not define a cross-section. Indeed, this would require
�

z1 to be parallel to z2 − z1, which is
clearly not a generic condition on the curve.

After some algebra, the result is

ξ = θ [ 0 1
�

0 ] [ 1 2
�

1 ], η = θ [ 0 2
�

0 ] [ 1 2
�

1 ],

ζ = θ
(
[ 0 1

�

0 ] [ 1 2
�

1 ]− 2 [ 0 2
�

0 ] [ 0 1
�

1 ]
)
,

(8.41)

which takes the place of (8.34). The remaining jet coordinate then produces the first order
3-point projective joint differential invariant: v2y 7−→ 2I − 1, where

I =
[ 0 2

�

0 ] [ 0 1
�

1 ] [ 1 2
�

2 ]

[ 0 1
�

0 ] [ 1 2
�

1 ] [ 0 2
�

2 ]
. (8.42)

Referring to Figure 13, we see that I is the ratio of the product of the three triangular areas
in the first diagram over the product of the three triangular areas in the second diagram,
and hence has a very pretty geometrical formulation. It is, of course, the unique ratio
of the four-point joint differential invariants (8.40) that does not depend on the fourth
point z3. Another application of our infinitesimal algorithm for the recurrence formulae
completes the proof of the following result.
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Figure 13. First Order Projective Joint Differential Invariant.

Theorem 8.12. Every 3-point joint projective differential invariant is a function of

the fundamental first order joint differential invariant (8.42) and its invariant derivatives.

The case of two-point projective joint differential invariants has some interesting twists
in the computation, which we now summarize. It begins with the order zero normalizations
y0 = v0 = v1 = 0, y1 = 1. The first order normalizations are v0y = v1y = 1. (This is possible,
since the condition that the tangents at two distinct points be parallel is not projectively
invariant.) This yields the preliminary normalizations

αx+ βu+ γ = ξ [ 0 z
�

0 ] + η [ 0 1 z ],

λx+ µu+ ν = η [ 0 1 z ],

ρx+ σu+ τ = ξ [ 0 z
�

0 ] + ζ [ 1 z
�

1 ],

(8.43)

where ξ, η, ζ remain to be normalized. Substituting (8.43) into the second order prolonga-
tion formulae yields

v0yy 7−→ −
ξζ

η2
[ 0 1

�

1 ] [
�

0
��

0 ]

[ 0 1
�

0 ]2
, v1yy 7−→ −

ξζ

η2
[ 0 1

�

0 ] [
�

1
��

1 ]

[ 0 1
�

1 ]2
.

Therefore, the ratio of these two quantities

I =
[ 0 1

�

0 ]3 [
�

1
��

1 ]

[ 0 1
�

1 ]3 [
�

0
��

0 ]
(8.44)

is a second order differential invariant. Note that I is the ratio of the two second order joint
equi-affine invariants (8.24); see Figure 7. The existence of a second order joint projective
differential invariant is unexpected, and reflects that fact that PSL(3) does not act freely
on (J2)×2, even though the space has the same dimension, namely 8, as the group. As
a consequence, we can only normalize one of the remaining group parameters at second
order, and the final moving frame is third order. There are several different choices for the
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remaining normalizations; the simplest (albeit asymmetric) choice, is to set

v0yy = −1, v0yyy = 0.

These imply that

ξ = −
[ 0 1

�

0 ]2

3 [ 0 1
�

1 ] [
�

0
��

0 ]
P 2 ζ, η = −

1

3
P ζ,

where we assume the points are configured so that

0 6= P =
[
�

0
���

0 ] [ 0 1
�

0 ] [ 0 1
�

1 ] + 3 [
�

0
��

0 ]
(
[ 0 1

�

0 ] [
�

0
�

1 ] + [ 0 1
��

0 ] [ 0 1
�

1 ]
)

[ 0 1
�

0 ]2 [
�

0
��

0 ]
.

The final parameter ζ can be normalized by imposing unimodularity, but, as before, this
is unnecessary. The invariant differential operators are

D0 =
3 [ 0 1

�

1 ]

[ 0 1
�

0 ] P
Dt0 , D1 = −

3 [ 0 1
�

0 ]3 P 2

[ 0 1
�

1 ]2 [
�

0
��

0 ]
Dt1 .

(One can, by imposing a more symmetric normalization, obtain symmetrical formulae, but
these are sufficient for our purposes.) The recurrence formulae are found by our usual
infinitesimal method:

D0I = −3I, D1I = J − 3I2,

D0J = −1
3(J − 3I2)K0 − 6J + 3I2 − 3I, D1J = K1 − (5I − 1)J − 9I2,

(8.45)

where v2yyy 7→ J , viyyyy 7→ Ki are the normalized third and fourth order invariants. These

prove that, on the open subset of (Jn)×2 where D1I 6= 0, all higher order differential
invariants are obtained by differentiation.

Theorem 8.13. Every 2-point joint projective differential invariant is a function of

the fundamental second order joint differential invariant (8.44) and its invariant derivatives.

In accordance with our general count, cf. Proposition 8.1, the smallest number of
points that will produce an order zero signature is 9 = 1 + dimPSL(3), parametrized
by a total of 18 − 8 = 10 different joint invariant area cross-ratios. Generically, a first
order signature curve can be constructed with 5 points using 15 − 8 = 7 first order joint
differential invariants. Three and four points require a second order projective signature
curve, two points necessitate going to joint differential invariants of order 4, while the
usual one-point projective signature curve has order 8, but only requires two differential
invariants — the projective curvature and its projective arc-length derivative, cf. [15, 18].

9. Joint Differential Invariants for Space Curves and Surfaces.

As we know, the moving frame methods are not tied to just planar curves, but are
equally applicable to curves and surfaces in three-dimensional space. For simplicity, we
just consider the Euclidean and equi-affine cases here, leaving out the construction of joint
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differential invariants for projective space curves and surfaces. For simplicity, we only con-
sider generic situations, avoiding particular geometric configurations that require higher
order, more complicated normalizations. The complicated infinitesimal syzygy computa-
tions are suppressed for brevity. They were implemented using a general Mathematica

routine; details are available upon request from the author.

Example 9.1. We begin by computing the joint differential invariants for n-point
space curves C ⊂ R3 under the Euclidean groups SE(3) and E(3). Applications in computer
vision and invariant numerical algorithms can be found in [38, 3]. We shall use the notation
z = (x, u, ũ) for points in R3, and w = (y, v, ṽ) = Rz+d for their images under a Euclidean
transformation. We view x, y as the independent variables and u, ũ, v, ṽ as dependent
variables.

We already treated, in Example 3.6, the case when there are n ≥ 3 points. The
moving frame (3.14) leads to the zeroth order joint distance invariants ‖ zi−zj ‖ along with
the oriented simplex volume V ( 0, 1, 2, 3 ) in the case of SE(3). The invariant differential
operators are

Dyk 7−→ Dk =
1

(z1 − z0) · zkt
Dtk . (9.1)

It is not hard to prove, either directly or using the infinitesimal algorithm, that all first and
higher order differential invariants are obtained from the joint distance (and volume) in-
variants by invariant differentiation. In the three point case, one must actually differentiate
twice to recover some of the first order joint differential invariants.

For a general curve, there are 3n−6 functionally independent n-point joint Euclidean
invariants. Therefore, one requires 3n − 6 > n, or n ≥ 4 points in order to achieve at
least one zeroth order syzygy among the distance invariants, and hence a zeroth order joint
signature. It is interesting that this is the same number of points as was required in the
planar case. However, in the three-dimensional case, there are no universal syzygies among
the six interpoint distances among four points in R3, and so the two distance syzygies are
both dependent upon the space curve. In particular, the curve is planar if and only if it
satisfies the Cayley–Menger syzygy (1.3).

In the case of n = 2 point curves, the six normalizations

w0 = 0, w1 = λ e1, ṽ 0
y = 0,

will suffice to prescribe the moving frame up to one or two sign ambiguities. The translation
component of the resulting left moving frame is d̃ = z0, while the rotation matrix becomes

R̃ =

(
z1 − z0

‖ z1 − z0 ‖
, σ ε

[(z1 − z0) ∧ z0t ] ∧ (z1 − z0)

‖ (z1 − z0) ∧ z0t ‖
‖ z1 − z0 ‖ , ε

(z1 − z0) ∧ z0t
‖ (z1 − z0) ∧ z0t ‖

)
.

(9.2)
Here σ, ε = ±1 are as yet unspecified signs, with σ = +1 in the case of SE(3). The other
derivative coordinate reduces to

v0y 7−→ σ ε
‖ (z1 − z0) ∧ z0t ‖

(z1 − z0) · z0t
= σ ε

| sinφ0 |

cosφ0
,

50



where φk denotes the angle between the chord z1 − z0 and the tangent to the curve at zk,
which is only determined up to sign and integer multiples of π. We require v0y > 0, which
implies

σ ε = sgn (cosφ0). (9.3)

This leads to the first order joint differential invariant

v0y 7−→ | tanφ0 |. (9.4)

In the case of SE(2), where σ = +1, equations (9.2), (9.3) uniquely prescribe the moving
frame. The other two first order derivatives now reduce to

v1y 7−→
sgn (cosφ0) t0 · t1

cosφ1| sinφ0 |
− | cotφ0 |, ṽ 1

y 7−→ ε
(z1 − z0) · (t0 ∧ t1)

| sinφ0 | cosφ1 ‖ z1 − z0 ‖
.

We use

tk =
zkt

‖ zkt ‖
, k = 0, 1,

to denote the unit tangent vectors for the given parametrization. Although these are not
invariant under reversal of parametrization, the distinguished unit tangent vectors

t̂ k = sgn (cosφk) tk = sgn (cosφk)
zkt

‖ zkt ‖
, k = 0, 1, (9.5)

are invariantly defined — by the requirement 0 ≤ <) (z1 − z0, t̂ k) < 1
2
π. Therefore,

v1y 7−→
t̂ 0 · t̂ 1

| sinφ0 | | cosφ1 |
− | cotφ0 |, ṽ 1

y 7−→ σ
(z1 − z0) · ( t̂ 0 ∧ t̂ 1)

| sinφ0 | | cosφ1 | ‖ z1 − z0 ‖
.

(9.6)
In the orientation-preserving case of SE(3), σ = +1, and so the three fundamental first
order joint differential invariants are (9.4), (9.6). In the case of E(3), we can fix

σ = sgn
[
(z1 − z0) · ( t̂ 0 ∧ t̂ 1)

]

by the orientation determined by the chord connecting the two points and the two distin-
guished tangent directions. The absolute value of the volume of the associated simplex,
which is a function of the previous joint differential invariants, is invariant. Note that the
invariant one-forms are

dyk 7−→
(z1 − z0) · zkt
‖ z1 − z0 ‖

dtk = cosφk dsk,

where dsk = ‖ zkt ‖ dt
k denotes the usual arc length form, which is not invariant under a

reversal of the parametrization. The invariant differential operators are

Dyk 7−→ Dk =
‖ z1 − z0 ‖

(z1 − z0) · zkt
Dtk =

1

cosφk
Dsk .

An infinitesimal analysis of the recurrence formulae produces the First Main Theorem for
two-point Euclidean space curves.
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Theorem 9.2. All two-point differential invariants for Euclidean space curves are

obtained by invariant differentiation of the first order invariants

‖ z1 − z0 ‖, | cosφ0 |, | cosφ1 |, t̂ 0 · t̂ 1 = cosψ,

and, in the orientation-preserving case, the simplex volume

1
6 (z1 − z0) · ( t̂ 0 ∧ t̂ 1 ).

Here t̂ k are the distinguished unit tangent vectors (9.5), ψ = <) ( t̂ 0, t̂ 1 ) is the angle

between them, and φk = <) (z1 − z0, zkt ).

Remark : Here is a case where the joint invariant I = ‖ z1 − z0 ‖ does not generate all
the joint differential invariants. Of the two first order joint differential invariants in (9.6),
the second equals the invariant derivative D1I of the distance invariant, while the first
cannot be obtained by differentiation.These facts follow immediately from the recurrence
formulae, which, for brevity, we omit.

Finally, in view of our experience with planar curves, it is worth briefly repeating the
analysis for 1-point space curves. The initial normalizations

w = 0, vy = ṽy = 0, ṽyy = 0,

produce a left moving frame with translation component d̃ = z, and rotation matrix

R̃ =

(
δ

zt
‖ zt ‖

, ε
(zt ∧ ztt) ∧ zt

‖ zt ‖ ‖ zt ∧ ztt ‖
, σ

zt ∧ ztt
‖ zt ∧ ztt ‖

)
.

Here δ, ε, σ = ±1, with product δ ε σ = +1 in the case of SE(3). The unnormalized second
and third order derivatives become

vyy 7−→ ε
‖ zt ∧ ztt ‖

‖ zt ‖
3

,

vyyy 7−→ δ ε
‖ zt ‖

2 (zt ∧ ztt) · (zt ∧ zttt)− 3‖ zt ∧ ztt ‖
2 (zt · ztt)

‖ zt ‖
6 ‖ zt ∧ ztt ‖

2
,

ṽyyy 7−→ δ σ
(zt ∧ ztt) · zttt

‖ zt ‖
3 ‖ zt ∧ ztt ‖

.

We normalize ε = +1 to make vyy > 0, and so

vyy 7−→ κ =
‖ zt ∧ ztt ‖

‖ zt ‖
3

6= 0

reduces to the usual Euclidean curvature invariant, which has been assumed to be non-zero
in order to perform the indicated normalizations. If we introduce the standard oriented
arc length element ds = ‖ zt ‖ dt, then vyyy 7→ δ κs, and so we can require vyyy > 0 by
normalizing

δ = sgn κs, so that vyyy 7→ | κs |.
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Therefore, we should parametrize the curve in the invariant manner to ensure that κs > 0.
Finally, in the case of SE(3), we have δσ = ε = +1, and so ṽyyy 7→ τ κ reduces to the
product of the standard torsion and curvature invariants, [24], whose sign determines the
“handedness” or orientation of the curve. In the case of E(3), we set σ = sgn (τ κs), and
then only the absolute value of torsion, | τ |, is invariant. Points where τ κ κs = 0 require
a higher order moving frame to resolve the sign ambiguities.

Theorem 9.3. All differential invariants for space curves under the Euclidean group

are provided by the curvature κ and either the torsion τ — for SE(3) — or its absolute

value | τ | — for E(3) — along with their derivatives with respect to the signed arc length

form (sgn κs) ds.

Example 9.4. Consider next the case of a Euclidean surface S ⊂ R3, parametrized
by z(s, t). We use coordinates z = (x, x̃, u) on R3, and w = (y, ỹ, v) for the transformed
coordinates w = Rz+d. We view x, x̃, y, ỹ as independent variables and u, v as dependent
variables. The standard 1-point case is well-documented in the literature, [24], and leads
to the second order mean and Gaussian curvature differential invariants. Higher order
differential invariants are obtained by differentiation with respect to the Frenet frame.
Rather than repeat this computation here, we shall concentrate on the less well-studied
case of multi-point surfaces. Let

nk =
zks ∧ zkt

‖ zks ∧ zkt ‖
(9.7)

denote the unit normal at the point zk, which is invariant, up to a sign, under reparamet-
rizations and Euclidean transformations.

For a 2-point surface, we normalize

w0 = 0, w1 = λ e1, v0ỹ = 0.

The translation component of the resulting left moving frame is, as usual, d̃ = z0, while
the rotation matrix becomes

R̃ =
(
r , ε t0 , σ ε r ∧ t0

)
,

where σ, ε = ±1, with σ = +1 in the case of SE(3). Here

r =
z1 − z0

‖ z1 − z0 ‖
, while tk =

r ∧ nk

‖ r ∧ nk ‖
, k = 0, 1,

are distinguished tangent directions, which requires that the surface is not orthogonal to
the chord connecting z0 to z1 at either end. The other first order derivatives reduce to

v0y 7−→ − ε
r · n0

‖ r ∧ n0 ‖
= − ε

cosφ0

| sinφ0 |
, v1y 7−→ −σ

r · n1

t0 · t1
, v1ỹ 7−→ σ

r · (n0 ∧ n1)

t0 · t1
,

where φk = <) (z1 − z0,nk). We require v0y > 0 to fix the sign

ε = − sgn (cosφ0).

53



We also introduce the invariant unit normals and tangents

n̂ k = sgn (cosφk)nk, t̂ k = r ∧ n̂ k. (9.8)

The normals n̂ k are distinguished so that 0 ≤ <) (z1 − z0, n̂ k) < 1
2
π. In the case of E(3),

we can fix the sign

σ = sgn
[
r · ( n̂ 0 ∧ n̂ 1 )

]

by the orientation of the chord and the two distinguished normals. The invariant differen-
tial operators are

Dk
y = σ

( t̂ 0 · zkt )Ds − ( t̂ 0 · zks )Dt

(r ∧ t̂ 0) · (zks ∧ zkt )
, Dk

ỹ =
(r · zkt )Ds − (r · zks )Dt

(r ∧ t̂ 0) · (zks ∧ zkt )
. (9.9)

We therefore obtain a First Main Theorem for two-point Euclidean surfaces.

Theorem 9.5. All two-point differential invariants for Euclidean surfaces are given

by

‖ z1 − z0 ‖, | cosφ0 |, | cosφ1 |, n̂ 0 · n̂ 1 = cosψ,

and, in the orientation-preserving case, the simplex volume

1
6
(z1 − z0) · ( n̂ 0 ∧ n̂ 1 ),

along with their invariant derivatives. Here n̂ k are the distinguished unit normal vectors,

ψ = <) ( n̂ 0, n̂ 1 ) is the angle between them, and φk = <) (z1 − z0, n̂ k ).

For n-point surfaces with n ≥ 3, we obtain the same joint invariants and the same
moving frame as in the curve case, but the sign ambiguities are resolved slightly differently.
The rotation component of the left moving frame is

R̃ = RT = ( r , n⋆ ∧ r , σ n⋆ ) .

where σ ± 1, with σ = +1 in the case of SE(3). Also,

r =
z1 − z0

‖ z1 − z0 ‖
, while n⋆ =

(z1 − z0) ∧ (z2 − z0)

‖ (z1 − z0) ∧ (z2 − z0) ‖

is a unit normal to the plane through the three points z0, z1, z2. The joint invariants are
the interpoint distances ‖ zi − zj ‖ and, in the case of SE(3), the oriented simplex volumes
V ( i, j, k, l ) (only one of which is needed). The first order differential invariants are

vky 7−→
(n⋆ ∧ r) · nk

n⋆ · nk
, vkỹ 7−→

r · nk

n⋆ · nk
, (9.10)

where nk is the unit normal at zk, cf. (9.7). For the case of E(3), if we have four or more
points, the sign σ can be normalized by setting it equal to the sign of the simplex volume
σ = sgn V ( 0, 1, 2, 3 ). In the three-point case, σ is normalized by fixing the sign of one

54



of the first order derivatives, say v0ỹ > 0. In all cases, the first and higher order joint
differential invariants are obtained by invariant differentiation with respect to

Dk
y =

(n⋆ ∧ r) · zkt Ds − (n⋆ ∧ r) · zks Dt

n⋆ · (zks ∧ zkt )
, Dk

ỹ = σ
(r · zkt )Ds − (r · zks )Dt

n⋆ · (zks ∧ zkt )
. (9.11)

Theorem 9.6. All n ≥ 4 point differential invariants for Euclidean surfaces are

obtained by invariantly differentiating the interpoint distances and, in the oriented case,

the oriented simplex volumes. In the case n = 3, all joint differential invariants can be

found by invariantly differentiating the zeroth and first order joint differential invariants

given in (9.10).

In general, there are 3n − 6 functionally independent n-point joint Euclidean invari-
ants. Therefore, one requires 3n− 6 > 2n, or n ≥ 7 points in order to achieve at least one
zeroth order syzygy among the distance invariants, and hence a zeroth order joint signature.
A first order signature can be constructed with just three points, and relies on 3 distances
and 4 first order joint differential invariants. A two-point surface requires a second or-
der signature, while the standard differential invariant signature requires the third order
differential invariants arising from differentiation of the Gaussian and mean curvatures.

Example 9.7. Here we compute joint differential invariants for n-point space curves
C ⊂ R3 under the equi-affine group SA(3). We use the same coordinates (x, u, ũ) and
(y, v, ṽ) = Az + d as in Example 9.1. We already looked at the case when the number
of points n ≥ 4 — the moving frame (3.8) leads to the zeroth order joint simplex volume
invariants

V ( i, j, k, l ) = V ( zi, zj , zk, zl ) = 1
6
[ i j k l ], (9.12)

where we also adapt our two-dimensional bracket notation to the three-dimensional situa-
tion now under review. For curves, the invariant differential operators are constructed by
first normalizing the differentials

dyk 7−→ [ 0 1 2
�

k ] dtk, so that Dk =
1

[ 0 1 2
�

k ]
Dtk , (9.13)

where
[ 0 1 2

�

k ] = det
(
z1 − z0 , z2 − z0 , zkt

)

is the volume of the parallelepiped whose sides are the two chords connecting z0 to z1 and
z2 along with the tangent to the curve at zk. Note that this is not a differential invariant
— it is not even independent of the parametrization. It is not hard to prove, either directly
or using the infinitesimal algorithm, that all first and higher order differential invariants
are obtained from the joint simplex volume invariants by invariant differentiation. In the
special case of n = 4 points, there is just one simplex volume joint invariant, and one must
differentiate twice to obtain the complete set of first order joint differential invariants;
otherwise, first order derivatives suffice.

As soon as n ≤ 3, there are no joint invariants, and we must produce the differential
invariants and moving frame by normalizing the prolonged transformations. In the case of
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n = 3 point curves, we use the cross-section

w0 = 0, w1 = e3, w2 = e2, v0y = 0, ṽ 0
y = 0,

which implies the normalizations

AZ = diag (λ, 0, 0 ) , where Z =
(
z0t , z

1 − z0 , z2 − z0
)
.

Therefore, the left moving frame is given by

Ã =

(
z0t

detZ
, z1 − z0 , z2 − z0

)
, d̃ = z0, where detZ = [ 0 1 2

�

0 ].

There are 4 independent first order 3-point joint differential invariants, obtained by nor-
malizing the derivatives at z1, z2; these are the following ratios of tangent parallelepiped
(or simplex) volumes:

Ik =
[ 0 1

�

0
�

k ]

[ 0 1 2
�

0 ] [ 0 1 2
�

k ]
, Ĩk =

[ 0 2
�

0
�

k ]

[ 0 1 2
�

0 ] [ 0 1 2
�

k ]
, k = 1, 2, (9.14)

in direct analogy with the planar case (8.23). Here

[ 0 1
�

0
�

k ] = det
(
z1 − z0 , z0t , z

k
t

)
.

The recurrence formulae imply that all higher order joint differential invariants are obtained
by invariant differentiation with respect to (9.13).

For two-point curves, we normalize

w0 = 0, w1 = e3, v0y = 0, ṽ 0
y = 0, v1y = 1, ṽ 1

y = 0, v0yy = 1,

leading to the left moving frame

Ã =
(
z0t , z

1
t , z

1 − z0
)


λ −λ 0
0 µ 0
0 0 1


 ,

where

λ =
3

√
[ 0 1

�

0
��

0 ] , µ =
1

λ detZ
=

1

[ 0 1
�

0
�

1 ]
3

√
[ 0 1

�

0
��

0 ]
.

There are three second order joint differential invariants, which are found by substituting
the normalizations into the remaining second order derivative coordinates. After some
algebra, these are given as certain combinations of the fundamental invariants

[ 0 1
�

0
��

0 ] [ 0 1
�

1
��

1 ]

[ 0 1
�

0
�

1 ]3
,

[
�

0
�

1
��

1 ] [
�

0
�

1
��

1 ]

[ 0 1
�

0
�

1 ]4
,

[ 0 1
�

0
��

0 ]2 [
�

0
�

1
��

1 ]3

[ 0 1
�

1
��

1 ]2 [
�

0
�

1
��

0 ]3
. (9.15)

Here

[ 0 1
�

0
��

0 ] = det
(
z1 − z0 , z0t , z

0
tt

)
, [

�

0
�

1
��

0 ] = det
(
z0t , z

1
t , z

0
tt

)
,

56



and so on. The higher order joint differential invariants are obtained by invariant differ-
entiation with respect to

D0 =
1

3

√
[ 0 1

�

0
��

0 ]
Dt0 , D1 =

1

3

√
[ 0 1

�

1
��

1 ]
Dt1 . (9.16)

Since dimSA(3) = 11, there are 3n − 11 functionally independent n-point joint in-
variants. Therefore, one requires 3n − 11 > n, or n ≥ 6 points in order to achieve a
zeroth order syzygy among the volume invariants, and hence a zeroth order joint signature.
There are 5n− 11 independent joint differential invariants of order ≤ 1, and so n = 3, 4, 5
require first order signatures. For n = 2, the signature is of order 2. Finally, there are 2
functionally independent fifth order equi-affine differential invariants for space curves, and
the full signature curve requires their invariant (arc-length) derivatives, and so has order
6. Details can be found in [21, 24].

Example 9.8. Consider finally the case of an equi-affine surface S ⊂ R3, param-
etrized by z(s, t), where z = (x, x̃, u) and w = (y, ỹ, v) = Az + d. Let us write the left
equi-affine matrix in column form, and its right inverse in row form

Ã = A−1 = ( a b c ) , A =




b ∧ c

c ∧ a

a ∧ b


 ,

where ∧ denotes the usual wedge or cross product between column vectors, which, by
convention, produces a row vector. Let

[ a b c ] = (a ∧ b) · c = det ( a b c ) = 1

denote the standard vector triple product. The invariant differential operators can then
be written as

Dy =
[ c a zt ]Ds − [ c a zs ]Dt

[ c zs zt ]
, Dỹ =

[ c b zt ]Ds − [ c b zs ]Dt

[ c zs zt ]
. (9.17)

The first order prolonged transformation rules are then compactly written as

vy = −
[ a zs zt ]

[ c zs zt ]
, vỹ = −

[ b zs zt ]

[ c zs zt ]
. (9.18)

Define the quadratic form

Q(ξ, η) = ξ2 [ zs zt zss ]− 2 ξ η [ zs zt zst ] + η2 [ zs zt ztt ],

and its polarized counterpart

Q(ξ, η; ξ′, η′) = ξ ξ′ [ zs zt zss ]− (ξ η′ + ξ′ η) [ zs zt zst ] + η η′ [ zs zt ztt ].
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Then the second order prolongation formulae take the compact form

vyy =
Q
(
[ a c zs ], [ a c zt ]

)

[ a b c ] [ c zs zt ]
3

, vỹỹ =
Q
(
[ b c zs ], [ b c zt ]

)

[ a b c ] [ c zs zt ]
3

,

vyỹ =
Q
(
[ a c zs ], [ a c zt ] ; [ b c zs ], [ b c zt ]

)

[ a b c ] [ c zs zt ]
3

.

(9.19)

Now, for an n-point equi-affine surface, if n ≥ 4, then the zeroth order normalizations
produce the moving frame and the joint volume invariants (9.12) computed earlier in
Example 3.2. Moreover, all higher order differential invariants are obtained by invariant
differentiation with respect to

Dk
j =

[ 0 3 j kt ]Ds − [ 0 3 j ks ]Dt

[ 0 1 2 3 ] [ 0 3 ks kt ]
, j = 1, 2, 0 = 1, . . . , kn− 1, (9.20)

where, generalizing our earlier dot notation, kt stands for z
k
t , etc. For a three-point surface,

we normalize

w0 = 0, w1 = e2, w2 = e3, v0y = 0, v1y = 0.

Note that we cannot simultaneously normalize v0y and v0ỹ since the plane through z0, z1, z2

intersects the tangent plane to the surface TS|z0 in a line, and once we normalize w0, w1, w2,
this line cannot be altered. Let

Nk = zks ∧ zkt , k = 0, 1,

denote the normals to the surface at the point zk, and let

T⋆ = N0 ∧N1

denote the common tangent direction at the two points. Then the left moving frame is

Ã =
(
λ−1 T⋆ , z1 − z0 , z2 − z0

)
, d̃ = z0,

where

λ = det
(
T⋆ , z1 − z0 , z2 − z0

)
= T⋆ ·N⋆, where N⋆ = (z1 − z0) ∧ (z2 − z0)

is the normal to the plane through the three points. There are four remaining first order
derivatives that normalize to a complete system of first order joint differential invariants:

J =
T⋆ ·N3

(T⋆ ·N⋆) (z2 − z0) ·Nk
, Ik =

(z1 − z0) ·Nk

(z2 − z0) ·Nk
, k = 0, 1, 2. (9.21)

Higher order differential invariants are all obtained by invariant differentiation using

Dk =
[ z2 − z0,T⋆, zkt ]Ds − [ z2 − z0,T⋆, zks ]Dt

(T⋆ ·N⋆) (z2 − z0) ·Nk
,

D̃k =
[ z2 − z0, z1 − z0, zkt ]Ds − [ z2 − z0, z1 − z0, zks ]Dt

(z2 − z0) ·Nk
.

(9.22)
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The two point case is much more complicated, and, in view of space limitations, will be
omitted. See [24] for the ordinary (1-point) differential invariants for equi-affine surfaces.
For the joint signatures of an n-point equi-affine surface, we have 3n − 11 independent
joint invariants, and so there are n − 11 syzygies. Therefore, one requires n = 12 points
for a purely zeroth order signature based on simplex volumes. On the other hand, a first
order signature can be constructed with only n = 4 points.

10. Conclusions.

In this paper, we have demonstrated the power and efficacy of the general moving
frame method established in [19] for classifying joint invariants and joint differential in-
variants of geometric transformation groups. Our results include a wide variety of appar-
ently new invariants and new identities, even for well-studied group actions. The syzygies
(algebraic and differential identities) among joint differential invariants have been effec-
tively classified by our infinitesimal method. Applications to the equivalence and symmetry
properties of submanifolds have been developed in detail.

These investigations are motivated by applications to object recognition in digital im-
ages and the design of invariant numerical approximations to differential invariants and
the theory of geometric integration, [10, 28]. In numerical applications, the key is to
understand how joint invariants converge to differential invariants and joint differential
invariants as some or all of the points on the submanifold coalesce. Certain particular
examples are known, [3, 12, 13], but many other important cases have yet to be properly
studied. The required geometric structure, which includes the Cartesian product and pro-
longed jet actions in one seamless framework, will be developed in detail in a forthcoming
paper.

The application of differential invariant signatures in computer vision is well-documen-
ted. Application of joint differential invariant and joint invariant signatures provide the
foundation for a noise-free recognition algorithm. The key remaining ingredient is a suitable
measure of the “closeness” of the joint signatures of two submanifolds. The fact that the
joint signatures are constructed from very elementary joint invariants, and are no more
noisy than the original image, suggests that simple least-squares comparisons might suffice
for this purpose. Discrete symmetries of visual objects are readily handled by computation
of the index of the signature, as described in Theorem 6.5. The signature paradigm also
handles occlusions, cf. [5, 6, 7, 13], in a very natural fashion. The unoccluded part of the
object will still produce the relevant subset of the full signature, so that, with enough
of the object exposed, a sufficiently large part of the signature will suffice to uniquely
characterize it among a known gallery of known object signatures. Once the signature has
been recognized, one can use it to reconstruct the entire object. Details will be reported
upon elsewhere.
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