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Abslmd. The solution to the equivalence problem for a higher-order Lagrangian leads 
to new differential equations which are invariantly associated with the variational 
functional. We derive explicit expressions for these equations in the case of 
second-order particle Lagrangians an  the line under fibre-preserving, point and contact 
transformations. A geometrical interpretation of these equations based on the 
Poincare-Cartan form is discussed. 
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1. Introduction 

Higher-order variational problems have come to play an increasingly significant role 
in nonlinear science over the past few years. A striking illustration of this fact comes 
from the study of integrable nonlinear evolution equations such as the Korteweg-de 
Vries equation and Kadomtsev-Petviashvili (KP) equations which model nonlinear 
systems with dispersion. Indeed, these nonlinear partial differential equations (and 
many other soliton systems) are the Euler-Lagrange equations for particular 
higher-order Lagrangians; the infinite sets of conservation laws which account for 
their complete integrability arise from the analysis of these variational principles 
from the point of view of Noether’s theorem, relating (generalized) variational 
symmetries to conservation laws [12]. These physically important results dem- 
onstrate that a better understanding of the invariant structures and invariant 
properties of higher-order Lagrangians, such as their scalar differential invariants, 
invariant diffcrential forms (e.g. the Poincarb-Cartan form 16, 9]), symmetries and 
conservations laws-particularly those which do not manifest themselves in the 
much better understood first-order case-would be important not only from the 
point of view of mathematical analysis, but also in the realm of applications to the 

5 Research supported in part by an NSERC grant. 
11 Research supported in part by NSF grant DMS 89-01600. 

0951-7715/92/020601+ 21$04.50 0 1992 IOP Publishing Ltd and LMS Publishing Ltd 601 



602 

physical sciences. Besides soliton systems, there are a 'number of other physically 
important examples of higher-order Lagrangians for which the study of their 
invariant properties may have significance, including problems from general 
relativity, such as the relativistic dynamics of charged particles, and spin-orbit 
coupling of gravitationally interacting bodies (cf. [4] and references therein), 
higher-order gauge theories [ 5 ] ,  the second-order Polyakov string [13], and rod, 
plate and shell theories from elasticity [SI. In a later paper, we hope to explore some 
of these variationai probiems in more depth. 

The invariants and symmetries associated with a problem (not only variational 
problems, but also differential equations, control systems, etc., cf. [6]) most 
naturally arise through the solution t o  the fundamental equivalence problem, which 
is to recognize when two such problems can be transformed into each other by a 
suitable change of variables. In the early years of this century, Elie Cartan 
deveioped a powerhi method, now known as Cartan's method of equivaience, 
which can explicitly solve such equivalence problems. In particular, necessary 
sufiicient conditions for equivalence can be given in terms of the fundamental 
invariants associated with the problem. Cartan applied this method to several 
specific equivalence problems from the calculus of variations, cf. [2,3]. While almost 
all subsequent research has mostly dealt with first-order Lagrangians, the impor- 
Lance oi higher-order Lagrangians in  iniegrabie noniinear evoiuiion equaiiuns and 
relativity led us to a more detailed study of thc equivalence problem for 
higher-order Lagrangians from the point of view of Cartan's equivalence method, 
with particular emphasis on novel phenomena which do not occur in the first-order 
case. 

This is the third in a series of papers devoted to  this topic. In part I [ll] we 
JIIUWGU LIldl  LIIG ry"r*olcrrcG yluvlsrrl LVL dll I L I I - U I U G L  LdgLdLlg,ldll 111 'luy LIUIIIUGL U, 

independent and dependent variables, with or without the addition of a divergence 
term, can be formulated as a Cartan equivalence problem [2,6], on the rth-order jet 
bundle J'(Rp, W), i.e. the space coordinated by the independent variables, 
dependent variables and their derivatives up to order r ,  cf. [12]. This led us to 
discover that the Euler-Lagrange equation (which is of order 2r for a non- 
A ~ ~ ~ ~ ~ ~ - + ~  I an.-nniqn\ ic =,,+ tho --I., rl;aprpn+ini nn..QtiAn .,co,,&.+o~ in.rmri3nti., +- 
the variational functional, contrary to a commonly believed 'folklore' theorem. 
Indeed, we showed that, for a generic non-degenerate rth-order Lagrangian L, 
there exist mth-order differential equations invariantly associated with L for any 
r < m < 2r. ' In contrast to the Euler-Lagrange equation, these new invariant 
differential equations are all nonlinear in the Lagrangian. This property is confirmed 
by 2 !heerem af Anderrnn [I], r?z!ing thi? the En!er-Lzgrzr?ge eqcatio!! is the an!y 
differential equation depending linearly on the Lagrangian which is invariantly 
associated to the Lagrangian. Thus, in the case of a higher-order Lagrangian, the 
Euler-Lagrange equation is but one element of a wide array of differential 
equations invariantly associated with the variational problem. 

Our aim in this paper is to  construct some explicit examples of these new 
i~vzrizn! differential epations. We shz!! concentrate on the firs! non-trivia! case, 
which is that of a non-degenerate second-order particle Lagrangian on the line, and 
consider fibre-preserving transformations, point transformations and, most gen- 
erally, contact transformations in order. (See theorems 7-9 for the explicit form of 
the new invariant equations, and examples 10 and 11 for explicit formulae for a couple 
of particular variational problems of physical interest.) We shall first solve the 
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equivalence problem for such Lagrangians under the pseudogroup of fibre- 
preserving transformations, using Cartan's method of equivalence [ 2 , 6 ] ,  The 
inductive method introduced in [lo] will then be used to solve the equivalence 
problem for these Lagrangians under the larger pseudogroup of point transforma- 
tions and also to recover Cartan's solution [3] of the equivalence problem under the 
pseudogroup of contact transformations from our solution of the fibre-preserving 
equivalence problem. The inductive approach has the advantage of providing fairly 
compact, explicit expressions for the invariants and the invariant coframe given by 
Cartan in his intrinsic solution of the contact equivalence problem. The proofs are 
straightforward applications of the results of part I and of the method of 
equivalence, and we shall just outline the important steps in our presentation here. 
The final results will be stated in a form which will make them accessible to those 
readers who are not familiar with the method of equivalence. 

Our knowledge of the explicit parametric forms of the invariant coframes for the 
three equivalence problems will enable us to construct a large number of 'derivative 
covariants' associated with a (suitably non-degenerate) second-order Lagrangian. As 
defined in part I, for a second-order Lagrangian, an nth-order derivative covariant is 
a function, depending on the Lagrangian and its derivatives, defined on the space 
JZ(R, R). but whose transformation rules are the same as those for the nth-order 
derivative of the dependent variable U under the given pseudogroup (fihre- 
preserving, point or contact transformations). (See (2.21) and the subsequent 
discussion for the simplest example.) Knowledge of the explicit parametric formulae 
for third-order derivative covariants will enable us to readily construct third-order 
ordinary differential equations which are invariantly associated with the second- 
order Lagrangian under the pseudogroups of fibre-preserving transformations, point 

formulae for these invariant ordinary differential equations are derived under a 
non-degeneracy hypothesis, an argument utilizing analytic continuation will allow us 
to conclude that the equations are in fact invariant for all Lagrangians. 

A particular third-order derivative covariant for the contact equivalence problem 
will be interpreted geometrically in terms of the fundamental integral invariant of 
Ule ll"11 a . D I " c L " L c "  1111.1 ,,.e D"l"Ll"l l0  " I  ,*.e ~ " 1 c ' - ~ a & ' a " ~ c  C'1YILL.".., "a,L,C'y ,115 

PoincarB-Cartan form of the Lagrangian [6 ,9 ] .  We produce an explicit invariant 
embedding L of JZ(R, R), which is the jet bundle of definition of the Lagrangian, 
into J3(R, R), which is the jet bundle on which the PoincarB-Cartan form lives, 
such that the pull-back of the PoincarC-Cartan form under L is an invariant form on 
Jz(R, R). Similarly, higher-order derivative covariants enable us to geometrically 
relate general higher-order invariants of the variational problem, which live on 
Jz+*(R, R), k > 0 ,  to second-order ones, living on Jz(R, R). 

However, while we have a fairly satisfactory geometrical interpretation of our 
new invariant differential form in terms of the PoincarC-Cartan form, the problem 
of assigning a physical or mathematical interpretation to the new invariant 
differential equations remains open. From a mathematical point of view, these new 
equations shoo!d a!so p!ay a significant role since the Poincare-Cartan fonn is 
effectively used both in the formulation of Noether's theorem and in the field theory 
of strong minimizers. We also believe that the solutions of any differential equation 
invariantly associated with a physical variational problem should themselves be of 
physical interest. We are continuing our ongoing investigation into these tantalizing 
problems. 

L,a,,~,u ,,,, oi, __^. ..--. ..:-.:..-I.. .-x ---.--. I .̂ _. c ̂ --.I :--. *.LL I &L. 
l l lub l  IcsULLLrvC.ly, UL CUIIIaGL L1~llSlUIllldUUllb. AllIlUUgn .---A ___^. :--- 
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2. Equivalence of second-order particle Lagrangians on the l i e  

The basic methodology introduced in part I [11] for constructing the invariant 
differential equations associated with a variational problem requires the solution of 
the equivalence problem for the corresponding Lagrangian as obtained by applying 
Cartan’s method of equivalence. In this paper, we specifically consider the case of a 
second-order particle Lagrangian on the line. Thus, we have a variational functional 
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2 [ u ]  =I, L(x, U, U’, U”) dx (2.1) 

where U =f(x) is a scalar-valued function of the scalar variable x .  The Lagrangian 
form 

(2.2j 
is a one-form defined on the second-order jet bundle J 2 = J z ( R ,  R), which is 
endowed with local coordinates x ,  u , p = u ’ ,  and q =U”. (Since we are solely 
interested in the case of variational problems on the line, we shall denote the 
corresponding jet spaces J*(R, R) by simply Jk throughout.) We shall assume that 
all the differential forms and maps we consider are smooth (C”), and restrict our 
attention to a domain Q c J ’  where the Lagrangian L satisfies the basic non- 
degeneracy conditions 

L ( X ,  U ,  p ,  q j  & 

L(x, U, P, 4 )  + 0 
L&, U? P? 4 )  + 0 
L,,(*, 4 P, 4) + 0 (1, U, P. 4 )  E Q 

where the subscripts on L denote partial derivatives. 
The Euler-Lagrange equation associated with L is 

E ( L )  = Lu - Dx(Lp) + Df(L,) = 0 
where 

(2.3) 

denotes the usual total derivative operator, with r =U”’ and s =U””. Under the 
non-degeneracy assumption (2.3), the Euler-Lagrange equation (2.4) is a fourth- 
order differential equation, so E(L)  is defined on J4. We recall the definition of the 
canonical ‘momentum‘ 

D I I \ = I  - n l r  \ (2.6) \-I -P - X \ - q /  

(cf. [7]), which is defined on J 3 ,  and appears as one of the coefficients of the 
Poincare-Cartan form, cf. [9] and (3.30) below. 

The equivalence problem for a variational functional given by (2.1) has been 
solved by Cartan [3] in the case of the pseudogroup of contact transformations, i.e. 
maps 

whose prolongation Y: Jz+ J z  preserves the contact ideal: 
.f = Cp(& U, P )  1s = W(X, U, P )  p = X ( X >  U, p )  (2.7) 

Y*(dLi-pd.t)=Al(du-pdX) 
Y*(dp-qd.t)=Az(du-pdx)+~3(dp-qdr) (2.8) 
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where A,, and A3 are real-valued functions on J z .  In  this section, we shall also 
consider the more restrictive cases of equivalence under the pseudogroup of 
fibre-preserving transformations, 

.i = 9 ( x )  Ii = V ( X ,  U) (2.9) 

i = 9(& U )  li = V ( X ,  U) (2.10) 

or the pseudogroup of point transformatiom 

both of whose prolongations to J2 also satisfy the contact conditions (2.8). Two 
Lagrangians are equivalent under a contact transformation (2.7), (2.8) if and 
only if 

Y*(L df) = L & + a ( d p  - 4  dr )  + p(du - p  dr)  (2.11) 

where (Y and ,¶ are real-valued functions on Jz. For point transformations, (I = 0, 
while, for flbre-preserving transformations, (Y = ,¶ = 0, and the Lagrangian form 
L dr is invariant. 

We first need to formulate the equivalence problems for the variational problem 
(2.1) as Cartan equivalence problems, that is, as local equivalence problems for 
suitable G-structures. According to part I, to place the problem into a form 
aiiieiiab;e io &iaii’s =&h&, we 
one-forms 

take the ‘jre wframe on j 2  by the 

(2.12) 

The relevant structure groups are given by the following subgroups of GL(4, W): 

(2.13) 

The diagonal entries are equal due to the scaling of the coframe (2.12). According 
to part I (compare with (2.8) and (2.11)), the two equivalence problems can be 
reformulated as follows: 

Theorem 1. Let L(x, U ,  p ,  q )  and L(i, Ii, p ,  q )  be non-degenerate second-order 
Lagrangians. Let w = [wlr w2, w3,  w,]’ and 6 = [al, 02, 03, &IT be column 
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vectors whose entries are the one-forms representing the base coframes given by 
(2.12). Then L and are equivalent under a fibre-preserving (K = l ) ,  point (K = 2) ,  
or contact (K = 3) transformation, if and only if there is a (local) diffeomorphism 
Y: J2+ J 2 ,  such that 
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where g is a G,-valued function on J 2 ,  K = 1, 2, 3. 

Let us begin our discussion of the solution to these equivalence problems with 
the fibre-preserving problem. A straightforward application of Cartan's method of 
equivalence to the equivalence problem defined by the base coframe (2.12) and 
structure group GI in (2.13) will lead directly to a coframe which is inuariunfly 
associated wirh the Lagrangian L under the pseudogroup of all fibre-preserving 

'Scalar invariants, whose functional interrelationships provide the complete necessary 
and sufficient conditions for equivalence. To keep our presentation as short as 
possible, we will assume that the reader has a basic familiarity with the mechanics of 
the equivalence method of Cartan, as discussed in [6, lo]. Using the first structure 
group G, and base coframe (2.12) we introduce the 'lifted' coframe 

!ransffirmatiQns. Moreover3 the a_ssQcia_!ed_ structure quatifigs w g  provilje erp!icit 

El = a lwl  j2 = a z o 1  + a,w2 
53 = 0 3  54=u5w1 + a , w 2 t a l w , + a , w 4 .  

(2.14) 

The equivalence algorithm will, if possible, provide explicit formulae for the group 
parameters ai in terms of the variables (x ,  U, p,  q ) ,  the Lagrangian L and its 
derivatives, so that the resulting one-forms will be invariant under any prolonged 
fibre-preserving iransformaiion. i n  ihe presrni probiem, one of the forms, 5, = 
L dx, is already invariant but, to apply the full Cartan method, one needs to pin 
down the other three members of the full invariant coframe. 

According to Cartan, the way to determine the desired formulae for the group 
parameters is to make use of the invariance of the exterior derivative d under 
pull-hacks. Computing the differentials of the lifted one-forms (2.14) will lead us to 
lllvallalll L"IKLI"I ,~  rrrvvrvrrrg ,,IC Y a l l a V I C b ,  UIC LagL'illgla,, allu 11s U G I I " d L I V S > )  allu 

the group parameters. We are free to  normalize these invariants in a convenient 
manner, and thereby determine the required explicit formulaes for (some of the) 
group parameters. Iteration of this method, known as 'absorption of torsion and 
normalization of group parameters', will, in most cases, lead to  the required 
formulae, and reduce the problem to that of the equivalence of coframes or {e)- 

Thus, we begin by computing the differentials of the one-forms (2.14); these are 

: :--. c ..--. : ,..:-- .L- AL.. r ^^_^_ -:-_ ^__I :.̂  A--:.."&: ^ _ A  

r+-..-t..mr ... hara +ha r~l..t:nn :c .x,o11 Lnn..in 
lllycLyLcl, &.... L".V..",, .I --.. ...." -.., cf. [ 2 , 5 , ? 0 ] .  

found to be of the form 

dEl = a, A Cl + a1 

dE3 = a3 

dE2= a2 A 5i+  ai A 5 2 +  0 2  

dE4= A 51 4- a6 A 5 2 f  A 6,+ ai A 5 4 +  0 4  

where a,, a2, asus, ab and al form a basis for the right-invariant one-forms on the 
Lie Group GI (the Maurer-Cartan forms), and where 
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are the corresponding ‘torsion’ terms. In the absorption part of Cartan’s procedure, 
in order to deduce scalar invariants, we replace each one-form mj by an expression 
of the form ‘y, + E zj&, and choose the functions zjk so as to make as many of the 
torsion coefficients rijk vanish as possible. In our case, the unabsorbable torsion 
coefficients are the wnstants 

rlu = -1 TI24 = TI34 = T3l2 = r314 = T324 = 0 TZ4 = 1 
- - 1 _ L -  _I ---- A . - . :  :.-A. anu mc group-uqxmucrii Iuvananis 

a:L, - a,a2LL, + (a2a6 - a,a,)LZL, 
a:L r313 = LL, 

a1 
r2= = -t334 = -. 

Here 
- a  a a 

ax au ap 0, = - + p -+ q -  (2.15) 

denotes the J 2  truncation of the total derivative operator (2.5). By our non- 
degeneracy assumption (2.3), L, is not zero, so we can normalize these group- 
dependent invariants to take the constant values 1, 0, 0 and 0, respectively, by 
setting 

L,-2O2 DxL 
a6 = Lp a, = +- L. 

“’=L LL, L2 
a1 = LL, (2.16) 

The normalizations (2.16) have the effect of reducing the original Lie group G, to a 
one-parameter subgroup, with a2 the only remaining undetermined parameter. 

In the second loop through the equivalence procedure, we substitute the 
expressions (2.16) for the normalized group parameters into the formulae for the 
lifted coframe (2.14), and recompute the differentials. The resulting non-constant 
unabsorbable torsion coefficients provide the two absolute invariants 

LL,, i,i,, - i,i,, 
G L; 

r2= = TIl4 + 1 = - ~ ‘ t l l 2  = (2.17) 

and the group-dependent invariant 

a2(2LL,, + L:) + L ; D ~ L ~  - L,L,,D,L - L,L; - LL,L,, 
LL; = = - 

At  this point, the equivalence problem splits into two branches. If the additional 
‘non-degeneracy’ condition 

ZLL,, + Lz, # 0 (2.18) 

holds, then we are in the branch of ‘generic’ Lagrangians. The reader can check that 
condition (2.18) is invariant under fibre-preserving transformations. The Lagran- 
gians for which the left-hand side of (2.18) vanishes identically, i.e. those of the 
form 

L = (A@, U ,  p ) q  + B(x,  U ,  P))” (2.19) 
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where A and B are functions on J',  lead to a prolongation in the implementation of 
Cartan's equivalence procedure. We shall leave these particular Lagrangians aside 
for the time being, and concentrate on the generic case. We thus assume (by 
possibly shrinking OUI domain) that (2.18) (and (2.3)) hold everywhere in a, and so 
we can normalize the torsion coefficients tIj3 and r223 to be zero by setting 
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L,L, ,D~L - L',D~L, + L,L; + LL,L, 
a, = 2LL,, + L', (2.20) 

We have now eliminated all the group parameters, so that an invariant coframe is 
determined from (2.14) with the group parameters taking the prescribed values 
(2.16) and (2.20). Before formulating the resulting theorem, we introduce some 
further notation that will effectively simplify the coframe, and lead eventually to the 
explicit formula for the promised invariant equation. 

Consider the invariant form &'A. Inserting (2.16) and (2.20) into (2.14) shows that 
it has the explicit formula 

L.(du - p  d r )  + L,(Q - 
L 

dr) + L,(dq - RL dr) 
5 4  = 

where the function 

(2.21) 

plays a particularly important role. (Note that the denominator of R does not vanish 
owing to the condition (2.18); indeed, according to (2.16) and (2.20). the group 
parameter a7 has been normalized to be a7 = L,RL/L2.) Since E4 is, by construction, 
an invariant one-form, according to proposition 16 of part I [ll, p 3861, the function 
R is a third-order derivative covariant which is invariantly associated (under 
fibre-preserving maps) with a non-degenerate second-order Lagrangian L.. This 
means that R transforms in exactly the same way as the third-order derivative r = U"' 
does under fibre-preserving transformations. In order to give this important concept 
a more concrete form, consider a fibre-preserving transformation (2.9). Its prolon- 
gation to J 3  has the form 

where the functions ,y, m and p can be explicitly written in terms of cp, I$ and their 
derivatives using the chain rule from calculus. 

Proposition 2. If a fibre-preserving transformation (2.9) maps the Lagrangian L to 
the Lagrangian i, then the corresponding functions RL and Ri are related by the 
same transformation rule, 

(2.23) R&, E ,  p ,  4) P ( X ~  U, P, 4, R&, U, P, 4 ) )  

as the third-order derivatives r and i as given by (2.22). 

The proof of proposition 2 follows from the invariance of and proposition 16 
in part I,  although it can also be proved directly by a long calculation using the 
explicit formula for R and for p. Since the transformation rules for R and the 
third-order derivative r are the same, we can invariantly replace third-order 
derivatives r in any expression by the derivative covariant R ;  the resulting 
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expression, which only involves second-order derivatives, obeys the same transfor- 
mation rules as the original one. For example, the third-order truncation of the total 
derivative operator can be so changed to yield an operator 

- a a  a a a 
D: = D, + R - = -+ p- + q - + R -  

aq ax au ap aq (2.24) 

which is a vector field on Jz .  The transformation rules for D: are the same as those 
for Dx, and hence permit us to readily construct a whole hierarchy of derivative 
covariants. 

Proposition 3. If Q,(x, U, p, q) is any nth-order derivative covariant associated with 
a non-degenerate Lagrangian L, then e.+, = D:(Q.) is an (n + 1)th-order deriva- 
tive covariant. 

In particular, we can start the sequence of derivative covariants with U itself, 
which is trivially a zeroth-order derivative covariant: 

U P = W u )  4 = W P )  R = D X q )  S = D : ( R ) .  . . . (2.25) 

The nth term U("'= (0:)"~ in this sequence is an ntb-order derivative covariant: a 
function just defined on .I*, but which transforms in exactly the same way that the 
nth derivative U(") does, i.e. an equation analogous to  (2.23) holds. 

Replacing higher-order derivatives of U(") by the corresponding derivative 
covariants U'"' in the hierarchy (2.25) allows us to replace any function defined on 
J", n > 2, by a counterpart defined on J 2  depending only on at most second-order 
derivatives of U, but which transforms in exactly the same way as the original 
function does under the pseudogroup of fibre-preserving transformations of the 
Lagrangian. Important examples are the modified J z  Euler-Lagrange expression 

(2.26) 

which is obtained from the usual Euler-Lagrange equation (2.4) by replacing r by R 
and s by S, as given in (2.25), wherever they occur. Furthermore, we have already 
encountered the modified J z  momentum 

E*(L)  = L. - D:(L,) + D:'(L,) 

P*(L) Lo - D:(L,) (2.27) 

(cf. (2.6)); indeed, a short calculation using (2.21) and (2.24) shows that a2 = P * ( L )  
is an equivalent form for the normalized value (2.20) of the group parameter a2. 

With these in hand, we can at last state our solution to the fibre-preserving 
Lagrangian equivalence problem. 

Theorem 4. Let L(x,  U, p, q )  be a non-degenerate Lagrangian satisfying the 
additional condition (2.18). The coframe on J 2  given by 

5 ,  = LL,(du -p dr) 
E2 = P'(L)(du -p dr) + L,(dp - q dr) 
E3=LdX 

(2.28) 
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where RL and P*(L)  are given by (2.21) and (2.27), is invariantly associated with L 
under fibre-preserving transformations. That is, a diffeomorphism Y: J2+ J 2  solves 
the fibre-preserving equivalence problem if and only if it satisfies 

N Kamran and P J OIuer 

YYEJ = 5; i = 1,. . . , 4 .  (2.29) 

in other words, under the nondegeneracy assumptions (Z.3j and (Z.iSj, the 
coframe (2.28) determines an (e}-structure on J 2  whose automorphisms are in 
one-to-one correspondence with the fibre-preserving symmetries (self-equivalences) 
of the Lagrangian L. (There also exist corresponding invariant coframes for 
Lagrangians of the form (2.19) which require prolongation, but we will not need 
their explicit form in this paper.) 

1 1 1 ~ :  ~qurvarcrr~c yruurc~rr IUI ~ r j - s u u u u i r s  118s a wa-Knuwn su1uiiun LO, 141 

based on the study of its structwe functions obtained by differentiating the invariant 
coframe. In our case, the structure equations for the coframe (2.28) have the form 

-- ..--I.,,.- f-_ r - 1  .̂-..A___̂  ̂ L^^ .... .,,._.~~~_ .-a..-:-- r< .., 

d5,=Ii  51 A 52- (12 f  1)51 A 5 4 - 5 2 A  53 

d& = I3 5, A c2 + r, 5, A z3 + :s El :\ Z4 ~ l2 g2 i\ .g4 t g3 A Z4 
(2.30) 

d53=-53A 5 4  

d54 = 16 51 A 53 + 17 52 A 53 f 18 5 3  A 54 .  

The coefficients of the invariant two-forms on the right-hand sides of the structure 
equations are known as the structure junctions for the jej-structure given by  [2:28j, 
and can be written concisely using the covariant derivatives associated with the given 
coframe. These are defined by the formula 

Explicitly, 

L 
F E ,  = - F,. 

Le 

(2.31) 

(2.32) 

(Here a(L, F ) / a ( q ,  p) = L , c  - LpFq denotes the usual Jacobian derivative.) The 
fundamental invariants can then be shown to be expressed by the following 
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formulae: 

P*(L)* - P*(L)L, + L L E*(L) 
L ~ L :  L ~ L ,  

P , I p  - 

(2.33) 

.E4 

The most interesting invariant is 14, which provides an 'invariant 1' version of the 

The invariants 4 and their covariant derivatives li,E,lj,E~,E,, etc., give the basic 
differential invariants of the Lagrangian L under fibre-preserving transformations, 
and are used to effect the complete necessary and sufficient conditions for 
equivalence. We refer the interested reader to [6,10,14] for a general discussion. In 
particular, if m = m(L)  denotes the number of functionally independent differential 
LII*'uLLIIIIJ, L L l C l l  UlC Jy"L1L1cLLy gjluup "L L U G  YaLlallullal pLuu'cL1L, lrraarrrrrg L'lC group 
of all fibre-preserving maps which leaves it unchanged, is a (local) Lie group of 
dimension 4 - m. (The particular Lagrangians (2.19) requiring prolongation can, in 
special cases-e.g. A and B constant-admit a five-dimensional symmetry group, 
which is the largest dimension allowed for a non-degenerate second-order Lagran- 
gian.) Finally, note that the non-degeneracy condition (2.18) can be stated in 
invariant form as just I, # -1/2. 

Turning to the other two equivalence problems, we will use the inductive method 
of [lo] to construct a coframe invariantly associated with the Lagrangian L under 
point or contact transformations. In the case of point transformations, since the 
structure group GI of the fibre-preserving problem is a subgroup of the structure 
group Gz of the point transformation problem, instead of working with the lifted 

fibre-preserving invariant coframe (2.25). Therefore, we introduce the adapted lifted 
coframe 

r ..,.- ,.__.__. :._ .....!.&->~-~.A.~ r ,  GUlCr-LdgraUgC CqUdUUn a S S U C l a W U  WlIn L . 

*I.,." .I.̂ .̂.__ ,...... ---..- -6 +L^ ..--:".:--"I -- -LL- .L. 

cnframe bared on the nrigina! base coframe (2.9) we sho??!d rathpr '!ift' 

'11 =biEi 
'IS= bsEi + 53 

0 2 =  b2Ei + bi52 

0 4 =  b,Ei +- bc.52 + b753 f b1E4. 
(2.34) 
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We now apply the Cartan algorithm to the equivalence problem determined by the 
lifted one-forms (2.34). Thus, we begin by computing the differentials 
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d ' I i=BiA' I1+8i  

d'13=83 A ' I1 + 4 
dq+= 8s A 'I,+ 8 6  A '12f & A 'I3 + 81 A ' I4+  6 4  

d'Iz=8z A ' I1 + 81 A 'I2 + 6 2  

where j3,, Bz, p3, B5, b6 and 8, form a basis for the right-invariant one-forms on the 
Lie group G,, and where the new torsion components have the form 

6; = c ?ijkqj A ' I k  i = l , .  . . , 4 .  
i ,k 

We now briefly indicate the unabsorbable torsion components, the chosen nor- 
malizations, and the group reductions resulting from the normalizations, arising in 
each loop of the equivalence method for this problem. 

Loop 1. 

z,,, = zl14 - zzz4 = 1 
z,,, = 0 b f =  -be 

2113 = z223 

b, = 1 

bl= b6 - 262. 

Loop 2. At this stage, an additional non-degeneracy condition must be imposed on 
the Lagrangian in order not to have to prolong the problem, namely 

(2.35) 

(Of course, one of these factors has already been assumed to be non-zero according 
to (2,18).) We note that this condition is invariant under the pseudogroup of point 
transformations. The Lagrangians for which the left-hand side of (2.35) vanishes 
identically, which require prolongation, include our earlier special Lagrangians 
(2.19), as well as Lagrangians of the form 

(2.36) 

where A and B are functions on J'. Note that a Lagrangian of the form (2.36) can be 
transformed into one of the form (2.19) under the 'hodograph transformation', 
which interchanges independent variable x and dependent variable U. Under the 
condition (2.35), the following unahsorhahle torsion terms can be normalized: 

(1  + 21,)(2 + I,) # O  i.e. (LL,, + 2L;)(2LLq, +I,:) # 0. 

L = (A@, U ,  p ) q  + B(x,  U ,  p))'" 

z,,z = 0 be= -1, 

= 0 b2=  -(l+&)Il" 

where I,, I,, are the additional fibre-preserving invariants 

11 I 19 11 

lo - 1 + 21, - (2  + 1,)(1 + 21,) ' 
I$,=- 

2+1, 
(2.37) 

(2.38) 



Equivalence of higher -order Lagrangians 613 

This completes the equivalence procedure for a Lagrangian satisfying the strength- 
ened non-degeneracy condition (2.35). We summarize the result as follows. 

Theorem 5. Let L be a non-degenerate Lagrangian satisfying condition (2.35). The 
coframe on J z  given by 

01 = 51 

(2.39) 

0 4  = 111 5' - 5 5 2  + 110 53 + E4 
is invariantly associated with L under the pseudogroup of point transformations, 
that is, a diffeomorphism Y: J z + J z  solves the point transformation equivalence 
probiem if ana oniy if it satisfies 

W i i i )  = v i  i = 1,. . . , 4 .  

It is now straightforward to write the explicit structure equations and scalar 
invariants associated with this coframe, and thereby deduce analogous necessary and 
sufficient conditions for equivalence of Lagrangians under a point transformation. 
However, this will not be essential for our purposes, and so we omit the complicated 
formulae here. 

A similar induction starting again with the fibre-preserving invariant coframe 
produces the invariant coframe for the contact equivalence problem. (One could 
also start with the point transformation invariant coframe instead). Rather than 

preserving invariant 
L.8.L LL. : ___. L^_ :..-A r L ^  e^^, -,."..,A n-c..- rL^ fL_^ 
D ~ I ~ V O U I  LIK L ~ S U ~  airy L U L L I I C L ,  wc JUX >Laic LUS iiiiai IC>UL_ ucjliiici LUG I IVIF-  

L~(LL, , ,  + ~ L , L , , ) ~  + ~L'L:,  
= (Z2,E,  + 21: + 21,)2 + 21: = . (2.40) 

L: 
To avoid prolongation, we must require the non-degeneracy condition 

I1*+0; (2.41) 

again, this condition is invariant, this time under all contact transformations. (This is 
precisely the same as Cartan's condition kZ # & / 2 ,  cf. [3, p 13501.) The Lagrangians 
for which the invariant I , ,  vanishes identically, and the equivalence probIem must be 
prolonged, all have the form 

L(x, U ,  p ,  q )  =(A(., U ,  p ) q  + B(x, U ,  p))"(C(x, U ,  p ) 4  + N x ,  U ,  P))'" (2.42) 

where A, E ,  C and D are arbitrary functions on J' .  As shown by Cartan, these can 
all he transformed into our earlier class (2.19) by a suitable contact transformations, 
Assuming (2.41), we define the further fibre-preserving invariants 

(2.43) 
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Theorem 6. Let L he a non-degenerate Lagrangian satisfying the condition 112 # 0. 
The coframe on J 2  given by 
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51 = Km 51 

53 = & 51 + E2 f 53  

52 = Km (113 51 t 5 2 )  

( 2 . 4 )  

54 = Km (11s 51 + (21~3 + I!d)Ez + 11, €3 f €4) 

where K = rtl is an unspecified sign, is invariant under contact transformations. That 
is, a diffeomorphism Y: J 2 -  J 2  solves the contact equivalence problem if and only if 

Y*(Ei) = 5, i = l ,  _ _ .  , 4  

(See [lo] for a discussion of the ambiguous signs which arise in equivalence 
yruvrr;rrr3., 

The coframe (2.44) determines an (e}-structure whose automorphisms are in 
one-to-one correspondence with the contact symmetries of the Lagrangian. It is 
precisely the (e}-structure found by Cartan in his paper (see equation (A) on p 1348 
of [3]). We refer the reader to Cartan for a detailed study of this (e}-structure and 
geometric interpretations of the invariants, as well as a discussion of the cases 

..-,.L,--.", 

:equirixg p:G!3xga!ion. 

3. New invariant differential equations 

We showed in part 1 that, given an rth-order Lagrangian in p independent and 

equations invariantly associated with L. The only examples known prior to  this are 
the Euler-Lagrange equation for the critical point of the variational functional 
associated with L (which is an equation of order 2r for a non-degenerate 
Lagrangian) and its covariant derivatives. Thus, any invariant equation of order 
m < 2r associated with a non-degenerate rth-order Lagrangian is a new differential 

One easy way to form invariant differential equations of order r is by setting any 
of the invariant functions for the equivalence problem equal to a constant. Thus, for 
the fibre-preserving Lagrangian equivalence problem, any equation of the form 

q dependen! vzrizb!es, for 2.y m > r there exist mth-arder @ystc!Es Qf) diEc.re.tia! 

equation endawed with an intrinsic meaning for the variationa! prah!em; 

F(I, ,  Ij,,, I,,,,,, . . .) = C (3.1) 
is an invariant second-order differential equation which is endowed with an intrinsic 
meaning for any suitably non-degenerate ('generic') variational problem. In this 
section, we go beyond this simple approach, and construct further explicit examples 
of higher-order invariant equations, including a third-order ordinary differential 
equation which is associated in a contact-invariant way with any second-order 
particle Lagrangian on the line. These new invariant equations are much less 
obvious than those of the form (3.1), and have the advantages of (i) taking an 
explicit polynomial form, and (ii) therefore being invariant for all Lagrangians, not 
just the generic ones. They can also be written in an explicit solved form for the 
highest-order derivative. Finally, we give a geometrical interpretation of the 
contact-invariant third-order equation in terms of the Poincark-Cartan form 
associated with the Lagrangian. 
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In general, we say that a third-order differential equation 

FL(x, U, p. q,  r )  = 0 (3.2) 
is invariantly associated with the Lagrangian L (under fibre-preserving maps) if the 
prolongation '4' of any fibre-preserving transformation (2.9) maps the solutions of 
(3.2) to the solutions of the corresponding equation k ; i = O  for the transformed 
Lagrangian E ,  mutatis mutandis for point or contact transformations. According to 
part I, any such invariant equation (3.2) gives rise to a third-order derivative 
covariant when solved for the third-order derivative 

r = R(x ,  U ,  p ,  q )  (3.3) 
conversely, any third-order derivative covariant R leads to an invariant differential 
equation (3.3). 

Theorem 7. Let L(x, U, p,  q )  be any analytic second-order Lagrangian on the line. 
The ordinary differential equation 

Dl(LLz,) = LL&, (3.4) 
which is at most third order, is invariantly associated to L under fibre-preserving 
transformations. 

Proof. Assume first that the non-degeneracy conditions (2.3) and (2.18) hold. Using 
the explicit formula (2.21) for the resulting third-order derivative covariant R,, we 
find that (3.3) with R = RL simplifies to (3.4) once denominators are cleared. 
Proposition 2 then immediately implies the invariance of (3.3),  and hence of the 
simplified version (3.4).  

To complete the argument for non-degenerate Lagrangians, we need to look at 
the case when 2LL,, + L; vanishes identically, which means that the Lagrangian has 
the form L = (Aq + B)"3, cf. (2.19). In this case, the ordinary differential equation 
(3.4) is 

Note especially that this is a second-order equation. To show the invariance of ( 3 . 9 ,  
we use a direct calculation since we do not have the invariant coframe (2.28) at our 
disposal in this case. Consider a fibre-preserving map given by (2.9). Transforming 
the Lagrangian, we find that it has the same form (2.19), but with new coefficients A 
and given by 

A(qA, + 2pA + 2A, - B,) = 0. (3.5) 

*xxcpx - *X%x + 2PVXUcpX - P V u c p x x  +P2VUUcpX 
cpY x 

If we set 
F ( A ,  B )  = qA, + 2pA + 2A, - B, 

then it follows from (3.6), (3.7) and the chain rule that 

F(A. B )  = I # u 6  @ * ( F ( A ,  E)) 

(3.7) 
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which proves the invariance of (3.5) when A f O .  The special branch of singular 
solutions satisfying A = 0 is also invariant, which follows directly from (3.6).  This 
completes the proof. 

However, there is another way to prove directly the invariance of (3.4) without 
any further calculation. We already know that (3.4) is invariant for a generic 
Lagrangian, i.e. one that satisfies (2.3) and (2.18). To prove that it must also 
therefore hold for special Lagrangians, including those of the form (2.19) and the 
degenerate Lagrangians Aq + B, we argue as follows. Note first that (3.4) is an 
equation which depends on L and its derivatives in a polynomial manner. 
Therefore, it holds on an open subset of the space coordinated by these derivatives, 
and so, by analytic continuation, must hold for all Lagrangians. More explicitly, 
suppose we have a fibre-preserving transformation (2 .9) .  Let L and L be related 
Lagrangians, so, by (2.11), 

(3.8) 
using the notation in (2.22) for the prolongation of the transformation to J2, with x ,  
m depending on p ,  q, and the derivatives of q~ and V. Since (3.4) is invariant, we 
know that there is an identity of the form 
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L(x, U, P. 4) = %(~$(dx), V(X,  U), x k  U, P), m(x, U, P, 4)) 

D,(LL;) - LL,L, = A(&(LL;) - U&) (3.9) 
where A is some as yet undetermined factor, which holds for any pair of generic 
Lagrangians L and related by (3 .8) .  If we now substitute (3.8) into this formula, 
the result is an identity involving (i) the coordinates x, U, p and q (ii) the Lagrangian 

and its derivatives with respect to i ,  li, p and q, all evaluated at (2.9) and (2.22), 
and (iii) the functions q and and their derivatives with respect to x and U ;  
moreover, this identity is known to hold for generic Lagrangians L. The propor- 
tionality factor A is not hard to determine explicitly. Since, by the chain rule, 

(the ellipses indicating terms involving lower-order derivatives of U), (3.8) implies 

Therefore, the coefficient of r in D,(LL:) - LL,L, is 

2LL,L,, + L; = (2LLqLqq + Le) -3 f V 3  
qJx 

._. 
whereas the coefficient of r = VuF/q: in &(LE:) - LL,Lq is 

Therefore 

In particular, A only depends on cp and V ,  and hence (3.9) is a polynomial in the 
derivatives of L. Therefore, using analytic continuation, it is easy to see that if this 
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identity is true for a generic function L,  it must also hold for an arbitrary function 
L. In particular, (3.9) will hold for the functions which fail to satisfy (2.3) and 
(2.18), either at a single point (a ‘singularity’) or in an entire subdomain, and hence 
(3.4) is an invariant differential equation for these Lagrangians also. Thus, our 
previous explicit verification for the particular Lagrangians (2.19) was not really 
necessary (although it is reassuring). Indeed, the same argument shows that (3 .4)  
will remain invariant even for singular Lagrangians which fail to  satisfy (2 .3) .  This 
completes the proof of the theorem. 

The function R given in (2.21) is not the only third-order derivative covariant 
which can be constructed using these methods. Note that if f is any invariant for the 
fibre-preserving equivalence problem, then the one-form 

mod(du -p  dx, dp - q dx} (3.10) 

is also an invariant form and, hence, by the result of proposition 16 in part I, the 
function 

(3.11) 

is also a third-order derivative covariant. Thus, each choice of f leads to another 
invariantly defined third-order differential equation of the form (3.3).  In  fact, as we 
shall see below, third-order derivative covariants for the point and contact 
equivalence problems are constructed from the derivative covariant R in precisely 
this fashion, using particular choices of 1. 

Theorem 8. The third-order ordinary differential equation 

LZ 

L,  
R = R - - f  

(LL,, + 2L;)D,(LL:) = LLi(LL,),  (3.12) 

is invariantly associated with any second-order Lagrangian L(x,  U, p, q )  under point 
transformations. 

Proof. From theorem 5 ,  we know that the one-form 

L2 
q4 =2 [dq - (R - L, I,o) dx] mod(du -p  dx, dp - q dx) 

is invariant under arbitrary point transformations. Therefore, the function 

(3.13) 

which is of the form (3.11). is a third-order derivative covariant for the point 
transformation equivalence problem. The corresponding invariant third-order ordi- 
nary differential equation r = R can be written explicitly using (2.21), (2.33) and 
(2.37) for R and I,,,. This proves that (3.12) is invariant for a generic Lagrangian 
satisfying (2.3) and (2.35). The extension to completely general Lagrangians 
proceeds as in the proof of theorem 7. 

Theorem 9. The third-order ordinary differential equation 

L* 

L,  
R R --I,, 

Dr(L9L:L:,) + L8L,L~,L,,,Dx(LzL,,) = LsL,L~,(LsL,), (3.14) 
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is invariantly associated with any second-order Lagrangian L under contact 
transformations. 

Proof. The proof follows that of theorem 8. The invariant coframe element 

N Kamran and P J Oluer 

c4- rr2m [dq - (R mod{du - p  dx, dp -4 dx} 

as given by (2.44) produces the third-order derivative covariant 

L2 

L, 
R* = R - - 114 (3.15) 

for the contact equivalence problem. Using the formulae (2.21), (2.33), (2.40) and 
(2.43) for R and I,,, we find (3.14) to he the explicit form of the contact invariant 
equation r = R*. 

As in (3.11), we can add in invariant multiples of the coframe element c3 to 
produce yet more contact-invariant third-order derivative covariants, and yet more 
invariantly defined third-order differential equations. These all have the form 

L2 

L, 
r = R *  = R* -rr-m? (3.16) 

is any invariant of the contact equivalence problem. Similar remarks hold where 
for the point transformation case. 

Example 10. Consider the Lagrangian 

L ( x ,  U, U', U") = ?u"+f(u) 

U"" +f&) = 0 

on a domain where 8f lau #O. The Euler-Lagrange equation is given by 

while the third-order invariant equation (3.4) is given by 

D,[(:U"~ +f(u))u"] = 0 

or, in detail, 

(U'" +f(u))u"' + !u'u'y"(u) = 0. 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

We can, of course, integrate (3.19) once, leading to the second-order equation 

(?U"' +f(u))u" = k (3.21) 

for some constant k. Any common solution to the two equations (3.18) and (3.19) 
must satisfy the restriction 

(U'" +f(u))V2(c -f(u)) + :u'u'y"(u) = 0 

for some constant c. This shows that, generically, the invariant equation (3.4) will 
have solutions which are not solutions to the Euler-Lagrange equation. We remark 
that since (3.21) is autonomous, it can, by standard Lie methods [12], be reduced to 
a first-order differential equation, 

(!p2p'Z+f(u))pZp'2=k 
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for the derivative variable p = U ’  as a function of U, p = p ( u ) ,  the solution of which 
allows that to the original equation to be reconstructed by quadrature. 

Similarly, the equation (3.12) invariant under arbitrary point transformations 
takes the form 

(:U“’+f(U))D,[(fU’Q +f(u))u”’] = 0 (3.22) 

which has two distinct families of solutions: 

I u ” + f ( u )  = 0 or (?U”’ +f(u))u”’ = k. 

Finally, the equation (3.14) invariant under arbitrary contact transformations takes 
the form 

D,[($U”’+f(U))9U”’] = 0 (3.23) 

which can also be integrated once: 

($U”’ +f(u))u’” = k. 

Note the striking similarity of the fibre-preserving equation (3.19) and the contact 
invariant equation (3.23), the only difference being the exponent. This leads to the 
question as to whether other exponents besides 1 and 9 lead to invariant equations, 
but, as far as we can see, only these two exponents are admissible. 

Example If. The Korteweg-de Vries equation of soliton fame is a Hamiltonian 
system [12], but is not an Euler-Lagrange equation. However, it can be readily 
converted into one, cf. [U], by going to the potential form 

U,, - 12u,u, - U,,, = 0. 

Its stationary (time-independent) solutions are given as solutions to the fourth-order 
ordinary differential equation 

uf- + 12u’u” = 0 (3.24) 

which is the Euler-Lagrange equation for the Lagrangian 

L ( ~ ,  u p ,  = iu#a - 2u‘3. (3.25) 

The third-order fibre-preserving invariant equation (3.4) has two branches: 

up# = 0 or (2u”z + 4u‘3)u‘‘‘ + 3u~2urr2 - 12u’5 = 0. (3.26) 

The point transformation invariant equation (3.12) also has two branches: 

U” = 0 or (5u”* + 4u’3)(u’~2 + 2u93)u”’ + 12u‘zu”4 = 0. (3.27) 

The contact invariant equation (3.14) has three branches of solutions: 

+ 4u’3 = 0 or = 0 or 
(3.28) 

We have not been able to solve these complicated third-order ordinary differential 
equations (although, since they are autonomous, they can be reduced to second- 
order equations). In particular, their connection with soliton theory remains 
unexplored. 

(IOU”’ + 4 ~ ’ ~ ” ’ ”  + 3 9 ~ ” ~ ” ’  - 6 0 ~ ’ ~  = 0. 

It is a tantalizing problem to find the significance of these new invariant 
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differential equations. One particular geometrical interpretation which we now 
present is suggested by the results of part I1 of this series [9], where we showed that 
the PoincarC-Cartan from oc of an rth-order particle Lagrangian on the line, which 
is a one-form on J2'-', arises naturally as part of the invariant coframe associated 
with L by solving the equivalence problem on any jet bundle J'+* under contact 
transformations, provided k r - 1. Since we know from part I that there is a 
one-to-one correspondence between the solutions of the equivalence problem on I' 
and J'", 13 0, one expects that, by choosing an appropriate embedding L :I'+ 
JZr-1 , the pull-back &*ec of the Poincark-Cartan form to J' should be an invariant 
linear combination of the elements of the invariant coframe associated with L on J'. 
It is at the level of this embedding that the new invariant differential equations find a 
geometrical interpretation. 

We now make this explicit in the case of a second-order particle Lagrangian 
L(x, u , p ,  q )  under contact transformations. From (2.44), (2.43) and (2.28) we 
obtain the following expressions for the one-form f 3  on J2 associated invariantly 
with L (satisfying I,, # 0) under contact transformations: 
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C3 = L dr + (P*(L) + LL,lJi,)(du - p  dx) + L,(Q - dr).  (3.29) 

The PoincarC-Cartan form is the one-form 

o c = r , d r + P ( L ) ( d u - p d r ) + L , ( d p - q d r )  (3.30) 

where P(L) is the (ordinary third-order) momentum given by (2.6). 

Theorem 12. The contact invariant embedding L : Jz+  J 3  given by 

~ ( x ,  U, P, q )  = (x. U, P. q, R*(x, U , P ,  4 ) )  (3.31) 

where R* is given by (3.15), pulls back the PoincarC-Cartan from Oc on J 3  to the 
contact invariant one-form C3 on J2: 

l*oc= f 3  

Proof. From (3.29), (3.30) and the form of the embedding L, it is immediately clear 
that all we have to prove is the following equality: 

l*(P(L)) =P*(L)  + LLqIz114. 

p (L)  = L, - D&, - rLqq 

Now, from (2.6). (2.5) and (2.15), 

hence, according to (3.31), (3.15) and (2.27), 

L,L 

L, 
L*(P(L)) = Lp - DrLq - R'L,, = P * ( L )  +21i,. 

The proof is completed by recalling that I,= LL,,ILi, cf. (2.33). 

In order words, theorem 12 states that we can lower the order of the derivates in 
the Poincark-Cartan form so as to obtain an invariant form on the jet bundle on 
which the Lagrangian itself is defined by requiring that all the derivatives of order 
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higher than two which appear in the Poincart-Cartan form are replaced by the 
corresponding derivative covariants. 
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