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EQUIVALENCE OF DIFFERENTIAL OPERATORS*

NIKY KAMRANt AND PETER J. OLVER

Abstract. Two versions of the equivalence problem--determining when two second-order differential
operators on the line are the same under a change of variables--are solved completely using the Cartan
method of equivalence.
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1. Introduction. The basic equivalence problem to be treated here is to determine
when two second-order differential operators on the real line can be transformed into
each other by an appropriate change of variables. There are two different possible
interpretations of the notion of equivalence, depending on whether we wish to preserve
the differential expression corresponding to the operator or the Lie bracket between
operators. In this paper we treat both versions of the equivalence problem for second-
order operators on the line. The problems here are related to the more general
equivalence problem for second-order ordinary differential equations [4], [5], [11],
but are specialized by linearity. We employ the equivalence method of Cartan, which
gives necessary and sufficient conditions for equivalence. Although the simplest of the
possible equivalence problems arising in the study of differential operators, these
problems provide a good illustration of the power and ease of use of Cartan’s
equivalence method, which offers a straightforward algorithm for solving these and
other equivalence problems important in applications. Extensions to higher-order or
higher-dimensional operators can be readily done using the methods of this paper,
although the intervening calculations will, as a rule, become much more complicated.
In the proof of the theorem, we assume that the reader has a basic familiarity with
the Cartanequivalence method as explained, for instance, in [2], [3], [6], and [7],
although the reader can certainly understand the final results without all the intervening
machinery.

This paper originated in answer to a question raised by Levine [9], who asked
when a differential operator can be expressed as a bilinear combination of first-order
differential operators that generate a finite-dimensional Lie algebra. This problem has
applications to scattering theory in molecular dynamics and quantum chemistry.
Indeed, there are now a number of well-established methods for dealing with such
operators, where the calculation of eigenvalues, spectra, and dynamics is considerably
simplified. The companion paper [8] applies the results of this paper to solving Levine’s
problem completely.

2. Equivalence problems for differential operators. Consider a second-order
differential operator

(2.1) f(x)D2 + g(x)D + h(x),
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where f, g, h, are analytic functions of the real variable x, and D d/dx. If we
apply 9 to a scalar-valued function u(x), we obtain the expression

(2.2) 9[u]=fu"+gu’+hu.

In particular, we can look at the linear, homogeneous second-order ordinary differential
equation 9[u] =0, or the eigenvalue problem 9[u] Au, or the SchrSdinger equation
u, ig[u], in which 9 plays the role of the Hamiltonian.

We will be concerned with the problem of when two such differential operators
can be mapped into each other by an appropriate change of coordinates. It turns out
that two natural classes of transformations can be employed to change the differential
operator. Clearly, as far as the independent and dependent variables are concerned,
the appropriate pseudogroup consists of the fiber-preserving transformations that are
linear in the fiber variable u"

(2.3) p(x), a q(x)u.

The total derivative operators are related by the chain rule formula

1
(2.4) D D.

’(x)

In the first of our two equivalence problems, we identify the two differential
expressions 9[a]= 9[u] (cf. (2.2)), where

Y f(x) + g(x)+ (x)

is another second-order differential operator. The explicit formulae for the new
coefficient functions f, , h, in terms of the original coefficients f, g, h of 9, can be
determined using the transformation rule

1
(2.5) q(x)’

together with the chain rule (2.4). The first of our equivalence problems for differential
operators then amounts to determining conditions on the two differential operators
such that there exists a transformation (2.3) that maps one to the other according to (2.5).

The transformation rule (2.5) has the disadvantage of not preserving either the
eigenvalue problem or the Schr6dinger equation associated with the operator. For
instance, 9[u] hu does not imply 9[] h, since we are missing a factor of q(x).
To rectify this situation, we need to premultiply by q(x) and use the alternative
transformation rule

1
(2.6) 9 q(x) 9.

q(x)"

This transformation rule leads to slightly different formulae expressing the new
coefficients f, g, h, in terms of f, g, h. The transformations (2.6) enjoy the additional
property of preserving the standard commutator Lie bracket [9, ] 9. -. 9
between differential operators. The second equivalence problem is to determine condi-
tions on two differential operators such that there exists a transformation (2.3) mapping
one to the other according to (2.6).

For simplicity, we will explicitly denote the pull-back maps only in the statements of the theorems.
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We will solve both equivalence problems in this paper. Incidentally, if we try to
combine all the transformations (2.3), (2.5), (2.6) (for different functions q(x)), we
end up with the trivial result that all second-order differential operators are equivalent
under this largest pseudogroup.

To apply Cartan’s algorithm to either equivalence problem, we need to recast the
transformation rules (2.3), and (2.5) or (2.6), in the language of differential forms. The
appropriate space to work in will be the second jet space J, which has coordinates
x, u, p, q. Here p represents the derivative u’, and q the derivative u". The immediate
goal is to construct an appropriate coframe, or pointwise basis for the cotangent space
T*J2, that will encode the relevant transformation rules for our problem(s). The first
remark is that as long as u 0, the pseudogroup of transformations (2.3) is uniquely
prescribed by imposing the 1-form equations

(2.7) d= a dx,

(2.8)
aa au

+dx.u

Here c and/3 are functions ./2, whose precise form does not need to be specified in
advance. Indeed, the first equation implies that o(x), with o’, while the second
necessarily requires the linearity of the transformation in u, so that (x)u, with
/3 ,’/. Note that the restriction to u # 0, which means that we are restricting our
attention to either the positive or negative real u-axis, is inessential as far as the
differential operator itself is concerned. (Indeed, analytic continuation will extend our
results across the apparent singular subspace u--0.)

For the derivative variables p and q to transform correctly, we need to preserve
the contact ideal on ./2, which is the ditterential ideal generated by the pair of 1-forms
du-pdx, dp-qdx. In general, a diffeomorphism : j2_+j_ determines a contact
transformation if and only if

(2.9) dfi ff dg A du -p dx),

(2.10) d-gtd=tx(du-pdx)+ ,(dp- qdx),

where A,/x, u, are functions on j2. Equations (2.7)-(2.9) by themselves already constitute
part of an overdetermined equivalence problem on J2. There is an algorithm, due to
Caftan, to reduce this to an equivalence problem of standard form, but in our case,
we can do this by inspection. It is easy to see that the 1-form (du -p dx)/u is invariant,
so the identification

(2.11) dti-/ d)= du p dx
u

can replace both (2.8) and (2.9). The reader can check that the 1-form identities (2.7),
(2.10), (2.11), are equivalent to requiring that the transformation on jz be the prolonga-
tion of a point transformation of the special form (2.3), with the derivative variables
p, q, transforming correctly. Therefore, we take as the first three elements of our eventual
coframe the 1-forms

du-p dx
(2.12) ool dX, 0)2 0)3 dp q dx,

U

with the transformation rules

(’1 A0)1, a52 0)2, 0. B0)2 -t- C0)3, A, C # 0,
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where A, B, C, are functions on j2. This much of the coframe is the same for each
equivalence problem.. To complete the coframe, we need to supplement these 1-forms
with an additional 1-form, which will encode the action of the transformation rule
(2.5) or (2.6) on the differential operator itself.

In both cases, there is an obvious invariant function for the problem. For the
equivalence problem (2.5), the invariant is the differential expression (2.2), i.e.,

(2.13) I(x, u, p, q)= [u] f(x)q + g(x)p + h(x)u.

For the second problem (2.6), the invariant is slightly more complicated"

[u] f(x)q+g(x)p
(2.14) I(x,u,p,q)-- +h(x),

since we need to take care of the extra factor of
I(g, u, p, q) under the identification (2.5) or (2.6). We therefore take our final 1-form
to be the differential w4 dI, so that for the equivalence problem (2.5) we have

(2.15) o)4=fdq+gdp+hdu+{f’q+g’p+h’u} dx,

whereas for the alternative problem (2.6) we take

f g fq+gPdu+f’q+g’P+h’ dx.(2.16) 094=- dq +- dp- u----Z--U U U

In both cases, the four 1-forms to1, w2,093,094, provide a coframe on the subset

(2.17) 12" {(x, u, p, q) J21 u # 0 and f(x) 0}.

From now on, we restrict our attention to a connected component 12 c ll* of the subset
(2.17); note that on such a component, the signs off(x) and u are fixed. We require
only that the last coframe elements agree up to contact, i.e.,

th4 Dr02 + Et03 + (.04

We therefore define the structure group

A 0 0 0

! 1 0 ! "A,B,C,D,E", A’C#OG=
B C
D E

which happens to be the same for both equivalence problems, even though the two
coframes are different.

As a consequence of these preliminary considerations, we have successfully
encoded our equivalence problem in terms of a coframe, and have shown the following.

PROPOSITION 2.1. Let and be second-order differential operators. Let
{tOl, to, to3, to4} and {o31, a32,033,
and 12 of the secondjet space, given by (2.12) and (2.15) or (2.16), the choice of to4 and
4 depending on the equivalence problem under consideration. The differential operators
are equivalent under the pseudogroup (2.3) according to the respective transformation
rule (2.5) or (2.6) if and only if there is a diffeomorphism : 12 12 that satisfies

4

*(t5,) 2 gotoj, i= 1,..., 4,
j=l

where g= (gij) is a G-valued function on j2, and dp* denotes the pull-back map on

differential forms.
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To apply Cartan’s algorithm for this equivalence problem, we must "lift" the
coframes to the space j2x G. The lifted coframe takes the form

(2.18) 01 AtOl, 02=(.02, 03--B002+C003, 04--Do2-l-gto3d-t04,

where the coefficients A, B, C, D, E are now interpreted as coordinates in the structure
group G. We then have the standard reformulation of the equivalence condition of
Proposition 2.1.

PROPOSITION 2.2. Under the setup of Proposition 2.2, two differential operators
and are equivalent if and only if there is a diffeomorphism " 1)x G- 1 x G that
commutes with the natural left action of G, and maps the appropriate lifted coframe
elements to each other"

(2.19) *(0i) 0,, i-1,...,4.

3. Solution of the first equivalence problem. To keep our presentation as short as
possible, we will assume that the reader has some familiarity with the mechanics of
Cartan’s equivalence method as discussed, for instance, in [2], [3], and [6]. We will
solve both equivalence problems, beginning with the setup (2.5), corresponding to the
coframe element (2.15). The solutions are fairly similar intrinsically, although the
parametric formulae differ. We present this case in detail, and briefly indicate how the
other problem goes in the following section.

We begin with the lifted coframe (2.18), based on the base coframe (2.12), (2.15).
The basic tool in Cartan’s method is the invariance of the exterior derivative operation
under smooth maps, so webegin by computing the differentials dOi. They are found
to have the form

dO1 a ^ 01 + o’1,

dOE 0"2,

dO3 fl ^ 02 d- "g ^ 03 -" 0"3,

dO4 t ^ 02 -’}" e A 0 "q-0"4

Here a,/3, y, 6, e, form a basis for the right-invariant 1-forms on the Lie group G, and
the torsion terms take the form

oi Y’. "t’okO ^ Ok, i= 1,’" ", 4.
j<k

In the absorption part of Cartan’s process, we are allowed to replace each 1-form
a,/3, y, 3, e by an expression of the form a +Ez;O;, etc., where the functions z; are
chosen so as to make as many of the torsion coefficients ’k vanish as possible. In the
present setup we can readily "absorb" all the torsion components except

B+Cp 1 C E
"/’212 aCu 7’213 aCu’ 7"314- af’ 7"414- af"

These components are invariants of the problem. Since they depend on the group
parameters, the next step in the process is to normalize them to as simple a form as
possible through a suitable choice of the group parameters. There are two possible
normalizations for these torsion components, depending on r sign (f(x) u), leading
to two different branches for the equivalence problem. (However, as we remarked
above, as far as the differential operator itself is concerned, the division into two
branches is not essential, since we can always change the sign of u by restricting our
attention to a different connected component g/of the domain (2.17). It is nevertheless
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convenient to retain the sign through our analysis.) We normalize the torsion com-
ponents to 0, K1, 1, 0, respectively, by setting

(3.1) A O’1 B -0-2P C 0"2 .E 0.
u u

Here 0"1 +1 is an undetermined sign that must be left ambiguous (even with the
specification of K1), and 0"2 0"1" (sign f). (See [7] for a detailed discussion of these
types of signs.) The normalizations (3.1) have the effect of reducing the original Lie
group G to a one-parameter subgroup, with D the only remaining undetermined
parameter.

In the second loop through the equivalence procedure, we substitute (3.1) into
the formulas for the lifted coframe (2.18) and recompute the differentials. The unabsorb-
able torsion component z413 D can then be normalized to zero by setting D 0. Note
that we could have avoided adding in contact terms in our definition of 04, since tO4

turns out to already be an invariant form.
By normalizing the torsion components, we have managed to eliminate all of the

group parameters. This has had the effect of (a) reducing the structure group to the
identity, and (b) reducing the lifted invariant coframe to an invariant coframe on the
base space j2, known as an {e}-structure or local parallelism. The explicit formula for
the invariant coframe comes from (2.18), (3.1), and we have

(3.2)

du -p dx

03 0"2
f -P--(du -p dx) + (dp q dx)},U

O4=fdq+gdp+hdu+(f’q+g’p+h’u) dx.

Indeed, as the reader can check, these 1-forms do satisfy the invariance conditions

Oi 0i, 1, 2, 3, 4,

under the pseudogroup of transformations (2.3), (2.5). Applying the exterior derivative
to the invariant coframe elements, and re-expressing the resulting 2-forms in terms of
the coframe, we find that the structure equations for our problem take the form

dO1 1/201 ^ 02,

(3.3)
dO2 O1 A 03,

d03=-IO1 ^ 02-f-l(1JO1A 03-1-01A 04--1/202 A 03,

dO4 0,

where

(3.4) I fq + gp + hu, J 0"2
U 3 f_

P g)"
Because the coframe is invariant, the functions I and J are the fundamental invariants
of the problem. Note that we have recovered our original invariant (2.13) as one of
the torsion components in the structure equations (3.3).



1178 N. KAMRAN AND P. J. OLVER

The covariant derivatives F,o, of a function F with respect to the coframe (3.2)
are defined by expressing the differential of F in terms of the invariant coframe"

(3.5)

Explicitly,

(3.6)

dF= F,o 01-1I- F,0202-- F,0303 -t- F,0404

1

Here Dx denotes the differential operator

0 0 0 0
(3.7) Dx --x +pu + q--p + R--q
where

gq+ hp+f’q+ g’p+ h’u
(3.8) g

f
Note that if we differentiate the invariant equation I constant (which is the same as
the ordinary differential equation [u] constant) with respect to x and solve for the
third-order derivative r- u’", we recover (3.8). In this sense, Dx can be identified with
the total derivative operator on j2.

The covariant derivatives of any of the fundamental invariants (3.4), called the
derived invariants, are also clearly invariants. Since the differentials of I and J are of
the form

dI 04, dJ K1KO d1/2JO2-KlO3,
the only independent derived invariant is

K ,J,o, tCltr,x/l--ltxJ
(3.9)

3fp 1 2ff"-f’2 + 2f’g 4fg’-fq +4 ---P(f + g) + u
4f

(Note that K does not have an ambiguous sign.) We can continue differentiating to
deduce higher-order derived invariants; for example,

dK LO1 + (K --I)02- J03--04,
so we have one second-order derived invariant

L= K,o K1J,o,,o,-- cr,,/lfulOxK,
which we avoid writing out explicitly.

Given an { e}-structure as above, we define its rank to be the number of functionally
independent invariants (including all possible derived invariants). The order of the
{e}-structure is the highest-order derived invariant required to complete the indepen-
dent set of invariants. According to the standard Jacobian criterion for functional
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independence, the particular {e}-structure given by the coframe (3.3) will have rank
4 and order 2, provided dI ^ dJ ^ dK ^ dL O, whereby/, J, K, L are a complete set of
functionally independent invariants. Exceptional cases with lower rank (and lower
order) can occur if this wedge product vanishes.

To investigate the structure of the invariants in more detail, we proceed as follows.
Note first that sincef. u 0, the invariants I and J are always functionally independent.
We can eliminate p and q from the original equations (3.4):

f’-2g 2 4P 3f
u -’KlO’2J

u

gp + hu- I 2g2-f’g-3fh 2 rglul 1/ 1

f 3f U-- KIO’I’ 1fl3/2 +"
Substituting these into (3.9), we find that we can write

1 j2 3
K=a(x)u+- --I,

where

3 _g, 15gf’ 2f’2 292+_ h +(3.10) a
6f 2 f"

If the function a(x)= O, then K is a function of I and J. An easy chain rule argument
shows that in this case, besides I and J, there are no further independent derived
invariants. Therefore, if a 0, the rank of the {e}-structure is 2, and the order is zero.

Otherwise, if a does not vanish identically, we can take

K=a(x)u

as a new independent invariant, and compute its derived invariant:

-" / 01 O’14-/x/ K1b(x)IRI3/2-2jI22,
3

where

3a’f+ af’- 2ag(3.11) b(x) o5 341fa31
Note that b is an invariant that depends only on x. If b is constant, then I, J,/ form
a complete set of functionally independent invariants; the rank is 3 and the order 2.
Otherwise, for b not constant, we have an { e) structure of maximal rank, with I, J, K, b
comprising our four fundamental independent invariants. In this case, we complete
the solution to the equivalence problem by computing one final derived invariant"

b,o, o’1 ,/Ifulb’= c(x)lR
where

(3.12) c(x) rl ,/lf/alb’(x)
is also an invariant. In the case of an {e}-structure of maximal rank, the determining
function F for our equivalence problem is prescribed by re-expressing c in terms of b,
i.e., we write

(3.13) c(x)=F[b(x)].
Note that F may be a multiply-valued function.
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Example 3.1. Let us consider the case of a simple operator

(3.14) =DE+h(x)
of Sturm-Liouville type, i.e., f-1, g- 0. Such operators play a key role in quantum
mechanics, scattering theory, and the theory of the Korteweg-de Vries equation. Here

a(x) h(x),
so we have a structure of rank 2 if and only if h 0 and D2. As a result of our
construction, we deduce that a second-order differential operator (2.1) is equivalent
to the differential operator D2 if and only if

(3.15) 3ff"- 2f’2 + 5f’g -6fg’- 2g2 + 9fh 0.

Continuing, if h # 0, then

b=+/-
ihl/.

Therefore b is constant if and only if h(x) (cx + d) -2, i.e., we have either a translate
of the radial Laplace operator

(3.16) D2 k
-t- x-,

when b =-x/6/k 0, or D2+ k, when b 0. Note that k 0 can be scaled to 1.
Finally, in the case when b is not constant, then

hh,,-h2

C=
h

The determining function F will be found by writing

(3.17) h-/ h-
from which

F( t) ff:( t) - .
We note that the ordinary differential equation (3.17) can be solved explicitly by
quadratures, owing to the presence of an obvious two-parameter symmetry group of
translations in and scalings; see [10].

In essence, the collection of all the invariants and their derived invariants will
completely solve our equivalence problem, providing explicit necessary and sufficient
conditions for two differential operators to be equivalent under a transformation (2.5).
The following theorem is a consequence of general results on the equivalence of
{e}-structures [6], [7].

THEOREM 3.2. Let and be real-analytic differential operators. Define thefunction
a(x) by (3.10). If a O, then define the functions b(x), c(x) by (3.11), (3.12). Then
and are equivalent under a change of variables (2.3), (2.5) if and only if:

(i) a =- =-O, in which case both @ and are equivalent to the operator D2; or
(ii) Both a and t do not vanish identically and b b are constant, in which case

both and are equivalent to either the radial Laplace operator (3.16) or the operator
D + 1; or

(iii) Both a and do not vanish identically, both b and b are not constant, the
determining functions prescribed by (3.13) are identical, F F, and the equation b(x)=
b(.) has a real solution branch. (For complex equivalence, the last statement is
unnecessary.)
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The change of variables required to map one operator into the other is implicitly
given as the solution to the equations

(3.18) b(x) b(), ti()t7 a(x)u,

restricted so that the signs K1 -sign (f. u) and ffl sign (f. tT) agree: K1 ffl.
In fact, the connection with the operator (3.14) can be used to complete the

solution to the equivalence problem.
THEOREM 3.3. If is a second-order differential operator, then there is a transforma-

tion (2.3), (2.5) taking into the operator 12 +a(), where the potential a() is given
by the (relative) invariant (3.1 O) when q (x). Moreover, two differential operators
are equivalent if and only if their corresponding potentials differ by the rescaling and
translation group A 2a A + 6 ).

In other words, the equivalence class of a differential operator under (2.6) is
completely determined by its potential; moreover, two potentials are equivalent if and
only if they are rescaled translates of each other.

4. Solution of the second equivalence lroblem. In this case, we begin as before
with the lifted coframe (2.18), now based on the base coframe (2.12), (2.16). In the
first loop through the equivalence procedure, we are left with the unabsorbable torsion
components

B+Cp 1 C E
7"212 ACu 7"213 ACu’ 7"314- Afu’ 7"414- Afu

Again, there are two branches, depending on 1 sign f. Here the sign restriction is
more essential than in the previous equivalence problem, since we cannot change the
sign of f by a transformation of type (2.6). We normalize the torsion components to
0, 1, 1, 0, respectively, by setting

a (7"1 B --002P/, C 02N/I-, E 0,

where 001 is an ambiguous sign, and 002 0011. In the second loop through the
equivalence procedure, the unabsorbable torsion components 7"413 --7"312-- D can both
be normalized to zero by setting D 0. The final invariant coframe is now given by

rl dx

du-p dx
U

(4.1)

03= ’2"/--I { dp q dx P p dx }
04=/,/dq+gu dP +fqu+2gP du + {f’q +

The structure equations take a slightly different form:

dO =0,

dO2 0 ^ 03,
(4.)

dO3 -2J01 ^ 03 q- 01 ^ 04,

+h’}. dx.

dO4-- O,
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where

.oh(_l2g-f’+4Pf)(4.3) J
4/.j u /

is a fundamental invariant of the problem. Interestingly, the original invariant I given
in (2.14) does not appear among the structure functions of the adapted coframe.
Indeed, it is easy to see that it cannot appear even among the derived invariants of
the structure functions, since only the derivative h’ appears in the coframe (4.1), so it
would be impossible to recover the function h, which appears in the expression for I,
by differentiation. Thus, the invariant coframe (4.1) must be supplemented by the
additional invariant I to effect the correct solution to the problem. Although we have
come up with a nonstandard equivalence problem, Cartan himself was already aware
of such possibilities. Indeed,,in his original treatment of the equivalence method, he
allows for the incorporation of additional function invariants into an equivalence
problem, and, as he says, "Rien n’est chang6 la solution..." [1, p. 725]. Here, we
have one invariant provided by the structure functions, and one additional invariant,
both of whose derived invariants must be taken into account when discussing the
solution to the problem.

The covariant derivatives of a function F with respect to the coframe (4.1) are

F,o trlX/-lJxF

F.o2= uF,+pFp -fq+pg(1-u) Fq,
(4.4)

f

o4=Fq
Here

0 o a o

is similar to the total derivative operator (3.7), but

fqP + gP
(4.5) R =-(gq+f’q + g’p+ h’u)

is different. As in 3, if we differentiate the equation I constant with respect to x
and solve for the third order derivative r u’", then we recover the expression (4.5)

Since the differentials of I and J are of the form

dI 04,

the only independent derived invariant is

K J,o, ’1 DxJ
--p2(4.6)

fqUu +f, p
2u

dJ K01 + 03,

2ff"-f’E+2f’g-4fg

Furthermore,

dK L01 2J03 + 04,
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so we have only one further second-order derived invariant:

L= K,o, J,o,,o, 0-1/-l i,,K.
Note that in the case of the transformation rule (2.6), there is always a one-parameter
symmetry group of any differential operator, namely, the scaling u- Au. Since the
invariants must respect this symmetry, there can be at most three functionally indepen-
dent invariants. Thus, the rank of this {e}-structure can be at most 3, and this will
happen when dI ^ dJ ^ dK # O.

To investigate the structure of the invariants in more detail, we proceed as before.
We solve (2.14), (4.3), for p and q:

( 0"2 J+f’-2gP=U\x/-l 4f ]’

uI uh pg ( I

f -u-
Thus

gJ 2g2-f’g -4fh)11f132+

(4.7) K =-a(x)+I-K1J2,
where

(4.8) a
8gf’ 3f’2 4g2+h lg,+

16f -2
The only degenerate case is when a is constant, so the rank is 2 and the order zero.
Otherwise the rank is 3, and we can take a(x) as a new invariant. The final derived
invariant is

(4.9) b a,o, 0"1%/-1 a’.

The determining function is found by re-expressing b in terms of a"

(4.10) b(x)=F[a(x)].

Note that since b has the ambiguous sign 0"1, the determining function F is only
prescribed up to an ambiguous + sign. (Indeed, the orientation reversing change of
variables x-+-x, u + u, will change the sign of f.) One solution to this annoying
complication is to replace the invariant b by its square b2= Klfa ’2.

THEOREM 4.1. Let and be real-analytic differential operators. Define the
functions a (x), b (x), by (4.8), (4.9). Then and are equivalent under a change of
variables (2.3), (2.6) ifand only ifthe signs 1 sign (f) ffl sign (f) agree, and either:

(i) a k are constant, in which case both and are equivalent to the operator
D2 / k; or

(ii) Both a and are not constant, the determining functions prescribed by (4.10)
are identical, F F, and the equation a (x) g.) has a real solution branch.

Example 4.2. Let us consider the case of the operator D2 / h(x). In this case,
a(x)-h(x); hence we have a structure of rank 2 if and only if h is constant. A
differential operator (2.1) is equivalent to the differential operator D2/ k via (2.6) if
and only if a k, i.e.,

(4.11) 4ff"- 3f’2 + 8f’g 8fg’-4g2 + 16fh 16kf
Otherwise, since b h’, the determining function will be found by writing

(4.12) h’=F(h).
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For a fixed .determining function F, the general solution of (4.12) are just the translates
of h, i.e., h(x)= h(x-6). We conclude that two operators of the form (3.14) are
equivalent under the transformation group (2.6) if and only if their potentials are
translates of each other.

Conversely, given a determining function F, we can always construct a correspond-
ing potential h(x) by solving the elementary first-order ordinary differential equation
(4.12). We thus recover the classical result that a general second-order differential
operator can always be transformed into an operator of the form (3.14).

THEOREM 4.3. lf is a second-order differential operator, then there is a transforma-
tion (2.6) taking into the operator +/- )2 .ql_ a (), where the potential a() is given by
the invariant (4.8) when p(x), and the sign in front of2 is determined by the sign
off, the coefficient ofD2 in . Moreover, two differential operators are equivalent if and
only if their signs are the same and the corresponding potentials differ by a translation:
a(x)=a(x+6).

In other words, outside singular points where f(x) 0, the equivalence class of a
differential operator under (2.6) is completely determined by its potential and the sign
of its leading coefficient; moreover, two potentials are equivalent if and only if they
are translates of each other.

5. Symmetries of differential operators. We will call a group of transformations
of the form (2.3) a symmetry group of the differential operator if the corresponding
transformation (2.5) or (2.6) leaves the operator unchanged. (This is more restrictive
than the concept of a symmetry group of a differential equation 10].) It is interesting
to see what the corresponding infinitesimal symmetry criteria are.

PROPOSITION 5.1. Given a vectorfield v sC(x)(O/Ox) + rl(x)u(O/Ou) that generates
a one-parameter group of transformations of theform (2.3) on , define a corresponding
first-order differential operator (x)D + (x). The group generated by v is a symmetry
group of the differential operator @ of the type (2.5) or of the type (2.6) if and only if
the operator equation

(5.1) [7/’, ]+ r/ @ 0

or, respectively,

(.) [, ]=0

holds.
In either case, the proof is straightforward. In the second case, the scaling vector

field with r/= 1 always generates a symmetry group.
Cartan’s method gives us a complete handle on the symmetry group of an

{e}-structure. If the structure has rank r and the underlying space has dimension n,
then the symmetry group forms a Lie group of dimension n-r. For the differential
operator equivalence problems, then, n =4, and so the symmetry group will have
dimension 4-r, where r is the number of functionally independent invariants. This
leads to the following results.

THEOREM 5.2. Let @ be a real-analytic differential operator, and consider the
symmetries of the type (2.5). Define the functions a(x), b(x), c(x) as in 3. Then:

(i) @ admits a two-parameter symmetry group if and only if a =-O.
(ii) admits a one-parameter symmetry group if and only if a does not vanish

identically, and b is constant.
(iii) If b is not constant, then @ can admit only a discrete symmetry group.
Thus a differential operator (2.1) is equivalent to the differential operator D2 if

and only if it admits a two-parameter group of symmetries which is also equivalent to
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the condition (3.15). The two-parameter symmetry group for the operator D2 is, of
course, generated by translations (x, u)- (x / k, u), and the scaling transformations
(X, U)--)(AX, A Eu). Similarly, we have the result that the differential operator is
equivalent to the radial Laplace operator (3.16) or the operator DE/ 1 if and only if
it admits a one-parameter group of symmetries. For the radial Laplace operator (3.16),
the symmetry group is the scaling group (x, u)- (Ax, A 2u); for DE/ 1 the translation
group remains. Finally, for any other differential operator, the symmetry group is at
most a discrete subgroup.

THEOREM 5.3. Let be a real-analytic differential operator, and consider the
symmetries ofthe type (2.6). Let a (x) be the corresponding potential (4.8). Then always
admits the one-parameter scaling symmetry group (x, u)- (x, Au). Moreover, admits
a two-parameter symmetry group if and only if a is constant; otherwise there is only the
possibility of additional discrete symmetries.

See Hsu and Kamran [4] for more detailed information on the use of Cartan’s
equivalence method for determining the possible symmetry groups of general second-
order ordinary differential equations.
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