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1 Introduction

Lie pseudo-groups, roughly speaking, are the infinite-dimensionaitegparts of local
Lie groups of transformations. Pseudo-groups were first studig@rspatically at the
end of the 19th century by Sophus Lie, whose great insight in the swigedo postu-
late the additional condition that pseudo-group transformations formethergl solu-
tion to a system of partial differential equations, the determining equatmmthé

pseudo-group. In contrast to finite dimensional Lie groups, whicledine's day have
been rigorously formalized and have become a widely used mathem@iatathe

foundations of infinite-dimensional pseudo-groups remain to date ifatvedy un-

developed stage. Infinite dimensional Lie pseudo-groups can foralsepart only be
studied through their concrete action on space, which makes the clagsifipeob-

lems and analytical foundations of the subject thorny, particularly in tharisitive

situation. We refer the reader to the original papers of Lie, Medolaghli,\@ssiot
[37, 47, 69, 71] for the classical theory of pseudo-groups, to Gt for their refor-

mulation in terms of exterior differential systems, and [20, 29, 30, 8539, 62, 63,
67, 68] for a variety of modern approaches.

Lie pseudo-groups appear in many fundamental physical and gecaheontexts,
including gauge symmetries [6], Hamiltonian mechanics and symplecti®aizson
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geometry [51], conformal geometry of surfaces and confornedd fiheory [19, 21],
the geometry of real hypersurfaces [16], symmetry groups ofloehr and nonlinear
partial differential equations, such as the Navier-Stokes and Kadenrftstviashvili
(KP) equations appearing in fluid and plasma mechanics [5, 18, Sdfefeic hydro-
dynamics [2], Vessiot's method of group splitting for producing expliolutsons to
nonlinear partial differential equations [46, 50, 61, 71], mathematicaphology and
computer vision [66, 72], and geometric numerical integration [45kuBe-groups
also appear as foliation-preserving groups of transformations, witisthwciated char-
acteristic classes defined by certain invariant forms [24]. Also suffigieegular local
Lie group actions can be regarded as Lie pseudo-groups.

In a series of collaborative papers, starting with [22, 23], the firstauihs success-
fully reformulated the classical theory of moving frames in a generabrihgnic, and
equivariant framework that can be readily applied to a wide rangeité-fitimensional
Lie group actions. Applications have included complete classifications fefreliftial
invariants and their syzygies, equivalence and symmetry propertigsbofianifolds,
rigidity theorems, invariant signatures in computer vision [3, 7, 10,j6#]t invariants
and joint differential invariants [8, 54], rational and algebraic invasasf algebraic
group actions [27, 28], invariant numerical algorithms [31, 55, @{ssical invariant
theory [4, 53], Poisson geometry and solitons [42, 43, 44], and tloelloa of vari-
ations [32]. New applications of these methods to computation of symnretypg and
classification of partial differential equations can be found in [41, 4&&]cthermore,
MAPLE software implementing the moving frame algorithms, written by E. Hubert,
can be found at [26].

Our main goal in this contribution is to survey the extension of the movingdrme-
ory to general Lie pseudo-groups recently put forth by the authois7ng8, 59, 60],
and in [14, 15] in collaboration with J. Cheh. Following [32], we developttieory
in the framework of the variational bicomplexes over the bundles of {igjifets of
mappingsJ (M, M) of M into M and ofp-dimensional submanifold$> (M, p) of
M, cf. [1, 32, 70]. The interactions between the two bicomplexes providekdy
to understanding the moving frame constructions. Importantly, the imtac@ntact
forms on the diffeomorphism jet bundi@(>) < Jj°°(M, M) will play the role of
Maurer—Cartan forms for the diffeomorphism pseudo-group whiebkes us to for-
mulate explicitly the structure equations fD¥>). Restricting the diffeomorphism-
invariant forms to the pseudo-group subbur@le) ¢ D) yields a complete system
of Maurer—Cartan forms for the pseudo-group. Remarkably, thiceed Maurer—
Cartan forms satisfy an “invariantized” version of the linear infinitesineédmining
equations for the pseudo-group, which can be used to produce kcitegpm of the
pseudo-group structure equations. Application of these results to didtymin-
ing the structure of symmetry (pseudo-)groups of partial differeetjalations can be
foundin [5, 14, 15, 49].

Assuming freeness of the action, the explicit construction of a moving€dréor a
pseudo-group is based on a choice of local cross-section to thegageuap orbits
in J°°(M,p), [23]. The moving frame induces an invariantization process that pro-
jects general differential functions and differential formsJof(M, p) to their invari-
ant counterparts. In particular, invariantization of the standard jetdatetes results
in a complete system of normalized differential invariants, while invariatitizaf the
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horizontal and contact one-forms yields an invariant coframe. dhesponding dual
invariant total derivative operators will map invariants to invariants ohaigorder.

The structure of the algebra of differential invariants, including theifpaton of a

finite generating set of differential invariants, and the syzygies orrdiffigal relations
among the generators, will then follow from the recurrence formulasridate the
differentiated and normalized differential invariants. Remarkablyidessthe choice
of a cross section, this final step requires only linear algebra andaetitfation based
on the infinitesimal determining equations for the pseudo-group, antheaxplicit

formulas for either the differential invariants, the invariant differerdjarators, or the
moving frame. Except possibly for some low order details, the underlgiructure
of the differential invariant algebra is then entirely governed by two catative al-

gebraic modules: the symbol module of the infinitesimal determining systeime

pseudo-group and a new module, named the prolonged symbol mtuatlguantifies
the symbols of the prolonged action of the pseudo-groug®0, p).

2 The Diffeomorphism Pseudo-Group

Let M be a smoothn-dimensional manifold and |&? = D(M) denote the pseudo-
group of all local diffeomorphismg: M — M. For eactd < n < oo, let J"(M, M)
denote the bundle of" order jets of smooth mappings: M/ — M and D™ =
DM (M) ¢ J*(M, M) the groupoid of»™ order jets of local diffeomorphisms [40].
The source map™: D) — M and target map™: D) — M are given by

o"(jle) =z T"(Z¢) =(2), (2.1)
respectively, and groupoid multiplication is induced by composition of rimasp
Bt i =GR o ). (2.2)

Let7y: D™ — D*) 0 < k < n, denote the natural projections.

Given local coordinateg:, Z) = (z%,...,2™, Z%, ..., Z™) on an open subset aff x
M, the induced local coordinates ¢f*) = j? € D™ are denotedz, Z(™)), where
the components

o 0Py

ZB:aZ—B(Z), forlgagm, OS#BSTL,
of Z("), represent the partial derivatives of the coordinate expressiprabfhe source
point z = a"(g(")). We will consistently use lower case lettets,z, u, ...for the
source coordinates and the corresponding upper case Igttersx (™, U™, .. for
the derivative target coordinates of our diffeomorphigms
The groupoidD(>) ¢ J* (M, M) of infinite order jets inherits the structure of a vari-
ational bicomplex fromj>° (M, M), [1, 70]. This provides a natural splitting of the
cotangent bundl&*D(>) into horizontal and vertical (or contact) components [1, 52],
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and we usel = d,; + dg to denote the induced splitting of the exterior derivative on
D) In terms of local coordinate, Z(>)), the horizontal subbundle G+D(>) is
spanned by the one-formis® = d;; 2%, a = 1,...,m, while the vertical subbundle is
spanned by the bas@ontact forms

Y4 =doZh =dZg - Zp.dz°,  a=1,....m, #B2>0. (2.3)
c=1
Composition by a local diffeomorphisg € D induces an action by right multiplica-
tion on diffeomorphism jets,

Ry (i70) = diiz) (o). (2.4)

A differential form z on D™ is right-invariantif R,, 1« = ., where defined, for every
¥ € D. Since the splitting of forms oP(>) is invariant under this action, the differen-
tialsd ;s n anddg 1 of a right-invariant formu are again invariant. The target coordinate
functionsZ* are obviously right-invariant, and hence their horizontal differentials

ot =dy 2" =Y Zid" (2.5)
b=1
form an invariant horizontal coframe, while their vertical differentials
pt =dgZ® =" =dz* = Zgdz", a=1,...,m, (2.6)
b=1

are the invariant contact forms of order zero. Let
Dza = WPD,, (2.7)

denote the total total derivative operators®i*) dual to the horizontal forms (2.5),
where

0 . 0 0 . 0 . 0 . 0
Dzb - @"’ Z ZBbW - @"’Zbﬁ‘FZblbW‘FZblbzbw‘F' Tty (28)
#BZO B b1 b1b2
b = 1,...,m, are the standard total derivative operatorsIe) and wherelV =

(Z)~'is the inverse Jacobian matrix. Then the higher-order invariant cofutans
are obtained by successively Lie differentiating the invariant contactS¢2.6),

pp =Dzep® =DzeT?, (2.9)

whereDzs =Dy, Dy, a=1,...,m, k=#B > 0.
The next step in our program is to establish the structure equations faffeantbrph-
ism groupoidD(>), which can be derived efficiently by employing Taylor series. Let

AUEY %Z};hB, 1<a<m, (2.10)
#B>0 " '
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be the individual components of the column vector-valued Taylor sefiés |, de-
pending onh = (h!,..., h™), obtained by expanding a local diffeomorphistn=
o(z + h) ath = 0. Further, letY[ 4], [ H] denote the column vectors of contact
form-valued and invariant contact form-valued power series withviddal compon-
ents

1 1
Thl= Y Z TEAT wlHI= ) ZupH"  a=1...m,
#B>0 #B>0
(2.12)
respectively. Equations (2.9) imply that
u[H]=7[h] whenH =Z[H] - Z[0], (2.12)

which, after an application of the exterior derivative, can be used feedtte diffeo-
morphisms pseudo-group structure equations.

Theorem 2.1 The complete structure equations for the diffeomorphism pseudo-group
are obtained by equating coefficients in the power series identity

du[H] =Vau[H]A[H]-dZ][0]), do=—du[0] =Vuu[0]ro. (2.13)

Here VyulH] = (%[{H]}) denotes then x m power series Jacobian matrix

obtained by differentiating [ H ] with respecttad = (H*,..., H™).

Let ¥ = X (M) denote the space of locally defined vector fields\oywhich we write
in local coordinates as

m " a
v = ;C ()52 (2.14)
We regardX’ as the space of infinitesimal generators of the diffeomorphism pseudo-
group. LetX™ = J"TM, 0 < n < oo, denote the tangent-jet bundle. Then-

jet j»v € X of the vector field (2.14) at a pointis prescribed by all the partial
derivatives of its coefficients up to orderwhich we denote by

¢ =(...¢8...), a=1,...,m, 0<#B<n. (2.15)

3 Lie Pseudo-Groups

Several variants of the precise technical definition of a Lie pseudapgappear in the
literature. Ours is:

Definition 3.1 A sub-pseudo-groug C D will be called alLie pseudo-groujif there
existsn, > 1 such that for alkh > n,:
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1. the corresponding sub-groupait”) ¢ D™ forms a smooth, embedded subbundle,
2. every smooth local solutiofi = ¢(z) to the determining systeg™ belongs ta7,
3. G = pr(n—n.)G(ne) js obtained by prolongation.

The minimal value of:, is called theorder of the pseudo-group.
Thus on account of conditions (1) and (3), for> n,, the pseudo-group subbundle
G c D™ is defined in local coordinates by a formally integrable systeriadrder
partial differential equations

F™(z,zM) =0, (3.1)

the determining equation$or the pseudo-group, whose local solutiais= ¢(z),
by condition (2), are precisely the pseudo-group transformationg. a€sumptions,
moreover, imply that the isotropy jef&"”) = {g(™ € G | ™(g(™) = 77(g(™) = 2}
form a finite dimensional Lie group for atl € M.

Given a Lie pseudo-grou@, letg C X denote the local Lie algebra of infinitesimal
generators, i.e., the set of locally defined vector fields whose flolenidpeo G. Let
g™ c X denote their jets. In local coordinates, the subspétec X' is defined
by a linear system of partial differential equations

L0 (z,¢™y =0 (3.2)

for the vector field coefficients (2.13), called tiveearizedor infinitesimal determining
equationdor the pseudo-group. Conversely, any vector fielshtisfying infinitesimal
determining equations (3.2) is an infinitesimal generatogf¢b7]. In practice, the lin-
earized determining equations are constructed by linearizingtreeder determining
equations (3.1) at the identity transformationglfs the symmetry group of a system
of differential equations, then the linearized determining equations §8e2the com-
pletion of) the usual determining equations for its infinitesimal generatuesred via
Lie's algorithm [51].

Let us explain how the underlying structure of the pseudo-group is éjppecescribed
by its infinitesimal determining equations. As with finite-dimensional Lie gsotipe
structure of a pseudo-group is described by its Maurer—Cartan foAnsomplete
system of right-invariant one-forms agi>) ¢ D(*) is obtained by restricting (or
pulling back) the Maurer—Cartan forms (2.5), (2.9). For simplicity, soatinue to
denote these forms by”, u%. The restricted Maurer—Cartan forms are, of course,
no longer linearly independent, but are subject to certain constraintsedidig the
pseudo-group. Remarkably, these constraints can be explicitly ¢biarad by an
invariant version of the linearized determining equations (3.2), obtdigeeplacing
the source coordinates’ by the corresponding target coordinatés and the vector
field jet coordinateg(, by the corresponding Maurer—Cartan forf.

Theorem 3.2 The linear system
LU(Z, ™) =0 (3.3)

serves to define the complete set of linear dependencies among thavigtint
Maurer—Cartan forms:(™) on g™,
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In this way, we effectively and efficiently bypass Cartan’s more coraf#id prolonga-
tion procedure [9, 13] for accessing the pseudo-group structuisieqs.

Example 3.3 In this example we derive the structure equations for the pseudo-group
G consisting of transformations: R? — R? with

X=f(x), Y=ey =/[f(x)y+g(z),
ex(,7) @)y +9'(@) (3-4)
U=u+ =u+ ——
f'(x) f'(x)
where f(x) € D(R) andg(x) is an arbitrary smooth function. The transformations
(3.4) form the general solution to the first order system of determirgogtgons

X,=X,=0, Y,=X,#0, Y,=0, Yo=U-uwX,, U,=1 (3.5)

for G. The infinitesimal generators are given by

V=g g o = o)z @)+ ) Y @l @6)

wherea(z), b(z) are arbitrary functions, forming the general solution to the first order
infinitesimal determining system
=My, & =&u=Nu=0u=0, m:=¢, (3.7)

which is obtained by linearizing the determining system (3.5) at the identity jet.
In accordance with Theorem 3.2, the pull-backs of the Maurer—Céotars (2.9) sat-
isfy the invariantized version

px = py . pHy =pp = ph = pp =0, pk =t (3.8)

of the linearized determining equations. By a repeated application of théeint/total
derivative operator®x, Dy, Dy (cf. (2.7)) we find that

Hny = Bxntts  Mxn = Wnirs  Winy = Winsz, 1 >0, (3.9)
while all the other pulled-back basis Maurer—Cartan forms vanish. Assalty the
one-forms

U

oty My = Hxns  fh = My 120, (3.10)

form aG—invariant coframe oG (>,
The structure equations are obtained by substituting the expansions

o0

1

pH] = — i H,
n=0
WH K=Y — B+ K Y — gy H" (3.11)
n=0 n=0

pUH K=Y — i B+ K Y — o HY

n=0 n=0
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into (2.13). Those involving%.. reduce to the structure equations

n—1
xT xr X xr xr X n xr xX
do® = px No®,  dpxn = — pWxa No¥ + Z (i)ﬂxiﬂ N Wxn—i
i=0
(3.12)
= 0" A\ pxni1 — JZ:; Tarl j Wxi N Pxn+i—j
for D(R) (cf. Cartan [12], eq. (48)), while
do¥ = p% No® 4+ pk N oY, do" = piea No® + p2 No?,
n—1
dpse. = o A ;ﬁ)’(nﬂ + Y A s + Z {<]> - (] i 1)]N§<j+1 N xn—j-
j=0
(3.13)

Additional examples of this procedure can be found in [14, 58]; se®[48] for a
comparison with other approaches appearing in the literature.

4  Pseudo-Group Actions on Extended Jet
Bundles

In this paper, our primary focus is on the induced action of our psgudap on sub-
manifolds of a fixed dimension. For< n < oo, let.J” = J*(M,p) denote then™
order (extended) jet bundle consisting of equivalence classediafiensional subman-
ifolds S ¢ M under the equivalence relation@f order contact, cf. [52]. We use the
standard local coordinates

2= (™) = (S, (4.1)
on J" induced by a splitting of the local coordinates
2= (z,u) = (z',..., 2P, ul, ... u?)

on M into p independent ang = m — p dependent variables [51, 52].

The choice of independent and dependent variables brings abadoandosition of
the differential one-forms o into horizontal and vertical components. The basis
horizontal formsare the differentialgz!, . .., dz? of the independent variables, while
the basis vertical forms are provided by tantact forms

P
?:du?—Zu?id:ci, a=1,...,q, #J>0. (4.2)
i=1
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This decomposition induces a splitting of the exterior derivadive dg + dy on J>°
into horizontal and vertical (or contact) components, and locally endlosvalgebra of
differential forms on/*° with the structure of a variational bicomplex [1, 32, 70].

Local diffeomorphisms preserve thé" order contact equivalence relation between
submanifolds, and thus give rise to an action on the jet bufitl&nown as the:™ pro-
longed action, which, by the chain rule factors through the diffeomonpfasgroupoid
D), 1t will be useful to combine the two bundl€™ and.J” into a new groupoid
£M — Jm by pulling backD™ — M via the standard projectiof’: J" — M.
Points in£(™ consists of pairgz("), ¢(™), wherez(") e J» andg(™ e G(" are based
at the same point = 77 (g(™) = 77 (2(").

Local coordinates o™ are written a&(™ = (2("), Z("), where
PN (:C,u(”)) =(..2 . ug,..)
indicate submanifold jet coordinates, while
Zm = (x™ ™y = (... Xy,...,U0%,...)

indicate diffeomorphism jet coordinates. The groupoid structur€®his induced by
the source map, which is merely the projectiéri,(z("), g»)) = 2("), and the target
map7" (2", g(™) = ¢ . 2(») which is defined by the prolonged action®f*) on
J". We lety € D with domain domy =/ C M acton the sef(™) ;; = {(2(™), g™ €
e |y (=™) e U} by

@ (2, M) = (jrp- 2(M g 'J'Z(z)@_l)7 (4.3)
where7” (2(")) = 2. The action (4.3) obviously factors into an actionz@f") on &™),

The cotangent bundl€*£°° naturally splits into jet and group components, spanned,
respectively, by thget forms consisting of the horizontal one-fornig? and contact
one-formsf4 from the submanifold jet bundl€>, and by the contact one-form&y
from the diffeomorphism jet bundi®(>). We accordingly decompose the differential
on £ into jet and group components, the former further splitting into horizomtdl a
vertical components:

d=dj+da=dy+dy +dg. (4.4)
The resulting operators satisfy the tricomplex relations [32],

di =d& =df =dy =0,

dydg = —dgd;, dgdy = —dvdyg, dpdg= —dgdy, dvde = —dgdy.

The above splitting determindifted total derivative operators

q
[e3 (03 a
Dzj = Dzj + Z UJ Dua + Z uJ]aT‘? (45)

a=1 #J>1
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on &>, whereD,;, D, are the standard total derivative operators (2.8§6f. Pro-
ceeding in analogy with the construction of the invariant total derivatiegaiprs (2.7)
onD(>) we defindifted invariant total derivative operatorsn £~ by

P
Dy, = ZWJE D, where /V[7f = (D, X! (4.6)

indicates the entries of the inverse total Jacobian matrix. With this, the chiain ru
formulas for the higher-order prolonged actionf”) on .J”, i.e., coordmateS]J of
the target mag": £ — J”, are obtained by successively dn‘ferenuatmg the target
dependent variablds® with respect to the target independent variabiéswhereby

U$ =DyxsU® =Dy, --- Dy U 4.7)

These are the multi-dimensional versions of the usual implicit differentidgiomulas
from calculus.

Given a Lie pseudo-groug, let ™ < £ denote the subgroupoid obtained by
pulling backG™ c D™ via the projectiort”: J» — M.

Definition 4.1 A moving framep(™) of order n is aG"" equivariant local section of
the bundlex(™) — J».

More explicitly, we requirep(™ : V* — 1) whereV” c J" is open, to satisfy

" (p™ (z(M)) = (™), Pl (g - 2y = g(m) . () (5 (), (4.8)
for all g™ € G, near the jetl™ of the identity transformation such that both
2™ and g™ - (" lie in the domain of definitionv™ of p(™), whereG™,, denotes
the source fibre o™ at z = 7(2(™). Then, with a moving frame at hand, the
composition" o p(™, due to equatlons (4.3), (4.8), is invariant under the actiof of
onJ" and, as we WiII subsequently see, provide differential invariants foadtien of

ginJjn.

A moving framep®) : VE — H() of orderk > n is compatiblewith a moving frame
p™ v — HM of ordern if 77 o p*) = p(™ o 77 where defined. AZomplete moving
frameis provided by a mutually compatible collectigi®): V¥ — H*) of moving
frames of all orderg > n with domainsV* = (7%)~-1y~.

As in the finite-dimensional construction [23], the (local) existence of gimgoframe
requires that the group action be free and regular.

Definition 4 2 The pseudo-groug actsfreelyat () € J if its isotropy subgroup’xs
trivial, " (n) ={g™ egm | g™ 2m =M} = {1 ("1 andlocally freelyif G (n)
is discrete.
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According to the standard definition [23] any (locally) free action of a fiditeension-
al Lie group satisfies the (local) freeness condition of definition 4.2tHmitonverse
is not necessarily valid.

The pseudo-group acts locally freely at) if and only if the dimension of the pro-
longed pseudo-group orbit througl®) agrees with the dimension, = dim g™,
of the source fiber at = 77(2(™). Thus, freeness of the pseudo-group at order
requires, at the very least, that

rn:dimg%z <dimJ" =p+ (m —p) (p—;n) (4.9)
Freeness thus provides an alternative and simpler means of quantifi@rigpencer
cohomological growth conditions imposed in [33, 34]. Pseudo-grbapig too large
a fiber dimensiom,, will, typically, act transitively on (a dense open subsettf) and
thus possess no non-constant differential invariants. A key res[80hfgeneralizing
the trivial finite-dimensional case, is the persistence of local freeness

Theorem 4.3 Let G be a Lie pseudo-group acting on an-dimensional manifold/.
If G acts locally freely at:(™) ¢ J™ for somen > 0, then it acts locally freely at any
2B ¢ JF with 7% (2(F)) = 2 for k > n.

As in the finite-dimensional version, [23], moving frames are constduthrough a
normalization procedure based on a choicero§s-sectionio the pseudo-group orbits,
i.e., a transverse submanifold of the complementary dimension.

Theorem 4.4 Suppose; ™ acts freely ony™ < J” with its orbits forming a reg-
ular foliation. LetX™ < V™ be alocal cross-section to the pseudo-group orbits.
Givenz(™ ¢ v, definep™ (2(™) € H™ to be the unique groupoid jet such that
" (p (M) = 2" and 7" (p(™) (2(M)) € K" (when such exists)Thenp(™ : J» —

H (™ is a moving frame fog defined on an open subsetwf containing/C".

In most practical situations, we select a coordinate cross-section afheadiorder,
defined by fixing the values of, of the individual submanifold jet coordinates «(™)).
We write out the explicit formulagX, U(™) = F(z,u™, (™)) using expressions (4.5)
for the prolonged pseudo-group action in terms of a convenient systgnoup para-
metersg™ = (g1, ..., g, ). Ther, components corresponding to our choice of cross-
section variables serve to define timmalization equations

Fi(z,u™, g™ =¢, ... | F (z,u™ ¢™)=c, . (4.10)

n

Solving for the group parameters,
gi =" (@ u™), i=1,m, (4.12)

yields the formula
P (@, u™) = (2, u™, 4™ (&, ™))

for a moving frame section.
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The general invariantization procedure introduced in [32] in the finiteedsional
case adapts straightforwardly. To compute the invariantization of a fumaliffer-
ential form, differential operator, etc., one writes out how it explicithngfmrms un-
der the pseudo-group, and then replaces the pseudo-group peraimetheir moving
frame expressions (4.11). Invariantization thus defines a projectepending upon
the choice of cross-section or moving frame, from the spaces ofgednactions and
forms to the spaces of invariant functions and forms. In particulagriamtizing the
coordinate functions o> leads to thenormalized differential invariants

H =", i=1,....,p, I¥=uu%), a=1,...,q, #J>0. (4.12)

These naturally split into two species: those appearing in the normalizatimti@os
(4.10) will be constant, and are known as thieantom differential invariants The
remainings,, = dim J™ — r,, components, called thHeasic differential invariantsform
a complete system of functionally independent differential invariantsdere< n.

Secondly, invariantization of the basis horizontal one-forms leads tovaeant hori-
zontal one-forms

w' = 1(dr’) =W + K, i=1,...,p, (4.13)

wherew! , x' are, respectively, the horizontal and vertical (contact) componkitbe
pseudo-group acts projectably, then the contact components vahish,0. Other-
wise, the two components are not individually invariant, although the haakéorms
w!,...,wP are, in the language of [52], a contact-invariant coframg on

The dual invariant differential operatof3, ..., D, are uniquely defined by the for-
mula
p .
dF =Y DiF @'+, (4.14)
=1

valid for any differential functior’, where we omit the contact components (although
these do play an important role in the study of invariant variational prahlf88]). The
invariant differential operators map differential invariants to difféig@nnvariants. In
general, they do not commute, but are subject to linear commutation nslaifache
form

p
[D:,D;] =Y YEDy, ij=1,...p, (4.15)
k=1

where the coefficients;” are certain differential invariants that must also be determ-
ined. Finally, invariantizing the basis contact one-forms

9% = 1(0%), a=1,...,q, #K >0, (4.16)
provide a complete system of invariant contact one-forms. The imtacaframe

serves to characterize tlgeinvariant variational complex in the domain of the com-
plete moving frame, [32].



Chapter 4 Pseudo-Group Actions on Extended Jet Bundles 13

Example 4.5 Consider the action of the pseudo-group (3.4) on surfacesh(z, y).
The pseudo-group maps the basis horizontal fatmsly to the one-forms

dgX = fedx, dgY = e.dr+ f.dy. 4.17)

By (4.7), the prolonged pseudo-group transformations are foyrapplying the dual
implicit differentiations

1 €y 1

successively t&/ = u + e,/ f.., SO that

Uy Cry — €x Uy fzz €x uy fmm
UX:_+ -2 ’ UY:_+_7
fa 12 f2 fo o f2
UXX _ @ Cxxax — €xa Uy — 2 Ex Ugy — fm;ﬂ Uy
Iz 12
+ ei Uyy + 3 emfzz Uy _44 ezz.fzz -3 €y ,fzzz + 8 Cx frzz ’ (418)
fa 12
_ _ 2
UXY:uizy_i_fzmm fmwzé”y emuyy_2i4w’ UYYZUKLan
[z fi [z F
U _ Jalayy — €atiyyy — 2fantiyy U _ Uyyy
XYy = 1 ; YYY = 5
Iz [
and so on. In these formulas, the diffeomorphism jet coordinBtés, f.«, .- -, €, €x,

eqz, -- - are to be regarded as the independent pseudo-group pasanTédte pseudo-
group cannot act freely o' sincer; = dimG",, = 6 > dim J! = 5. On the other
hand,r; = dimG®,, = 8 = dim J?, and the action oo is, in fact, locally free and
transitive on the set¥? = J2 N {uy, > 0} andV? = J> N {u,, < 0}. Moreover,

in accordance with Theorem 4.3(™ acts locally freely on the corresponding open
subsets off™ for anyn > 2.

To construct the moving frame, we adopt the following cross-sectiomalizations:

X=0 = f=0,
Y=0 = e=0,
U=0 = e;=—uf
Uy =0 = [fou=—uyfs,
Ux =0 = eu = (vuy—uy) fa, (4.19)
Uy =1 = [fo= Uy,
Uxy =0 = fooo = — /Uy (Uay + utiyy — u),
Uxx =0 = epar = — Uyy (Ugz — Ulyy — 2 u2uyy — 2ugly, + uuz)
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At this stage, we have normalized enough pseudo-group parameteosfuite the
first two basic differential invariants by substituting the normalizationsOirito the

transformation rules fos,,,,,, u,,, in (4.18), which yields the expressions

Ugyy + UU + 2 u,u u
Iy = L(Uacuu) =4 y;}?g L , doz = L(uyyy) = ?f;g (4.20)
Uyy Uyy

for the invariants. Higher order differential invariants are found hytioming this pro-
cess, or by using the more effective Taylor series method of [59th&y substituting
the pseudo-group normalizations into (4.17) fixes the invariant haakooframe

wh = 1(dr) = /iy, dx, w? = 1(dy) = \Suyy (dy — udz).

The invariant contact forms are similarly constructed [59]. The duariant total
derivative operators are

L (D,+uD,), Ds——D,. (4.21)

v Uyy v Uyy

The higher-order differential invariants can be generated by ssigesapplying these
differential operators to the pair of basic differential invariants (4.20 total deriv-
ative operators satisfy the commutation relation

D, =

1 1
[D1, D] = — 3 TosDy + 3 I2D;. (4.22)

Finally, there is a single basic syzygy
D1[03 - Dg[lg =2 (423)

among the differentiated invariants from which all others can be dedwg@/ariant
differentiation.

5 Recurrence Formulas

The recurrence formulas [23, 32] connect the differentiated invesiand invariant
forms with their normalized counterparts. These formulas are fundi@ieince they
prescribe the structure of the algebra of (local) differential invariamderlying a full
classification of generating differential invariants, their syzygies (difféal identit-
ies), as well as the structure of invariant variational problems andeihdée local
structure of the entire invariant variational bicomplex. As in the finite-dsiaral
version, the recurrence formulas are established using purely inifiingkesforma-
tion, requiring only linear algebra and differentiation. In particular, theypat require
the explicit formulas for either the moving frame, or the Maurer—Cardam$, or the
normalized differential invariants and invariant forms, or even theriamadifferential
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operators! Beyond the formulas for the infinitesimal determining equstitie only
additional information required is the specification of the moving frames:zsection.

Under the moving frame map, the pulled-back Maurer—Cartan formswitlenoted
v>® = (p(>))* >, with individual components
vh = (p) (), b=1,....m,  #A>0. (5.1)

As such, they are invariant one-forms, and so are invariant lingabic@tions of our
invariant coframe elements’, 9% defined in (4.13), (4.16), with coefficients that are
certain differential invariants.

Fortunately, the precise formulas need not be established a priori, yasvihée a
direct consequence of the recurrence formulas for the phantoeretitial invariants.
We will extend our invariantization process to vector field coefficient jerdimates
(2.15) by defining

u(Ch) =14, b=1,...,m, #A >0, (5.2)
and, by extension, to their differential function and form-valued lineanlzinations,
L(Z Z ng{f> :Z Z V%/\L(u}f), (5.3)

b=1#A<n b=1#A<n

where theu{! arek—forms onJ>, so the result is an invariant differentidl + 1)-form
on J>. With this interpretation, the pulled-back Maurer—Cartan fou)sre subject
to the linear relations

LO(H, Iv™) = [L™(z,¢™M)] = 0, n >0, (5.4)
obtained by invariantizing the original linear determining equations (3.8)eH
(H,I) = v(z,u) = 1(z)

are the zer® order differential invariants in (4.12).
Given a locally defined vector field

q

V=Y ) = Y )+ Y ) € X(M),  (55)

a=1

let

Zfzxual Z 3 B )aia e X(J®)  (5.6)
J

a=1n=#J>0

denote its infinite prolongation. The coefficients are computed via the psalahga-
tion formula,

p p
$5=D,Q"+> &g,  where Q*=¢*-) ur¢,  a=1,....q
i=1 =
(5.7)
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are the components of tlebaracteristicof v, [51, 52].

Consequently, each prolonged vector field coefficient
p5 = @5 (u™, (™) (5.8)

is a certain universal linear combination of the vector field jet coordir{2t&s), whose
coefficients are polynomials in the submanifold jet coordinazt%sfor 1 < #K <
n. Therefore, thex™ order prolongation of vector fields factors through tffeorder
vector field jet bundle. Let

=€) = v 5 = (@) = v, v, (5.9)

denote the invariantizations of the prolonged infinitesimal generator cieet (5.8),
which are linear combinations of the pulled-back Maurer—Cartan foB18,(with
polynomial coefficients in the normalized differential invariaIﬁsfor 1< #K < #J.

With all these in hand, the desirediversal recurrence formule as follows.

Theorem 5.1 If w is any differential form o/, then
di(w) = t(dw +v>®(w)), (5.10)

wherev(w) denotes the Lie derivative afwith respect to the prolonged vector field
(5.6), and where we usgb.9)to invariantize the result.

Specializingw in (5.10) to be one of the coordinate functioris u5 yields recurrence
formulas for the normalized differential invariants (4.12),

dH' = 1(dz" + &) = =" + 7',
P , P , _ (5.11)
dI§ = o(du$ + §%) :L(ZugidxwefH@f;) :Zﬁiwwwﬁwg,

i=1 i=1

Whereqff; is written in terms of the pulled-back Maurer—Cartan forfjsas in (5.9),
and are subject to the linear constraints (5.4). Each phantom diffdrenaaiant is,
by definition, normalized to a constant value, and hence has zeroedifig: Con-
sequently, the phantom recurrence formulas in (5.11) form a sydténear algebraic
equations which can, as a result of the transversality of the cross+semtiainiquely
solved for the pulled-back Maurer—Cartan forms.

Theorem 5.2 If the pseudo-group acts locally freely ot  J*, then then™ order
phantom recurrence formulas can be uniquely solved in a neighborbbtte cross
section to express the pulled-back Maurer—Cartan forthof order #4 < n as in-
variant linear combinations of the invariant horizontal and contact foreasw’, 95.
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Substituting the resulting expressions into the remaining, non-phantomeece for-
mulas in (5.11) leads to a complete system of recurrence relationgytfotte vertical
and horizontal differentials of all the normalized differential invariants.

As the prolonged vector field coefficierit§ are polynomials in the jet coordinate%

of order#K > 1, their invariantizations are polynomial functions of the differential
invariantslﬁ for #K > 1. Since the correction terms are constructed by solving a
linear system for the invariantized Maurer—Cartan forms, the resultiefficients are
rational functionsof these differential invariants. Thus, in most cases (including the
majority of applications), the algebra of differential invariants for theugsegroup is
endowed with an entirely rational algebraic recurrence structure.

Theorem 5.3 If G acts transitively on\/, or, more generally, its infinitesimal generat-
ors depend polynomially on the coordinates: (x,u) € M, then the correction terms
in the recurrence formulag.11)are rational functions of the normalized differential
invariants.

Example 5.4 In this example we let the pseudo-group (3.4) act on surfacés®in
We will illustrate how the above ideas can be used to uncover recursionfas for
derivatives of the normalized differential invariants with respect to thariant total
derivative operators (4.21). For this only the horizontal comporafregquations (5.11)
are needed, and we write these as

dply; =T jw* + 1 w¥ + 3, 0,5 >0. '

In (5.12) eachy;; is a linear combination of the horizontal pulled-back Maurer—Cartan
forms which we denote

X?{“Y”U“ X?{aybUca X’L;{aYbUCa a,b,c > 0. (513)

These are again constrained by the invariantized infinitesimal determiguagiens
LM (H, x™) = 0, and, as in Example 3.3, we see that a basis for the forms (5.13) is
provided byx%., x%.,n > 0, and, moreover, that

X:g(nY = X§(H+17 X’L)L(" = Xg(n+17 X’L)L("Y = X§(H+27 n 2 07 (514)

while all the other horizontal pulled-back Maurer—Cartan forms vanish.
We choose a cross section by imposing, in addition to (4.19), the nortiatizgua-
tions

Uxn =0, Uxn-1y =0, n > 3. (5.15)

It now follows from (5.14) that the horizontal correction tersas are precisely the
coefficients of the horizontal invariantization of the vector field obtainedirby pro-
longing the vector field

B) B) B)
V= §($)a—x + n(w,y)a—y + nm(x,y)%
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and then applying the relations
Ny = &, §y=&u=mu=0

and their differential consequences to express the resulting coefficreiions solely
in terms of the repeated-derivatives of¢ and,. With this, theu,;-componenty;; of
pr v becomes

@ij = 50j Nypit1 + 51j Epite
1+1

i1+ —1)sfi+1 ‘(i
_Z Z+1 < s )gzsuis+1,j_z<s)nzsuis,j+la

s=1

yielding the invariantization

— Y x
M = doj Xyit1 T 015 Xxi+e

i+1 . . . A .
t+1+(G—1Ds/i+1 i
- Iifs i Xxs — Iifs j 4 s
E - s +1,5 XX E s J+1 Xx

s=1 i+l s=1

Taking into account normalizations (4.19), (5.15), the phantom recoe formulas for
the horizontal derivatives reduce to

0=dyH* = w® + x*, 0=dpHY =w? + \Y,
0=dul = X%, 0=duly = x%o»

0=dyly =’ + x%e, 0 =duly = X% (5.16)
0=dply; = Iw’ — X% + Xxs, 0=dply = I)p)w" + Ipgw? — 2x%,
0=dulsz = Xk, 0=duly = Lpw" + X% — X2 — 2112X%

and so on. These can be solved for the Maurer—Cartan feimsx % to yield

X' = —w", XV =—w¥, X% = 30" + Igw?),  x% =0,
X§(2 = _wya X’g{Z = 01 X§(3 = _112wy7 Xg(?, = 01 (517)
Xxa = —Ipw?, XyX4 =0,

Next we substitute the expressions (5.17) in the recurrence formatathé non-
phantom invariants in (5.12). Keeping in mind that
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thew®-, w¥-components of the resulting equations yield the expressions

Dilyy = Iyy — %Ifza Dolyy = Iy — 315103 + 2,
Dilys = I3 — %Il2lo3a Dylyg = Iy — %I§3,
D1122 = 132 - 21121227 D2I22 = 123 - 2103122 + 7112a (5-18)

Dily3 = Iyg — 2145143, Dolyg = I1q — 2Ly3115 + 313,
Dilyy = Iy — 211510y, Dylyy = lys — 21y31y,

It becomes apparent from these formulas that the invarigntand I,,; generate the
algebra of differential invariants for the pseudo-group (3.4).

A derivation of the recurrence formulas (5.18) using Taylor seriethods can be
found in [59].

6 Algebra of Differential Invariants

Establishment of the theoretical results that underpin our construdgiegtams relies
on the interplay between two algebraic structures associated with the twangiebu
the first is defined by the symbols of the linearized determining equatiortbdan-

finitesimal generator jets; the second from a similar construction for thlempyed
generators on the submanifold jet bundle. We begin with the former, viditble more
familiar of the two.

We introduce algebraic variables=t,,...,t, andT =T",...,T™. Let
T = {n(t,T) = nalt) T“} ~ R[t] ® R™ (6.1)
a=1

denote theR[¢t] module consisting of real polynomials that are linear infhe We
grade7 = @,,>0 7", whereT™ consists of the homogeneous polynomialsledreen
int. We setT=" = @7_, 7" to be the space of polynomials of degree..

Given a subspacé c 7, we setZ” = ZN7T", I=" = T NT=". The subspace

is gradedif Z = ®,,>0 Z" is the sum of its homogeneous constituents. A subspace
Z C T is asubmodulégf the productA(t)n(¢,T) € Z whenevern(t,T) € Z and

A(t) €R[t]. A subspac&€ c T spanned by monomials, 7% = t,, ---t,,T" is called a
monomial subspacand is automatically graded. In particulamanomial submodule

is a submodule that is spanned by monomials. A polynomial 7<" hasdegree

n = degn andhighest order term¥I(n) € 7™ providedn = H(n)+7, whereH(n) # 0
andn € T="~!is of lower degree. By convention, only the zero polynomial has zero
highest order term.
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We will assume in the remaining part of the paper that all our functiordpréelds
etc. are analytic. We can locally identify the dual bundle to the infinite ordéujedle
as(X>)* ~ M x 7 viathe pairing( j>°v;tAT") = ¢%. A parametrized polynomial

n(z:t,T) Z > hp(2)taT (6.2)

b=1 #A<n

corresponds to an™ order linear differential function

L(z,¢"™) = (Gvin(z6,T)) =Y > hi'(2) . (6.3)

b=1#A<n

Its symbolconsists, by definition, of the highest order terms in its defining polynomial,

m

B(L(z, (™) =H(n(zt,T) =Y > hi'(z)taT". (6.4)

b=1#A=n

The symbol of a linear differential function is well defined by our agstiom that the
coefficient functions:i () be analytic.

Given a pseudo-grou@, let £ = (g>)*+ < (x°°)* denote theannihilator subbundle
of its infinitesimal generator jet bundle. Each equation in the linear detergnéystem
(3.2) is represented by a parametrized polynomial (6.2), which atively spant.
LetZ = H(L) C (X)* denote the associatsymbol subbundléassuming regular-
ity). On the symbol level, total derivative corresponds to multiplication,

S(D..L) =t, S(L), a=1,...,m. (6.5)

Thus, formal integrability of (3.2) implies that each filgr c 7 forms a graded
submodule, known as trsymbol modul®f the pseudo-group at the pointe M. On
the other hand, the annihilatﬁqz C 7 is typically nota submodule.

We now develop an analogous symbol algebra for the prolonged infiméakgenerat-

ors. We introduce variables= si,...,s,, S = S',..., 59 and let
=N q
S = { Z } R[s] @ R? C R][s, ] (6.6)
be theR[s] module consisting of polynomials which are linearsinLet
S=RraS=(P s (6.7)
n=—1

consist of the “extended” polynomials

(s,5,5) = Zczsz—i—aa s,5) Z Z: (6.8)

i=1 =1
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wheres = 51, ..., s, are extra algebraic variables, ..., ¢, € R, anda(s, S) € S,
In coordinates, we can identiffj*J>° ~ J> x S via the pairing

p
(Vigi) =&,  (Vi89)=Q=¢" =) uf¢,
P (6.9)
<V;SJSO¢>:SB?7 #lea
for any tangent vector

- za - S 9 0o
V:Z;§a$i+z >, By €T

a=1k=#J>0

~Q

Every one-form o/ is thereby represented, locally, by a parametrized polynomial

p

q
o(x,u(");g,s,S) = th Z (z, u™; 5) 5,

i=1

depending linearly on the variabl¢s, S) € R™, polynomially on the variables ¢
R?, and analytically on the jet coordinatés (™)) of some finite orden < occ.
Givenz(®) ¢ j><, |et

p= p(oo) JOOTM‘Z — Z(oo)JOO, p(j;)OV) = Voolz(ac), (610)

denote theprolongation maphat takes the jet of a vector field at the base peint
72°(2()) € M to its prolongation (5.6). Lep*: S — 7 be the correspondindual
prolongation mapdefined so that

(1%vip*(0)) = (P(I™V);0) (6.11)

forall j2°v € J>*TM,,, o € S. In generalp* is nota module morphism. However,
on the symbol level it essentially is, as we now explain.
Consider the particular linear polynomials

q P
)=ti+ > ultpia,  BUT) =T =Y udT (6.12)

fori=1,....p,a =1,...,q, whereu$ = 9u®/dz" are the first order jet coordinates
of our pointz(>). Note thatB*(T") is the symbol ofQ“, the o' component of the
characteristic o¥, cf. (6.9), whileg;(t) represents the symbol of the total derivative,
3(D;L) = pi(t) X(L). The functionss; = 3;(t), S* = B*(T) serve to define a linear
mapg3 : R?™ — R™.,

SinceB has maximal rank, the induced pull-back map

(B*0)(t1, - tn, TV, T™) = 0 (By(1),..., By(t), BN(T)...,BY(T))  (6.13)

defines an injectiof3*: S — 7. The algebraic structure of the vector field prolonga-
tion map at the symbol level is encapsulated in the following result.



22 Differential Invariants for Lie Pseudo-groups, Olver arahfnpelto

Lemma 6.1 The symbols of the prolonged vector field coefficients are
B =T B(p") =T, B(QY) =p"(SY), (FF)=B"(ss5%). (6.14)

Now given a Lie pseudo-grou@ acting onM, let g™ ) = p(J><g).) C Toe)J>
denote the subspakcspanned by its prolonged infinitesimal generators. Let

2o = (0% )t = (P) 7L € S (6.15)

denote theprolonged annihilator subbundleontaining those polynomials (6.8) that
annihilate all prolonged infinitesimal generaters < 9|00 - Further, Ie'u|z(x> =
H(Z.~)) C S be the subspace spanned by the highest order terms of the prolonged
annihilators. In genera)l‘za,o) is nota submodule, as, for instance, is the case with the
pseudo-group discussed in Example 4.5.

Let

Tz = (B)71(Z.) = {o(s.5) | B"(0)(t.T) = 0((t), B(T)) € I,.} C S, (6.16)

wherez = 7}(2(1)), be theprolonged symbol submodulthe inverse image of the
symbol module under the polynomial pull-back morphism (6.13). Imv\oé (6.15),
U, C J.o, wherez(!) = 752 (2(>2)). Moreover, assuming local freeness, these
two spaces agree at sufficiently high order, thereby endo#jing, with the structure

of an “eventual submodule”.

Lemma 6.2 If G acts locally freely at:(") € J", thenit* ., = J* .« for all
k> mnandallz®) ¢ JF with 7% (2(F)) = »(7),

Let us fix a degree compatible term ordering on the polynomial masipiehich we
extend toS by making the extra monomialks be ordered before all the others. At a
fixed regular submanifold jet(>), let V).~ be the monomial subspace generated by
the leading monomials of the polynomials #), ), or, equivalently, the annihilator
symbol polynomials i, () . LetIC‘ZM denote thecomplementary monomial sub-
spacespanned by all monomials i that arenotin AV, which can be constructed
by applying the usual Grobner basis algorithm [17}0.-., and then possibly supple-
menting the resulting complementary (or standard) monomials by any additoes
required at orders: n*, whereJ”" stands for the lowest order jet space on which the
pseudo-grouy acts locally freely.

Each monomial inc _ .., corresponds to a submanifold jet coordinateor u%. For
each0 < n < oo, we letK™ C J™ denote the coordinate cross-section passing through
2" = 722(2(>°)) prescribed by the monomials <" .,. For the correspond-
ing “algebraic” moving frame, each normalized differential invarianindexed by

a monomial inS, with H* corresponding t&;, and/$ to s;5*. The monomials in
N,.(=) index the complete system of functionally independent basic differentiaiiin
ants, whereas the complementary monomialssi‘izr]oo) index the constant phantom
differential invariants.

1In general,g> may only be a regular subbundle on a (dense) open subset sigee. We restrict our
attention to this subdomain throughout.
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However, at this stage a serious complication emerges: Because thiarnitizad
Maurer—Cartan forms are found by solving the recurrence fornfalathe phantom
invariants, their coefficients may depend @n- 1) order differential invariants, and
hence the correction term in the resulting recurrence formuléfpcan have the same
order as the leading term; see, for example, the recurrence forfoultee KP sym-
metry algebra derived in [15]. As a consequence, the recurrencrifas (5.11) for the
non-phantom invariants do not in general directly yield the leading ordenalized
differential invariants in terms of lower order invariants and their invarigemivatives.
However, this complication, which does not arise in the finite dimensionatgitu
[23], can be circumvented by effectively invariantizing all the conggrue this sec-
tion and by introducing an alternative collection of generating invariantsshazstter
adapted to the underlying algebraic structure of the prolonged symizhilmo

To each parametrized symbol polynomial

Mis,9) = Z > nla®) s;8% €8, (6.17)

a=1#J<n

whose coefficients depend on differential invariaitts = +(z,u*)) of order< &, we
associate a differential invariant

I; = zq: > rla® Iy (6.18)

a=1#J<n

Moreover, let] = (J).«y) denote theinvariantized prolonged symbol submodule
obtained by invariantizing all the polynomials #).,. If G acts transitively on an

open subset of’!, then 7 is a fixed module, since the maponly depends on first
order jet coordinates.

As a consequence of Lemma 6.2, evegmogeneoupolynomials(IV;s,9) € 7,
for n > n*, is the leading term of an annihilating polynomial

7(IW:s5,8) =51IW;5,8) + (IW; 5, 9) (6.19)
contained in the invariantized versiah of the prolonged annihilator bundig. For

such polynomials, the recurrence formula (5.11) reduces to

P
duls = (I + Ipz)w' — (7). (6.20)

i=1

In contrast to the original recurrence formulas,fior n*, thecorrection term
p .
> Ipsw = (;7) (6.21)
=1

in the algebraically adapted recurrence formula (6i20f lower order than the lead-
ing term 5. Equating the coefficients of the formg in (6.20) leads to individual
recurrence formulas

DIz = 1,5 + Rz, (6.22)
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in which, as long as = dego; > n*, theleading terml, ; is a differential invariant
of order= n + 1, while thecorrection termR; ; is of strictly lower order.

With this in hand, we arrive at the Constructive Basis and Syzygy Theogeverning
the differential invariant algebra of an eventually locally freely actingudsegroup
[60].

Theorem 6.3 LetG be a Lie pseudo-group that acts locally freely on the submanifold
jet bundle at ordem*. Then the following constitute a finite generating system for its
differential invariant algebra:

1. the differential invariantd,, = I,,,, whereo, ..., o, form a Gibner basis for the
submodule7 relative to our chosen term ordering, and, possibly,

2. a finite number of additional differential invariants of orderm*.

Theorem 6.4 Every differential syzygy among the generating differential invariants
is either a syzygy among those of ordern*, or arises from an algebraic syzygy
among the Gobner basis polynomials iff. Therefore, the differential syzygies are all
generated by a finite number of rational syzygies, corresponding tgetherators of
the syzygy module ¢f plus possibly a finite number of additional syzygies of order
< n*.

Applications of these results can be found in our papers listed in the netse
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