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1 Introduction

Lie pseudo-groups, roughly speaking, are the infinite-dimensional counterparts of local
Lie groups of transformations. Pseudo-groups were first studied systematically at the
end of the 19th century by Sophus Lie, whose great insight in the subjectwas to postu-
late the additional condition that pseudo-group transformations form the general solu-
tion to a system of partial differential equations, the determining equations for the
pseudo-group. In contrast to finite dimensional Lie groups, which since Lie’s day have
been rigorously formalized and have become a widely used mathematicaltool, the
foundations of infinite-dimensional pseudo-groups remain to date in a relatively un-
developed stage. Infinite dimensional Lie pseudo-groups can for the most part only be
studied through their concrete action on space, which makes the classification prob-
lems and analytical foundations of the subject thorny, particularly in the intransitive
situation. We refer the reader to the original papers of Lie, Medolaghi, and Vessiot
[37, 47, 69, 71] for the classical theory of pseudo-groups, to Cartan [13] for their refor-
mulation in terms of exterior differential systems, and [20, 29, 30, 35, 36, 39, 62, 63,
67, 68] for a variety of modern approaches.
Lie pseudo-groups appear in many fundamental physical and geometrical contexts,
including gauge symmetries [6], Hamiltonian mechanics and symplectic andPoisson
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geometry [51], conformal geometry of surfaces and conformal field theory [19, 21],
the geometry of real hypersurfaces [16], symmetry groups of bothlinear and nonlinear
partial differential equations, such as the Navier-Stokes and Kadomtsev–Petviashvili
(KP) equations appearing in fluid and plasma mechanics [5, 18, 51], geometric hydro-
dynamics [2], Vessiot’s method of group splitting for producing explicit solutions to
nonlinear partial differential equations [46, 50, 61, 71], mathematicalmorphology and
computer vision [66, 72], and geometric numerical integration [45]. Pseudo-groups
also appear as foliation-preserving groups of transformations, with theassociated char-
acteristic classes defined by certain invariant forms [24]. Also sufficiently regular local
Lie group actions can be regarded as Lie pseudo-groups.
In a series of collaborative papers, starting with [22, 23], the first author has success-
fully reformulated the classical theory of moving frames in a general, algorithmic, and
equivariant framework that can be readily applied to a wide range of finite-dimensional
Lie group actions. Applications have included complete classifications of differential
invariants and their syzygies, equivalence and symmetry properties ofsubmanifolds,
rigidity theorems, invariant signatures in computer vision [3, 7, 10, 54],joint invariants
and joint differential invariants [8, 54], rational and algebraic invariants of algebraic
group actions [27, 28], invariant numerical algorithms [31, 55, 72],classical invariant
theory [4, 53], Poisson geometry and solitons [42, 43, 44], and the calculus of vari-
ations [32]. New applications of these methods to computation of symmetry groups and
classification of partial differential equations can be found in [41, 48].Furthermore,
MAPLE software implementing the moving frame algorithms, written by E. Hubert,
can be found at [26].
Our main goal in this contribution is to survey the extension of the moving frame the-
ory to general Lie pseudo-groups recently put forth by the authors in [57, 58, 59, 60],
and in [14, 15] in collaboration with J. Cheh. Following [32], we develop thetheory
in the framework of the variational bicomplexes over the bundles of (infinite) jets of
mappingsJ∞(M,M) of M into M and ofp-dimensional submanifoldsJ∞(M,p) of
M , cf. [1, 32, 70]. The interactions between the two bicomplexes provide the key
to understanding the moving frame constructions. Importantly, the invariant contact
forms on the diffeomorphism jet bundleD(∞) ⊂ J∞(M,M) will play the role of
Maurer–Cartan forms for the diffeomorphism pseudo-group which enables us to for-
mulate explicitly the structure equations forD(∞). Restricting the diffeomorphism-
invariant forms to the pseudo-group subbundleG(∞) ⊂ D(∞) yields a complete system
of Maurer–Cartan forms for the pseudo-group. Remarkably, the restricted Maurer–
Cartan forms satisfy an “invariantized” version of the linear infinitesimal determining
equations for the pseudo-group, which can be used to produce an explicit form of the
pseudo-group structure equations. Application of these results to directlydetermin-
ing the structure of symmetry (pseudo-)groups of partial differentialequations can be
found in [5, 14, 15, 49].
Assuming freeness of the action, the explicit construction of a moving frame for a
pseudo-group is based on a choice of local cross-section to the pseudo-group orbits
in J∞(M,p), [23]. The moving frame induces an invariantization process that pro-
jects general differential functions and differential forms onJ∞(M,p) to their invari-
ant counterparts. In particular, invariantization of the standard jet coordinates results
in a complete system of normalized differential invariants, while invariantization of the
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horizontal and contact one-forms yields an invariant coframe. The corresponding dual
invariant total derivative operators will map invariants to invariants of higher order.
The structure of the algebra of differential invariants, including the specification of a
finite generating set of differential invariants, and the syzygies or differential relations
among the generators, will then follow from the recurrence formulas that relate the
differentiated and normalized differential invariants. Remarkably, besides the choice
of a cross section, this final step requires only linear algebra and differentiation based
on the infinitesimal determining equations for the pseudo-group, and notthe explicit
formulas for either the differential invariants, the invariant differentialoperators, or the
moving frame. Except possibly for some low order details, the underlying structure
of the differential invariant algebra is then entirely governed by two commutative al-
gebraic modules: the symbol module of the infinitesimal determining systemof the
pseudo-group and a new module, named the prolonged symbol module, that quantifies
the symbols of the prolonged action of the pseudo-group onJ∞(M,p).

2 The Diffeomorphism Pseudo-Group

Let M be a smoothm-dimensional manifold and letD = D(M) denote the pseudo-
group of all local diffeomorphismsϕ : M → M . For each0 ≤ n ≤ ∞, let Jn(M,M)
denote the bundle ofnth order jets of smooth mappingsφ : M → M andD(n) =
D(n)(M) ⊂ Jn(M,M) the groupoid ofnth order jets of local diffeomorphisms [40].
The source mapσn : D(n) →M and target mapτn : D(n) →M are given by

σn(jnz ϕ) = z, τn(jnz ϕ) = ϕ(z), (2.1)

respectively, and groupoid multiplication is induced by composition of mappings,

jnϕ(z)ψ · jnz ϕ = jnz (ψ ◦ ϕ). (2.2)

Let π̂nk : D(n) → D(k), 0 ≤ k ≤ n, denote the natural projections.
Given local coordinates(z, Z) = (z1, . . . , zm, Z1, . . . , Zm) on an open subset ofM ×
M , the induced local coordinates ofg(n) = jnz ϕ ∈ D(n) are denoted(z, Z(n)), where
the components

ZaB =
∂|B|ϕa

∂zB
(z), for 1 ≤ a ≤ m, 0 ≤ #B ≤ n,

of Z(n), represent the partial derivatives of the coordinate expression ofϕ at the source
point z = σn(g(n)). We will consistently use lower case letters,z, x, u, . . . for the
source coordinates and the corresponding upper case lettersZ(n), X(n), U (n), . . . for
the derivative target coordinates of our diffeomorphismsϕ.
The groupoidD(∞) ⊂ J∞(M,M) of infinite order jets inherits the structure of a vari-
ational bicomplex fromJ∞(M,M), [1, 70]. This provides a natural splitting of the
cotangent bundleT ∗D(∞) into horizontal and vertical (or contact) components [1, 52],



4 Differential Invariants for Lie Pseudo-groups, Olver and Pohjanpelto

and we used = dM + dG to denote the induced splitting of the exterior derivative on
D(∞). In terms of local coordinates(z, Z(∞)), the horizontal subbundle ofT ∗D(∞) is
spanned by the one-formsdza = dMz

a, a = 1, . . . ,m, while the vertical subbundle is
spanned by the basiccontact forms

Υa
B = dGZ

a
B = dZaB −

m∑

c=1

ZaBc dz
c, a = 1, . . . ,m, #B ≥ 0. (2.3)

Composition by a local diffeomorphismψ ∈ D induces an action by right multiplica-
tion on diffeomorphism jets,

Rψ(jnz ϕ) = jnψ(z)(ϕ ◦ψ−1). (2.4)

A differential formµ onD(n) is right-invariant if Rψ µ = µ, where defined, for every
ψ ∈ D. Since the splitting of forms onD(∞) is invariant under this action, the differen-
tialsdMµ anddGµ of a right-invariant formµ are again invariant. The target coordinate
functionsZa are obviously right-invariant, and hence their horizontal differentials

σa = dMZ
a =

m∑

b=1

Zab dz
b (2.5)

form an invariant horizontal coframe, while their vertical differentials

µa = dGZ
a = Υa = dZa −

m∑

b=1

Zab dz
b, a = 1, . . . ,m, (2.6)

are the invariant contact forms of order zero. Let

DZa = W b
aDzb (2.7)

denote the total total derivative operators onD(∞) dual to the horizontal forms (2.5),
where

Dzb =
∂

∂zb
+

∑

#B≥0

ZcBb
∂

∂ZcB
=

∂

∂zb
+Zcb

∂

∂Zc
+Zcb1b

∂

∂Zcb1
+Zcb1b2b

∂

∂Zcb1b2
+· · · , (2.8)

b = 1, . . . ,m, are the standard total derivative operators onD(∞) and whereW a
b =

(Zab )−1 is the inverse Jacobian matrix. Then the higher-order invariant contactforms
are obtained by successively Lie differentiating the invariant contact forms (2.6),

µaB = DZBµa = DZB Υa, (2.9)

whereDZB = DZb1 · · ·DZbk , a = 1, . . . ,m, k = #B ≥ 0.
The next step in our program is to establish the structure equations for the diffeomorph-
ism groupoidD(∞), which can be derived efficiently by employing Taylor series. Let

Za[[h ]] =
∑

#B≥0

1

B!
ZaB h

B, 1 ≤ a ≤ m, (2.10)
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be the individual components of the column vector-valued Taylor seriesZa[[h ]], de-
pending onh = (h1, . . . , hm), obtained by expanding a local diffeomorphismZ =
ϕ(z + h) at h = 0. Further, letΥ[[h ]], µ[[H ]] denote the column vectors of contact
form-valued and invariant contact form-valued power series with individual compon-
ents

Υa[[h ]] =
∑

#B≥0

1

B!
Υa
B h

B, µa[[H ]] =
∑

#B≥0

1

B!
µaB H

B, a = 1, . . . ,m,

(2.11)
respectively. Equations (2.9) imply that

µ[[H ]] = Υ[[h ]] whenH = Z[[H ]] − Z[[ 0 ]], (2.12)

which, after an application of the exterior derivative, can be used to derive the diffeo-
morphisms pseudo-group structure equations.

Theorem 2.1 The complete structure equations for the diffeomorphism pseudo-group
are obtained by equating coefficients in the power series identity

dµ[[H ]] = ∇Hµ[[H ]]∧ (µ[[H ]]− dZ[[ 0 ]]), d σ = − dµ[[ 0 ]] = ∇Hµ[[ 0 ]]∧ σ. (2.13)

Here ∇Hµ[[H ]] =

(
∂Za

∂Hb
[[H ]]

)
denotes them × m power series Jacobian matrix

obtained by differentiatingµ[[H ]] with respect toH = (H1, . . . , Hm).

LetX = X (M) denote the space of locally defined vector fields onM , which we write
in local coordinates as

v =

m∑

a=1

ζa(z)
∂

∂za
. (2.14)

We regardX as the space of infinitesimal generators of the diffeomorphism pseudo-
group. LetX (n) = JnTM , 0 ≤ n ≤ ∞, denote the tangentn-jet bundle. Then-
jet jnz v ∈ X (n) of the vector field (2.14) at a pointz is prescribed by all the partial
derivatives of its coefficients up to ordern, which we denote by

ζ(n) = (. . . , ζaB, . . . ), a = 1, . . . ,m, 0 ≤ #B ≤ n. (2.15)

3 Lie Pseudo-Groups

Several variants of the precise technical definition of a Lie pseudo-group appear in the
literature. Ours is:

Definition 3.1 A sub-pseudo-groupG ⊂ D will be called aLie pseudo-groupif there
existsno ≥ 1 such that for alln ≥ no:
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1. the corresponding sub-groupoidG(n) ⊂ D(n) forms a smooth, embedded subbundle,
2. every smooth local solutionZ = ϕ(z) to the determining systemG(n) belongs toG,

3. G(n) = pr(n−no)G(no) is obtained by prolongation.

The minimal value ofno is called theorder of the pseudo-group.
Thus on account of conditions (1) and (3), forn ≥ no, the pseudo-group subbundle
G(n) ⊂ D(n) is defined in local coordinates by a formally integrable system ofnth order
partial differential equations

F (n)(z, Z(n)) = 0, (3.1)

the determining equationsfor the pseudo-group, whose local solutionsZ = ϕ(z),
by condition (2), are precisely the pseudo-group transformations. Our assumptions,
moreover, imply that the isotropy jetsG(n)

z = {g(n) ∈ G(n) | σn(g(n)) = τn(g(n)) = z}
form a finite dimensional Lie group for allz ∈M .
Given a Lie pseudo-groupG, let g ⊂ X denote the local Lie algebra of infinitesimal
generators, i.e., the set of locally defined vector fields whose flows belong toG. Let
g
(n) ⊂ X (n) denote their jets. In local coordinates, the subspaceg

(n) ⊂ X (n) is defined
by a linear system of partial differential equations

L(n)(z, ζ(n)) = 0 (3.2)

for the vector field coefficients (2.13), called thelinearizedor infinitesimal determining
equationsfor the pseudo-group. Conversely, any vector fieldv satisfying infinitesimal
determining equations (3.2) is an infinitesimal generator forG, [57]. In practice, the lin-
earized determining equations are constructed by linearizing thenth order determining
equations (3.1) at the identity transformation. IfG is the symmetry group of a system
of differential equations, then the linearized determining equations (3.2)are (the com-
pletion of) the usual determining equations for its infinitesimal generators obtained via
Lie’s algorithm [51].
Let us explain how the underlying structure of the pseudo-group is explicitly prescribed
by its infinitesimal determining equations. As with finite-dimensional Lie groups, the
structure of a pseudo-group is described by its Maurer–Cartan forms. A complete
system of right-invariant one-forms onG(∞) ⊂ D(∞) is obtained by restricting (or
pulling back) the Maurer–Cartan forms (2.5), (2.9). For simplicity, wecontinue to
denote these forms byσa, µaB . The restricted Maurer–Cartan forms are, of course,
no longer linearly independent, but are subject to certain constraints dictated by the
pseudo-group. Remarkably, these constraints can be explicitly characterized by an
invariant version of the linearized determining equations (3.2), obtainedby replacing
the source coordinatesza by the corresponding target coordinatesZa and the vector
field jet coordinatesζaB by the corresponding Maurer–Cartan formµaB.

Theorem 3.2 The linear system

L(n)(Z, µ(n)) = 0 (3.3)

serves to define the complete set of linear dependencies among the right-invariant
Maurer–Cartan formsµ(n) onG(n).
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In this way, we effectively and efficiently bypass Cartan’s more complicated prolonga-
tion procedure [9, 13] for accessing the pseudo-group structure equations.

Example 3.3 In this example we derive the structure equations for the pseudo-group
G consisting of transformationsϕ : R

3 → R
3 with

X = f(x), Y = e(x, y) ≡ f ′(x) y + g(x),

U = u+
ex(x, y)

f ′(x)
= u+

f ′′(x) y + g′(x)

f ′(x)
,

(3.4)

wheref(x) ∈ D(R) andg(x) is an arbitrary smooth function. The transformations
(3.4) form the general solution to the first order system of determining equations

Xy = Xu = 0, Yy = Xx 6= 0, Yu = 0, Yx = (U − u)Xx, Uu = 1 (3.5)

for G. The infinitesimal generators are given by

v = ξ
∂

∂x
+ η

∂

∂y
+ϕ

∂

∂u
= a(x)

∂

∂x
+ [a′(x) y+ b(x)]

∂

∂y
+ [a′′(x) y+ b′(x)]

∂

∂u
, (3.6)

wherea(x), b(x) are arbitrary functions, forming the general solution to the first order
infinitesimal determining system

ξx = ηy , ξy = ξu = ηu = ϕu = 0, ηx = ϕ, (3.7)

which is obtained by linearizing the determining system (3.5) at the identity jet.
In accordance with Theorem 3.2, the pull-backs of the Maurer–Cartanforms (2.9) sat-
isfy the invariantized version

µxX = µyY , µxY = µxU = µyU = µuU = 0, µyX = µu, (3.8)

of the linearized determining equations. By a repeated application of the invariant total
derivative operatorsDX , DY , DU (cf. (2.7)) we find that

µyXnY = µxXn+1 , µuXn = µyXn+1 , µuXnY = µxXn+2, n ≥ 0, (3.9)

while all the other pulled-back basis Maurer–Cartan forms vanish. As a result, the
one-forms

σx, σy, σu, µxn = µxXn , µyn = µyXn , n ≥ 0, (3.10)

form aG–invariant coframe onG(∞).
The structure equations are obtained by substituting the expansions

µx[[H ]] =

∞∑

n=0

1

n!
µxnH

n,

µy[[H,K ]] =

∞∑

n=0

1

n!
µynH

n +K

∞∑

n=0

1

n!
µxn+1H

n,

µu[[H,K ]] =

∞∑

n=0

1

n!
µyn+1H

n +K

∞∑

n=0

1

n!
µxn+2H

n,

(3.11)
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into (2.13). Those involvingµxXn reduce to the structure equations

dσx = µxX ∧ σx, dµxXn = −µxXn+1 ∧ σx +
n−1∑

i=0

(
n

i

)
µxXi+1 ∧ µxXn−i

= σx ∧ µxXn+1 −
[n+1/2]∑

j=0

n− 2j + 1

n+ 1

(
n+ 1

j

)
µxXj ∧ µxXn+1−j

(3.12)

for D(R) (cf. Cartan [12], eq. (48)), while

dσy = µyX ∧ σx + µxX ∧ σy, dσu = µyX2 ∧ σx + µxX2 ∧ σy,

dµyXn = σx ∧ µyXn+1 + σy ∧ µxXn+1 +

n−1∑

j=0

[(
n

j

)
−

(
n

j + 1

)]
µyXj+1 ∧ µxXn−j .

(3.13)

Additional examples of this procedure can be found in [14, 58]; see also [49] for a
comparison with other approaches appearing in the literature.

4 Pseudo-Group Actions on Extended Jet
Bundles

In this paper, our primary focus is on the induced action of our pseudo-group on sub-
manifolds of a fixed dimension. For0 ≤ n ≤ ∞, let Jn = Jn(M,p) denote thenth

order (extended) jet bundle consisting of equivalence classes ofp-dimensional subman-
ifolds S ⊂ M under the equivalence relation ofnth order contact, cf. [52]. We use the
standard local coordinates

z(n) = (x, u(n)) = (. . . , xi, . . . , uαJ , . . . ) (4.1)

onJn induced by a splitting of the local coordinates

z = (x, u) = (x1, . . . , xp, u1, . . . , uq)

onM into p independent andq = m− p dependent variables [51, 52].
The choice of independent and dependent variables brings about a decomposition of
the differential one-forms onJ∞ into horizontal and vertical components. The basis
horizontal formsare the differentialsdx1, . . . , dxp of the independent variables, while
the basis vertical forms are provided by thecontact forms

θαJ = duαJ −
p∑

i=1

uαJi dx
i, α = 1, . . . , q, #J ≥ 0. (4.2)
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This decomposition induces a splitting of the exterior derivatived = dH + dV on J∞

into horizontal and vertical (or contact) components, and locally endowsthe algebra of
differential forms onJ∞ with the structure of a variational bicomplex [1, 32, 70].

Local diffeomorphisms preserve thenth order contact equivalence relation between
submanifolds, and thus give rise to an action on the jet bundleJn, known as thenth pro-
longed action, which, by the chain rule factors through the diffeomorphism jet groupoid
D(n). It will be useful to combine the two bundlesD(n) andJn into a new groupoid
E(n) → Jn by pulling backD(n) → M via the standard projectioñπno : Jn → M .
Points inE(n) consists of pairs(z(n), g(n)), wherez(n) ∈ Jn andg(n) ∈ G(n) are based
at the same pointz = π̂no (g(n)) = π̃no (z(n)).

Local coordinates onE(n) are written asZ(n) = (z(n), Z(n)), where

z(n) = (x, u(n)) = (. . . , xi, . . . , uαJ , . . . )

indicate submanifold jet coordinates, while

Z(n) = (X(n), U (n)) = (. . . , X i
A, . . . , U

α
A, . . . )

indicate diffeomorphism jet coordinates. The groupoid structure onE(n) is induced by
the source map, which is merely the projection,σ̃

n(z(n), g(n)) = z(n), and the target
mapτ̃

n(z(n), g(n)) = g(n) · z(n), which is defined by the prolonged action ofD(n) on
Jn. We letϕ ∈ D with domain domϕ = U ⊂M act on the setE(n)

|U = {(z(n), g(n)) ∈
E(n) | π̃no (z(n)) ∈ U} by

ϕ · (z(n), g(n)) = (jnz ϕ · z(n), g(n) · jnϕ(z)ϕ
−1), (4.3)

whereπ̃no (z(n)) = z. The action (4.3) obviously factors into an action ofD(n) onE(n).

The cotangent bundleT ∗E∞ naturally splits into jet and group components, spanned,
respectively, by thejet forms, consisting of the horizontal one-formsdxi and contact
one-formsθαJ from the submanifold jet bundleJ∞, and by the contact one-formsΥα

B

from the diffeomorphism jet bundleD(∞). We accordingly decompose the differential
on E∞ into jet and group components, the former further splitting into horizontal and
vertical components:

d = dJ + dG = dH + dV + dG. (4.4)

The resulting operators satisfy the tricomplex relations [32],

d 2
J = d 2

G = d 2
H = d 2

V = 0,

dJdG = −dGdJ , dHdV = −dV dH , dHdG = −dGdH , dV dG = −dGdV .

The above splitting determineslifted total derivative operators

Dxj = Dxj +

q∑

α=1

uαj Dua +
∑

#J ≥ 1

uαJj
∂

∂uαJ
(4.5)
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onE∞, whereDxj , Duα are the standard total derivative operators (2.8) onG(∞). Pro-
ceeding in analogy with the construction of the invariant total derivative operators (2.7)
onD(∞), we definelifted invariant total derivative operatorsonE∞ by

DXj =

p∑

k=1

Ŵ k
j Dxk , where Ŵ k

j = (DxjXk)−1 (4.6)

indicates the entries of the inverse total Jacobian matrix. With this, the chain rule
formulas for the higher-order prolonged action ofD(n) on Jn, i.e., coordinateŝUαJ of
the target map̃τn : E(n) → Jn, are obtained by successively differentiating the target
dependent variablesUα with respect to the target independent variablesX i, whereby

ÛαJ = DXJUα = DXj1 · · ·DXjkU
α. (4.7)

These are the multi-dimensional versions of the usual implicit differentiation formulas
from calculus.

Given a Lie pseudo-groupG, let H(n) ⊂ E(n) denote the subgroupoid obtained by
pulling backG(n) ⊂ D(n) via the projectioñπno : Jn →M .

Definition 4.1 A moving frameρ(n) of order n is aG(n) equivariant local section of
the bundleH(n) → Jn.

More explicitly, we requireρ(n) : Vn → H(n), whereVn ⊂ Jn is open, to satisfy

σ̃
n(ρ(n)(z(n))) = z(n), ρ(n)(g(n) · z(n)) = g(n) · ρ(n)(z(n)), (4.8)

for all g(n) ∈ G(n)
|z near the jetI(n)

z of the identity transformation such that both
z(n) andg(n) · z(n) lie in the domain of definitionVn of ρ(n), whereG(n)

|z denotes
the source fibre ofG(n) at z = π̃no (z(n)). Then, with a moving frame at hand, the
compositionτ̃n ◦ ρ(n), due to equations (4.3), (4.8), is invariant under the action ofG
onJn and, as we will subsequently see, provide differential invariants for theaction of
G in Jn .

A moving frameρ(k) : Vk → H(k) of orderk > n is compatiblewith a moving frame
ρ(n) : Vn → H(n) of ordern if π̂nk ◦ρ(k) = ρ(n) ◦ π̃nk , where defined. Acomplete moving
frame is provided by a mutually compatible collectionρ(k) : Vk → H(k) of moving
frames of all ordersk ≥ n with domainsVk = (π̃kn)

−1Vn.

As in the finite-dimensional construction [23], the (local) existence of a moving frame
requires that the group action be free and regular.

Definition 4.2 The pseudo-groupG actsfreelyat z(n) ∈ Jn if its isotropy subgroupis
trivial, G(n)

z(n) = {g(n) ∈ G(n)
|z | g(n) ·z(n) = z(n)} = {I

(n)
z }, andlocally freelyif G(n)

z(n)

is discrete.
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According to the standard definition [23] any (locally) free action of a finite-dimension-
al Lie group satisfies the (local) freeness condition of definition 4.2, butthe converse
is not necessarily valid.
The pseudo-group acts locally freely atz(n) if and only if the dimension of the pro-
longed pseudo-group orbit throughz(n) agrees with the dimensionrn = dim G(n)

|z

of the source fiber atz = π̃no (z(n)). Thus, freeness of the pseudo-group at ordern
requires, at the very least, that

rn = dim G(n)
|z ≤ dimJn = p+ (m− p)

(
p+ n

p

)
. (4.9)

Freeness thus provides an alternative and simpler means of quantifyingthe Spencer
cohomological growth conditions imposed in [33, 34]. Pseudo-groupshaving too large
a fiber dimensionrn will, typically, act transitively on (a dense open subset of)Jn, and
thus possess no non-constant differential invariants. A key result of[60], generalizing
the trivial finite-dimensional case, is the persistence of local freeness.

Theorem 4.3 Let G be a Lie pseudo-group acting on anm-dimensional manifoldM .
If G acts locally freely atz(n) ∈ Jn for somen > 0, then it acts locally freely at any
z(k) ∈ Jk with π̃kn(z(k)) = z(n), for k ≥ n.

As in the finite-dimensional version, [23], moving frames are constructed through a
normalization procedure based on a choice ofcross-sectionto the pseudo-group orbits,
i.e., a transverse submanifold of the complementary dimension.

Theorem 4.4 SupposeG(n) acts freely onVn ⊂ Jn with its orbits forming a reg-
ular foliation. Let Kn ⊂ Vn be a local cross-section to the pseudo-group orbits.
Given z(n) ∈ Vn, defineρ(n)(z(n)) ∈ H(n) to be the unique groupoid jet such that
σ̃
n(ρ(n)(z(n))) = z(n) and τ̃

n(ρ(n)(z(n))) ∈ Kn (when such exists). Thenρ(n) : Jn →
H(n) is a moving frame forG defined on an open subset ofVn containingKn.

In most practical situations, we select a coordinate cross-section of minimal order,
defined by fixing the values ofrn of the individual submanifold jet coordinates(x, u(n)).
We write out the explicit formulas(X,U (n)) = F(x, u(n), g(n)) using expressions (4.5)
for the prolonged pseudo-group action in terms of a convenient systemof group para-
metersg(n) = (g1, . . . , grn

). Thern components corresponding to our choice of cross-
section variables serve to define thenormalization equations

F1(x, u
(n), g(n)) = c1, . . . , Frn

(x, u(n), g(n)) = crn
. (4.10)

Solving for the group parameters,

gi = γ
(n)
i (x, u(n)), i = 1, . . . , rn, (4.11)

yields the formula
ρ(n)(x, u(n)) = (x, u(n), γ(n)(x, u(n)))

for a moving frame section.
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The general invariantization procedure introduced in [32] in the finite-dimensional
case adapts straightforwardly. To compute the invariantization of a function, differ-
ential form, differential operator, etc., one writes out how it explicitly transforms un-
der the pseudo-group, and then replaces the pseudo-group parameters by their moving
frame expressions (4.11). Invariantization thus defines a projection,depending upon
the choice of cross-section or moving frame, from the spaces of general functions and
forms to the spaces of invariant functions and forms. In particular, invariantizing the
coordinate functions onJ∞ leads to thenormalized differential invariants

Hi = ι(xi), i = 1, . . . , p, IαJ = ι(uαJ ), α = 1, . . . , q, #J ≥ 0. (4.12)

These naturally split into two species: those appearing in the normalization equations
(4.10) will be constant, and are known as thephantom differential invariants. The
remainingsn = dimJn− rn components, called thebasic differential invariants, form
a complete system of functionally independent differential invariants of order≤ n.

Secondly, invariantization of the basis horizontal one-forms leads to the invariant hori-
zontal one-forms

̟i = ι(dxi) = ωi + κi, i = 1, . . . , p, (4.13)

whereωi , κi are, respectively, the horizontal and vertical (contact) components.If the
pseudo-group acts projectably, then the contact components vanish,κi = 0. Other-
wise, the two components are not individually invariant, although the horizontal forms
ω1, . . . , ωp are, in the language of [52], a contact-invariant coframe onJ∞.

The dual invariant differential operatorsD1, . . . ,Dp are uniquely defined by the for-
mula

dF =

p∑

i=1

DiF ̟i + · · · , (4.14)

valid for any differential functionF , where we omit the contact components (although
these do play an important role in the study of invariant variational problems, [32]). The
invariant differential operators map differential invariants to differential invariants. In
general, they do not commute, but are subject to linear commutation relations of the
form

[Di,Dj ] =

p∑

k=1

Y kij Dk, i, j = 1, . . . , p, (4.15)

where the coefficientsY kij are certain differential invariants that must also be determ-
ined. Finally, invariantizing the basis contact one-forms

ϑαK = ι(θαK), α = 1, . . . , q, #K ≥ 0, (4.16)

provide a complete system of invariant contact one-forms. The invariant coframe
serves to characterize theG invariant variational complex in the domain of the com-
plete moving frame, [32].
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Example 4.5 Consider the action of the pseudo-group (3.4) on surfacesu = h(x, y).
The pseudo-group maps the basis horizontal formsdx, dy to the one-forms

dHX = fxdx, dHY = exdx+ fxdy. (4.17)

By (4.7), the prolonged pseudo-group transformations are found by applying the dual
implicit differentiations

DX =
1

fx
Dx −

ex
f2
x

Dy, DY =
1

fx
Dy

successively toU = u+ ex/fx, so that

UX =
ux
fx

+
exx − ex uy

f2
x

− 2
fxx ex
f3
x

, UY =
uy
fx

+
fxx
f2
x

,

UXX =
uxx
f2
x

+
exxx − exx uy − 2 ex uxy − fxx ux

f3
x

+
e2x uyy + 3 exfxx uy − 4 exxfxx − 3 ex fxxx

f4
x

+ 8
ex f

2
xx

f5
x

,

UXY =
uxy
f2
x

+
fxxx − fxx uy − ex uyy

f3
x

− 2
f2
xx

f4
x

, UY Y =
uyy
f2
x

,

UXY Y =
fxuxyy − exuyyy − 2fxxuyy

f4
x

, UY Y Y =
uyyy
f3
x

,

(4.18)

and so on. In these formulas, the diffeomorphism jet coordinatesf , fx, fxx, . . . ,e, ex,
exx, . . . are to be regarded as the independent pseudo-group parameters. The pseudo-
group cannot act freely onJ1 sincer1 = dimG(1)

|z = 6 > dim J1 = 5. On the other
hand,r2 = dimG(2)

|z = 8 = dimJ2, and the action onJ2 is, in fact, locally free and
transitive on the setsV2

+ = J2 ∩ {uyy > 0} andV2
− = J2 ∩ {uyy < 0}. Moreover,

in accordance with Theorem 4.3,G(n) acts locally freely on the corresponding open
subsets ofJn for anyn ≥ 2.
To construct the moving frame, we adopt the following cross-section normalizations:

X = 0 =⇒ f = 0,

Y = 0 =⇒ e = 0,

U = 0 =⇒ ex = − u fx,

UY = 0 =⇒ fxx = − uy fx,

UX = 0 =⇒ exx = (u uy − ux) fx,

UY Y = 1 =⇒ fx =
√
uyy ,

UXY = 0 =⇒ fxxx = −√
uyy (uxy + uuyy − u2

y),

UXX = 0 =⇒ exxx = −√
uyy (uxx − uuxy − 2 u2uyy − 2uxuy + uu2

y).

(4.19)
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At this stage, we have normalized enough pseudo-group parameters tocompute the
first two basic differential invariants by substituting the normalizations (4.19) into the
transformation rules foruxyy, uyyy in (4.18), which yields the expressions

I12 = ι(uxyy) =
uxyy + uuyyy + 2 uyuyy

u
3/2
yy

, I03 = ι(uyyy) =
uyyy

u
3/2
yy

(4.20)

for the invariants. Higher order differential invariants are found by continuing this pro-
cess, or by using the more effective Taylor series method of [59]. Further, substituting
the pseudo-group normalizations into (4.17) fixes the invariant horizontal coframe

ω1 = ι(dx) =
√
uyy dx, ω2 = ι(dy) =

√
uyy (dy − udx).

The invariant contact forms are similarly constructed [59]. The dual invariant total
derivative operators are

D1 =
1

√
uyy

(Dx + uDy), D2 =
1

√
uyy

Dy. (4.21)

The higher-order differential invariants can be generated by successively applying these
differential operators to the pair of basic differential invariants (4.20). The total deriv-
ative operators satisfy the commutation relation

[D1,D2 ] = − 1

2
I03D1 +

1

2
I12D2. (4.22)

Finally, there is a single basic syzygy

D1I03 −D2I12 = 2 (4.23)

among the differentiated invariants from which all others can be deducedby invariant
differentiation.

5 Recurrence Formulas

The recurrence formulas [23, 32] connect the differentiated invariants and invariant
forms with their normalized counterparts. These formulas are fundamental, since they
prescribe the structure of the algebra of (local) differential invariants,underlying a full
classification of generating differential invariants, their syzygies (differential identit-
ies), as well as the structure of invariant variational problems and, indeed, the local
structure of the entire invariant variational bicomplex. As in the finite-dimensional
version, the recurrence formulas are established using purely infinitesimal informa-
tion, requiring only linear algebra and differentiation. In particular, they do not require
the explicit formulas for either the moving frame, or the Maurer–Cartan forms, or the
normalized differential invariants and invariant forms, or even the invariant differential
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operators! Beyond the formulas for the infinitesimal determining equations, the only
additional information required is the specification of the moving frame cross-section.

Under the moving frame map, the pulled-back Maurer–Cartan forms willbe denoted
ν∞ = (ρ(∞))∗µ∞, with individual components

νbA = (ρ(∞))∗(µbA), b = 1, . . . ,m, #A ≥ 0. (5.1)

As such, they are invariant one-forms, and so are invariant linear combinations of our
invariant coframe elementsωi, ϑαK defined in (4.13), (4.16), with coefficients that are
certain differential invariants.
Fortunately, the precise formulas need not be established a priori, as they will be a
direct consequence of the recurrence formulas for the phantom differential invariants.
We will extend our invariantization process to vector field coefficient jet coordinates
(2.15) by defining

ι(ζbA) = νbA, b = 1, . . . ,m, #A ≥ 0, (5.2)

and, by extension, to their differential function and form-valued linear combinations,

ι

( m∑

b=1

∑

#A≤n

ζbA ω
A
b

)
=

m∑

b=1

∑

#A≤n

νbA ∧ ι
(
ωAb

)
, (5.3)

where theωAb arek–forms onJ∞, so the result is an invariant differential(k+ 1)-form
on J∞. With this interpretation, the pulled-back Maurer–Cartan formsνbA are subject
to the linear relations

L(n)(H, I, ν(n)) = ι
[
L(n)(z, ζ(n))

]
= 0, n ≥ 0, (5.4)

obtained by invariantizing the original linear determining equations (3.2). Here

(H, I) = ι(x, u) = ι(z)

are the zeroth order differential invariants in (4.12).
Given a locally defined vector field

v =
m∑

a=1

ζa(z)
∂

∂za
=

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
∈ X (M), (5.5)

let

v
∞ =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

∑

n=#J ≥ 0

ϕ̂αJ (x, u(n))
∂

∂uaJ
∈ X (J∞) (5.6)

denote its infinite prolongation. The coefficients are computed via the usualprolonga-
tion formula,

ϕ̂αJ = DJ Q
α +

p∑

i=1

ξiuαJi, where Qα = ϕα −
p∑

i=1

uαi ξ
i, α = 1, . . . , q,

(5.7)
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are the components of thecharacteristicof v, [51, 52].

Consequently, each prolonged vector field coefficient

ϕ̂αJ = ΦαJ (u(n), ζ(n)) (5.8)

is a certain universal linear combination of the vector field jet coordinates(2.15), whose
coefficients are polynomials in the submanifold jet coordinatesuβK for 1 ≤ #K ≤
n. Therefore, thenth order prolongation of vector fields factors through thenth order
vector field jet bundle. Let

ηi = ι(ξi) = νi, ψ̂αJ = ι(ϕ̂αJ ) = Ψα
J (I(n), ν(n)), (5.9)

denote the invariantizations of the prolonged infinitesimal generator coefficients (5.8),
which are linear combinations of the pulled-back Maurer–Cartan forms (5.2), with
polynomial coefficients in the normalized differential invariantsIβK for 1 ≤ #K ≤ #J .

With all these in hand, the desireduniversal recurrence formulais as follows.

Theorem 5.1 If ω is any differential form onJ∞, then

d ι(ω) = ι(d ω + v
∞(ω)), (5.10)

wherev∞(ω) denotes the Lie derivative ofω with respect to the prolonged vector field
(5.6), and where we use(5.9) to invariantize the result.

Specializingω in (5.10) to be one of the coordinate functionsxi, uαJ yields recurrence
formulas for the normalized differential invariants (4.12),

dH i = ι(dxi + ξi) = ̟i + ηi,

dIαJ = ι(duαJ + ϕ̂αJ ) = ι

( p∑

i=1

uαJi dx
i + θαJ + ϕ̂αJ

)
=

p∑

i=1

IαJi̟
i + ϑαJ + ψ̂αJ ,

(5.11)

whereψ̂αJ is written in terms of the pulled-back Maurer–Cartan formsνbA as in (5.9),
and are subject to the linear constraints (5.4). Each phantom differential invariant is,
by definition, normalized to a constant value, and hence has zero differential. Con-
sequently, the phantom recurrence formulas in (5.11) form a system of linear algebraic
equations which can, as a result of the transversality of the cross-section, be uniquely
solved for the pulled-back Maurer–Cartan forms.

Theorem 5.2 If the pseudo-group acts locally freely onVn ⊂ Jn, then thenth order
phantom recurrence formulas can be uniquely solved in a neighborhoodof the cross
section to express the pulled-back Maurer–Cartan formsνbA of order#A ≤ n as in-
variant linear combinations of the invariant horizontal and contact one-forms̟i, ϑαJ .
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Substituting the resulting expressions into the remaining, non-phantom recurrence for-
mulas in (5.11) leads to a complete system of recurrence relations, for both the vertical
and horizontal differentials of all the normalized differential invariants.
As the prolonged vector field coefficientŝϕαJ are polynomials in the jet coordinatesuβK
of order#K ≥ 1, their invariantizations are polynomial functions of the differential
invariantsIβK for #K ≥ 1. Since the correction terms are constructed by solving a
linear system for the invariantized Maurer–Cartan forms, the resulting coefficients are
rational functionsof these differential invariants. Thus, in most cases (including the
majority of applications), the algebra of differential invariants for the pseudo-group is
endowed with an entirely rational algebraic recurrence structure.

Theorem 5.3 If G acts transitively onM , or, more generally, its infinitesimal generat-
ors depend polynomially on the coordinatesz = (x, u) ∈M , then the correction terms
in the recurrence formulas(5.11)are rational functions of the normalized differential
invariants.

Example 5.4 In this example we let the pseudo-group (3.4) act on surfaces inR
3.

We will illustrate how the above ideas can be used to uncover recursion formulas for
derivatives of the normalized differential invariants with respect to the invariant total
derivative operators (4.21). For this only the horizontal componentsof equations (5.11)
are needed, and we write these as

dHH
1 = ωx + χx, dHH

2 = ωy + χy,

dHIij = Ii+1,j ω
x + Ii,j+1 ω

y + κij i, j ≥ 0.
(5.12)

In (5.12) eachκij is a linear combination of the horizontal pulled-back Maurer–Cartan
forms which we denote

χxXaY bUc , χy
XaY bUc , χuXaY bUc , a, b, c ≥ 0. (5.13)

These are again constrained by the invariantized infinitesimal determining equations
L(n)(H,χ(n)) = 0, and, as in Example 3.3, we see that a basis for the forms (5.13) is
provided byχxXn , χyXn , n ≥ 0, and, moreover, that

χyXnY = χxXn+1 , χuXn = χyXn+1, χuXnY = χxXn+2 , n ≥ 0, (5.14)

while all the other horizontal pulled-back Maurer–Cartan forms vanish.
We choose a cross section by imposing, in addition to (4.19), the normalization equa-
tions

UXn = 0, UXn−1Y = 0, n ≥ 3. (5.15)

It now follows from (5.14) that the horizontal correction termsκij are precisely the
coefficients of the horizontal invariantization of the vector field obtained byfirst pro-
longing the vector field

v = ξ(x)
∂

∂x
+ η(x, y)

∂

∂y
+ ηx(x, y)

∂

∂u
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and then applying the relations

ηy = ξx, ξy = ξu = ηu = 0

and their differential consequences to express the resulting coefficient functions solely
in terms of the repeatedx-derivatives ofξ andη. With this, theuij-component̂ϕij of
pr v becomes

ϕ̂ij = δoj ηxi+1 + δ1j ξxi+2

−
i+1∑

s=1

i+ 1 + (j − 1)s

i+ 1

(
i+ 1

s

)
ξxsui−s+1,j −

i∑

s=1

(
i

s

)
ηxsui−s,j+1,

yielding the invariantization

κij = δoj χ
y
Xi+1 + δ1j χ

x
Xi+2

−
i+1∑

s=1

i+ 1 + (j − 1)s

i+ 1

(
i+ 1

s

)
Ii−s+1,j χ

x
Xs −

i∑

s=1

(
i

s

)
Ii−s,j+1 χ

y
Xs .

Taking into account normalizations (4.19), (5.15), the phantom recurrence formulas for
the horizontal derivatives reduce to

0 = dHH
x = ωx + χx, 0 = dHH

y = ωy + χy,

0 = dHI = χyX , 0 = dHI10 = χyX2 ,

0 = dHI01 = ωy + χxX2 , 0 = dHI20 = χyX3 , (5.16)

0 = dHI11 = I12ω
y − χyX + χxX3 , 0 = dHI02 = I12ω

x + I03ω
y − 2χxX ,

0 = dHI30 = χyX4 , 0 = dHI21 = I22ω
y + χxX4 − χyX2 − 2I12χ

y
X ,

and so on. These can be solved for the Maurer–Cartan formsχxXn , χyXn to yield

χx = −ωx, χy = −ωy, χxX = 1
2 (I12ω

x + I03ω
y), χyX = 0,

χxX2 = −ωy, χyX2 = 0, χxX3 = −I12ωy, χyX3 = 0, (5.17)

χxX4 = −I22ωy, χyX4 = 0, . . . .

Next we substitute the expressions (5.17) in the recurrence formulas for the non-
phantom invariants in (5.12). Keeping in mind that

dHIij = (D1Iij)ω
x + (D2Iij)ω

y,
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theωx-, ωy-components of the resulting equations yield the expressions

D1I12 = I22 − 3
2I

2
12, D2I12 = I13 − 3

2I12I03 + 2,

D1I03 = I13 − 3
2I12I03, D2I03 = I04 − 3

2I
2
03,

D1I22 = I32 − 2I12I22, D2I22 = I23 − 2I03I22 + 7I12, (5.18)

D1I13 = I23 − 2I12I13, D2I13 = I14 − 2I03I13 + 3I03,

D1I04 = I14 − 2I12I04, D2I04 = I05 − 2I03I04,

...

It becomes apparent from these formulas that the invariantsI12 andI03 generate the
algebra of differential invariants for the pseudo-group (3.4).

A derivation of the recurrence formulas (5.18) using Taylor series methods can be
found in [59].

6 Algebra of Differential Invariants

Establishment of the theoretical results that underpin our constructive algorithms relies
on the interplay between two algebraic structures associated with the two jet bundles:
the first is defined by the symbols of the linearized determining equations for the in-
finitesimal generator jets; the second from a similar construction for the prolonged
generators on the submanifold jet bundle. We begin with the former, whichis the more
familiar of the two.

We introduce algebraic variablest = t1, . . . , tm andT = T 1, . . . , Tm. Let

T =

{
η(t, T ) =

m∑

a=1

ηa(t)T
a

}
≃ R[t] ⊗ R

m (6.1)

denote theR[t] module consisting of real polynomials that are linear in theT ’s. We
gradeT = ⊕n≥0 T n, whereT n consists of the homogeneous polynomials ofdegreen
in t. We setT ≤n = ⊕nk=0 T k to be the space of polynomials of degree≤ n.

Given a subspaceI ⊂ T , we setIn = I ∩ T n, I≤n = I ∩ T ≤n. The subspace
is gradedif I = ⊕n≥0 In is the sum of its homogeneous constituents. A subspace
I ⊂ T is a submoduleif the productλ(t) η(t, T ) ∈ I wheneverη(t, T ) ∈ I and
λ(t)∈R[t]. A subspaceI ⊂ T spanned by monomialstAT b = ta1 · · · tan

T b is called a
monomial subspace, and is automatically graded. In particular, amonomial submodule
is a submodule that is spanned by monomials. A polynomialη ∈ T ≤n hasdegree
n = deg η andhighest order termsH(η) ∈ T n providedη = H(η)+η̃, whereH(η) 6= 0
andη̃ ∈ T ≤n−1 is of lower degree. By convention, only the zero polynomial has zero
highest order term.
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We will assume in the remaining part of the paper that all our functions, vector fields
etc. are analytic. We can locally identify the dual bundle to the infinite order jetbundle
as(X∞)∗ ≃M × T via the pairing〈 j∞z v ; tAT

b 〉 = ζbA. A parametrized polynomial

η(z; t, T ) =
m∑

b=1

∑

#A≤n

hAb (z) tAT
b (6.2)

corresponds to annth order linear differential function

L(z, ζ(n)) = 〈 j∞z v ; η(z; t, T ) 〉 =
m∑

b=1

∑

#A≤n

hAb (z) ζbA. (6.3)

Its symbolconsists, by definition, of the highest order terms in its defining polynomial,

Σ(L(z, ζ(n))) = H(η(z; t, T )) =

m∑

b=1

∑

#A=n

hAb (z) tAT
b. (6.4)

The symbol of a linear differential function is well defined by our assumption that the
coefficient functionshAb (z) be analytic.
Given a pseudo-groupG, let L = (g∞)⊥ ⊂ (X∞)∗ denote theannihilator subbundle
of its infinitesimal generator jet bundle. Each equation in the linear determining system
(3.2) is represented by a parametrized polynomial (6.2), which cumulatively spanL.
Let I = H(L) ⊂ (X∞)∗ denote the associatedsymbol subbundle(assuming regular-
ity). On the symbol level, total derivative corresponds to multiplication,

Σ(DzaL) = ta Σ(L), a = 1, . . . ,m. (6.5)

Thus, formal integrability of (3.2) implies that each fiberI|z ⊂ T forms a graded
submodule, known as thesymbol moduleof the pseudo-group at the pointz ∈ M . On
the other hand, the annihilatorL|z ⊂ T is typically not a submodule.
We now develop an analogous symbol algebra for the prolonged infinitesimal generat-
ors. We introduce variabless = s1, . . . , sp, S = S1, . . . , Sq, and let

Ŝ =

{
σ̃(s, S) =

q∑

α=1

σ̃α(s)Sα
}

≃ R[s] ⊗ R
q ⊂ R[s, S] (6.6)

be theR[s] module consisting of polynomials which are linear inS . Let

S = R
p ⊕ Ŝ =

∞⊕

n=−1

Ŝn (6.7)

consist of the “extended” polynomials

σ(s, S, s̃) =

p∑

i=1

cis̃i + σ̃α(s, S) =

p∑

i=1

cis̃i +

q∑

α=1

σ̃α(s)Sα, (6.8)



Chapter 6 Algebra of Differential Invariants 21

wheres̃ = s̃1, . . . , s̃p are extra algebraic variables,c1, . . . , cp ∈ R, andσ̃(s, S) ∈ Ŝ.
In coordinates, we can identifyT ∗J∞ ≃ J∞ × S via the pairing

〈V ; s̃i 〉 = ξi, 〈V ;Sα 〉 = Qα = ϕα −
p∑

i=1

uαi ξ
i,

〈V ; sJS
α 〉 = ϕ̂αJ , #J ≥ 1,

(6.9)

for any tangent vector

V =

p∑

i=1

ξi
∂

∂xi
+

q∑

α=1

∑

k=#J ≥ 0

ϕ̂αJ
∂

∂uαJ
∈ TJ∞.

Every one-form onJ∞ is thereby represented, locally, by a parametrized polynomial

σ(x, u(n); s̃, s, S) =

p∑

i=1

hi(x, u
(n)) s̃i +

q∑

α=1

σ̃α(x, u(n); s)Sα,

depending linearly on the variables( s̃, S) ∈ R
m, polynomially on the variabless ∈

R
p, and analytically on the jet coordinates(x, u(n)) of some finite ordern <∞.

Givenz(∞) ∈ J∞, let

p = p(∞) : J∞TM|z −→ Tz(∞)J∞, p
(
j∞z v

)
= v

∞
|z(∞) , (6.10)

denote theprolongation mapthat takes the jet of a vector field at the base pointz =
π̃∞
o (z(∞)) ∈ M to its prolongation (5.6). Letp∗ : S → T be the correspondingdual

prolongation map, defined so that

〈 j∞v ; p∗(σ) 〉 = 〈p(j∞v) ;σ 〉 (6.11)

for all j∞z v ∈ J∞TM|z, σ ∈ S. In general,p∗ is not a module morphism. However,
on the symbol level it essentially is, as we now explain.
Consider the particular linear polynomials

βi(t) = ti +

q∑

α=1

uαi tp+α, Bα(T ) = T p+α −
p∑

i=1

uαi T
i, (6.12)

for i = 1, . . . , p, α = 1, . . . , q, whereuαi = ∂uα/∂xi are the first order jet coordinates
of our pointz(∞). Note thatBα(T ) is the symbol ofQα, theαth component of the
characteristic ofv, cf. (6.9), whileβi(t) represents the symbol of the total derivative,
Σ(DiL) = βi(t) Σ(L). The functionssi = βi(t), S

α = Bα(T ) serve to define a linear
mapβ : R

2m → R
m.

Sinceβ has maximal rank, the induced pull-back map

(β∗σ)(t1, . . . , tn, T
1, . . . , T n) = σ(β1(t), . . . , βp(t), B

1(T ) . . . , Bq(T )) (6.13)

defines an injectionβ∗ : Ŝ → T . The algebraic structure of the vector field prolonga-
tion map at the symbol level is encapsulated in the following result.
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Lemma 6.1 The symbols of the prolonged vector field coefficients are

Σ(ξi) = T i, Σ(ϕα) = Tα+p, Σ(Qα) = β∗(Sα), Σ(ϕ̂αJ ) = β∗(sJS
α). (6.14)

Now given a Lie pseudo-groupG acting onM , let g
∞

|z(∞) = p(J∞
g|z) ⊂ Tz(∞)J∞

denote the subspace1 spanned by its prolonged infinitesimal generators. Let

Z|z(∞) = (g∞|z(∞))⊥ = (p∗)−1(L|z) ⊂ S (6.15)

denote theprolonged annihilator subbundle, containing those polynomials (6.8) that
annihilate all prolonged infinitesimal generatorsv

∞ ∈ g
∞

|z(∞) . Further, letU|z(∞) =
H(Z|z(∞)) ⊂ S be the subspace spanned by the highest order terms of the prolonged
annihilators. In generalU|z(∞) is nota submodule, as, for instance, is the case with the
pseudo-group discussed in Example 4.5.
Let

J|z(1) = (β∗)−1(I|z) =
{
σ(s, S) | β∗(σ)(t, T ) = σ(β(t), B(T )) ∈ I|z

}
⊂ Ŝ, (6.16)

wherez = π̃1
o(z

(1)), be theprolonged symbol submodule, the inverse image of the
symbol module under the polynomial pull-back morphism (6.13). In view of (6.15),
U|z(∞) ⊂ J|z(1) , wherez(1) = π̃∞

1 (z(∞)). Moreover, assuming local freeness, these
two spaces agree at sufficiently high order, thereby endowingU|z(∞) with the structure
of an “eventual submodule”.

Lemma 6.2 If G(n) acts locally freely atz(n) ∈ Jn, thenUk|z(k) = J k
|z(k) for all

k > n and all z(k) ∈ Jk with π̃kn(z
(k)) = z(n).

Let us fix a degree compatible term ordering on the polynomial moduleŜ, which we
extend toS by making the extra monomials̃si be ordered before all the others. At a
fixed regular submanifold jetz(∞), letN|z(∞) be the monomial subspace generated by
the leading monomials of the polynomials inZ|z(∞) , or, equivalently, the annihilator
symbol polynomials inU|z(∞) . Let K

|z(∞) denote thecomplementary monomial sub-
spacespanned by all monomials inS that arenot in N|z(∞) , which can be constructed
by applying the usual Gröbner basis algorithm [17] toJ|z(∞) and then possibly supple-
menting the resulting complementary (or standard) monomials by any additional ones
required at orders≤ n∗, whereJn

∗

stands for the lowest order jet space on which the
pseudo-groupG acts locally freely.
Each monomial inK

|z(∞) corresponds to a submanifold jet coordinatexi or uaJ . For
each0 ≤ n ≤ ∞, we letKn ⊂ Jn denote the coordinate cross-section passing through
z(n) = π̃∞

n (z(∞)) prescribed by the monomials inK≤n
|z(∞) . For the correspond-

ing “algebraic” moving frame, each normalized differential invariant isindexed by
a monomial inS, with Hi corresponding tõsi, andIαJ to sJSα. The monomials in
N|z(∞) index the complete system of functionally independent basic differential invari-
ants, whereas the complementary monomials inK

|z(∞) index the constant phantom
differential invariants.

1In general,g∞ may only be a regular subbundle on a (dense) open subset of jetspace. We restrict our
attention to this subdomain throughout.
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However, at this stage a serious complication emerges: Because the invariantized
Maurer–Cartan forms are found by solving the recurrence formulasfor the phantom
invariants, their coefficients may depend on(n+ 1)th order differential invariants, and
hence the correction term in the resulting recurrence formula fordIαJ can have the same
order as the leading term; see, for example, the recurrence formulasfor the KP sym-
metry algebra derived in [15]. As a consequence, the recurrence formulas (5.11) for the
non-phantom invariants do not in general directly yield the leading order normalized
differential invariants in terms of lower order invariants and their invariant derivatives.
However, this complication, which does not arise in the finite dimensional situation
[23], can be circumvented by effectively invariantizing all the constructs in this sec-
tion and by introducing an alternative collection of generating invariants thatis better
adapted to the underlying algebraic structure of the prolonged symbol module.
To each parametrized symbol polynomial

σ̃(I(k); s, S) =

q∑

α=1

∑

#J≤n

hJα(I(k)) sJS
α ∈ Ŝ, (6.17)

whose coefficients depend on differential invariantsI
(k) = ι(x, u(k)) of order≤ k, we

associate a differential invariant

Ieσ =

q∑

α=1

∑

#J≤n

hJα(I(k)) IαJ . (6.18)

Moreover, letJ̃ = ι(J|z(1)) denote theinvariantized prolonged symbol submodule
obtained by invariantizing all the polynomials inJ|z(1) . If G acts transitively on an

open subset ofJ1, thenJ̃ is a fixed module, since the mapβ only depends on first
order jet coordinates.
As a consequence of Lemma 6.2, everyhomogeneouspolynomial σ̃(I(1); s, S) ∈ J̃ ,
for n > n∗, is the leading term of an annihilating polynomial

τ̃ (I(1); s, S) = σ̃(I(1); s, S) + ν̃(I(1); s, S) (6.19)

contained in the invariantized versioñZ of the prolonged annihilator bundleZ. For
such polynomials, the recurrence formula (5.11) reduces to

dHIeσ =

p∑

i=1

(Isieσ + IDieσ)ωi − 〈ψ∞ ; ν̃ 〉. (6.20)

In contrast to the original recurrence formulas, forn > n∗, thecorrection term

p∑

i=1

IDieσ ω
i − 〈ψ∞ ; ν̃ 〉 (6.21)

in the algebraically adapted recurrence formula (6.20)is of lower order than the lead-
ing termIsieσ . Equating the coefficients of the formsωi in (6.20) leads to individual
recurrence formulas

Di Ieσ = Isi eσ +Reσ,i, (6.22)



24 Differential Invariants for Lie Pseudo-groups, Olver and Pohjanpelto

in which, as long asn = deg σi > n∗, the leading termIsi eσ is a differential invariant
of order= n+ 1, while thecorrection termReσ,i is of strictly lower order.
With this in hand, we arrive at the Constructive Basis and Syzygy Theorems governing
the differential invariant algebra of an eventually locally freely acting pseudo-group
[60].

Theorem 6.3 LetG be a Lie pseudo-group that acts locally freely on the submanifold
jet bundle at ordern∗. Then the following constitute a finite generating system for its
differential invariant algebra:

1. the differential invariantsIν = Iσν
, whereσ1, . . . , σl form a Gr̈obner basis for the

submoduleJ̃ relative to our chosen term ordering, and, possibly,

2. a finite number of additional differential invariants of order≤ n∗.

Theorem 6.4 Every differential syzygy among the generating differential invariants
is either a syzygy among those of order≤ n∗, or arises from an algebraic syzygy
among the Gr̈obner basis polynomials iñJ . Therefore, the differential syzygies are all
generated by a finite number of rational syzygies, corresponding to thegenerators of
the syzygy module of̃J plus possibly a finite number of additional syzygies of order
≤ n∗.

Applications of these results can be found in our papers listed in the references.
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