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Abstract. This article surveys recent advances in the equivariant approach to the
method of moving frames, concentrating on finite-dimensional Lie group actions. A sam-
pling from the many current applications — to geometry, invariant theory, and image
processing — will be presented.

1. Introduction.

According to Akivis, [2], the method of repères mobiles , which was translated into
English as moving frames‡, can be traced back to the moving trihedrons introduced by
the Estonian mathematician Martin Bartels (1769–1836), a teacher of both Gauß and
Lobachevsky. The apotheosis of the classical development can be found in the seminal
advances of Élie Cartan, [25, 26], who forged earlier contributions by Frenet, Serret, Dar-
boux, Cotton, and others into a powerful tool for analyzing the geometric properties of
submanifolds and their invariants under the action of transformation groups. An excel-
lent English language treatment of the Cartan approach can be found in the book by
Guggenheimer, [49].

The 1970’s saw the first attempts, cf. [29, 45, 46, 64], to place Cartan’s constructions
on a firm theoretical foundation. However, the method remained constrained within clas-
sical geometries and homogeneous spaces, e.g. Euclidean, equi-affine, or projective, [35].

† Supported in part by NSF Grant DMS 11–08894.

November 8, 2015
‡ According to my Petit Larousse, [132], the word “repère” refers to a temporary mark made

during building or interior design, and so a more faithful English translation might have been
“movable landmarks”.
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In the late 1990’s, I began to investigate how moving frames and all their remarkable
consequences might be adapted to more general, non-geometrically-based group actions
that arise in a broad range of applications. The crucial conceptual leap was to decouple
the moving frame theory from reliance on any form of frame bundle. Indeed, a careful
reading of Cartan’s analysis of moving frames for curves in the projective plane, [25], in
which he calls a certain 3×3 unimodular matrix the “repère mobile”, provided the crucial
conceptual breakthrough, leading to a general, and universally applicable, definition of a
moving frame as an equivariant map from the manifold back to the transformation group,
thereby circumventing the complications inherent in the frame bundle approach. Building
on this basic idea, and armed with the powerful tool of the variational bicomplex, [6, 151],
Mark Fels and I, [36, 37], were able to formulate a new, powerful, constructive equivariant
moving frame theory that can be systematically applied to general transformation groups.
All classical moving frames can be reinterpreted in the equivariant framework, but the
latter approach immediately applies in far broader generality. Indeed, in later work with
Pohjanpelto, [122, 126, 127, 128], the equivariant approach were successfully extended to
the vastly more complicated arena of infinite-dimensional Lie pseudo-groups, [79, 80, 143].

Cartan’s normalization process underlying the construction of the moving frame relies
on the choice of a cross-section to the group orbits. This in turn induces a powerful in-
variantization process that associates to each standard object (function, differential form,
differential operator, tensor, variational problem, conservation law, numerical algorithm,
etc.) a canonical invariant counterpart. Invariantization of the associated variational bi-
complex, [37, 74], produces the powerful recurrence relations, that enable one to determine
the structure of the algebra of differential invariants, as well as the invariant differential
forms, invariant variational bicomplex, etc., using only linear differential algebra, and, cru-
cially, without having to know the explicit formulas for either the invariants or the moving

frame itself ! It is worth emphasizing that all of the required constructions can be im-
plemented systematically and algorithmically, and thus readily programmed in symbolic
computer packages such as Mathematica and Maple. Mansfield’s recent text, [84], on
what she calls the “symbolic invariant calculus”, provides a basic introduction to the key
ideas (albeit avoiding differential forms), and some of the important applications.

In this survey, we will concentrate on prolonged group actions on jet bundles, leading
to differential invariants and differential invariant signatures. Applying the moving frame
algorithms to Cartesian product actions produces joint invariants and joint differential
invariants, along with their associated signatures, [37, 115, 13], establishing a geometric
counterpart of what Weyl, [162], in the algebraic framework, calls the First Main Theorem
for the transformation group. Subsequently, an amalgamation of jet and Cartesian product
actions, named multi-space, was proposed in [116] to serve as the basis for the geomet-
ric analysis of numerical approximations, and, via the application of the moving frame
method, the systematic construction of symmetry-preserving numerical approximations
and integration algorithms, [12, 24, 23, 30, 69, 70, 71, 106, 134, 161].

With the basic moving frame machinery in hand, a plethora of new, unexpected, and
compelling applications soon began appearing. In [23, 12, 5, 7, 139], the characterization
of submanifolds via their differential invariant signatures was applied to the problem of
object recognition and symmetry detection in digital images. The general problem in the
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calculus of variations of directly constructing the invariant Euler-Lagrange equations from
their invariant Lagrangian was solved in [74], and then applied, [118, 66, 8, 155], to the
analysis of the evolution of differential invariants under invariant submanifold flows, lead-
ing to integrable soliton equations and the equations governing signature evolution. In
[9, 72, 73, 113], the theory was applied to produce new algorithms for solving the basic
symmetry and equivalence problems of polynomials that form the foundation of classical
invariant theory. The all-important recurrence formulae provide a complete characteri-
zation of the differential invariant algebra of group actions, and lead to new results on
minimal generating invariants, even in very classical geometries, [117, 56, 55, 119, 60].

Further significant applications of equivariant moving frames include the computation
of symmetry groups and classification of partial differential equations, [83, 101]; geometry
and dynamics of curves and surfaces in homogeneous spaces, with applications to integrable
systems, Poisson geometry, and evolution of spinors, [86, 87, 88, 89, 91, 133]; construction
of integral invariant signatures for object recognition in 2D and 3D images, [38]; solving
the object-image correspondence problem for curves under projections, [21, 22, 75]; recov-
ering structure of three-dimensional objects from motion, [7]; classification of projective
curves in visual recognition, [51]; recognition of DNA supercoils, [138]; distinguishing
malignant from benign breast cancer tumors, [48], as well as melanomas from moles,
[145]; determination of invariants and covariants of Killing tensors and orthogonal webs,
with applications to general relativity, separation of variables, and Hamiltonian systems,
[31, 33, 94, 95]; the Noether correspondence between symmetries and invariant conserva-
tion laws, [42, 43]; symmetry reduction of dynamical systems, [59, 142]; symmetry and
equivalence of polygons and point configurations, [14, 65]; computation of Casimir invari-
ants of Lie algebras and the classification of subalgebras, with applications in quantum
mechanics, [15, 16]; and the cohomology of the variational bicomplex, [62, 63, 147].

Applications to Lie pseudo-groups, [122, 126, 127, 128], include infinite-dimensional
symmetry groups of partial differential equations and algorithms for directly determin-
ing their structure, [27, 28, 102, 153]; climate and turbulence modeling, [10], leading
to new symmetry-preserving numerical schemes for systems of nonlinear partial differen-
tial equations possessing infinite-dimensional symmetry groups, [135]; partial differential
equations arising in control theory, [154]; classification of Laplace invariants and factor-
ization of linear partial differential operators, [140, 141]; construction of coverings and
Bäcklund transformations, [103]; and the method of group foliation, [158, 130], for find-
ing invariant, partially invariant, and non-invariant explicit solutions to partial differential
equations, [146, 148]. In [98, 154, 156] the moving frame calculus is shown to provide
a new and very promising alternative to the Cartan method for solving general equiv-
alence problems based on exterior differential systems, [41, 111]. Finally, recent devel-
opment of a theory of discrete equivariant moving frames has been applied to integrable
differential-difference systems, [85]; invariant evolutions of projective polygons, [92], that
generalize the remarkable integrable pentagram maps, [67, 131]; as well as extensions of
the aforementioned group foliation method to construct explicit solutions to symmetric
finite difference equations, [149].

3



2. Equivalence and Signature.

A primary motivating application of moving frames is the equivalence and symmetry
of geometric objects. In general, two objects are said to be equivalent if one can map one
to the other by a suitable transformation. A symmetry of a geometric object is merely
a self-equivalence, that is a transformation that maps the object back to itself. Thus a
solution to the equivalence problem for objects includes a classification of their symmetries.
The solution to any equivalence problem can be viewed as a description of the associated
moduli space which, in this particular instance, represents the equivalence classes of objects
(of a specified type) under the allowed transformations. Of course, equivalences come in
many guises — topological, smooth, algebraic, etc. Our focus will be when the equivalence
maps belong to a prescribed transformation group and the objects under consideration are
submanifolds of the space upon which the group acts. For simplicity, we will restrict our
attention here to the smooth — meaning C∞ — category, and to finite-dimensional (local)
Lie group actions, although the methods extend, with additional work, to the actions of
infinite-dimensional Lie pseudo-groups.

In this context, Élie Cartan found a complete solution to the local submanifold equiv-
alence problem, which relies on the associated differential invariants. In general, a dif-

ferential invariant is a scalar-valued function that depends on the submanifold and its
“derivatives”. If one explicitly parametrizes the submanifold, then the differential invari-
ant will be a combination of the parametrizing functions and their derivatives up to some
finite order which is unaffected by the induced action of the transformation group and,
moreover, is intrinsic, that is, independent of the underlying parametrization. More rigor-
ously, [111], a differential invariant is a scalar-valued function defined on an open subset
of the submanifold jet bundle that is invariant under the prolonged transformation group
action.

A familiar example from elementary differential geometry is the equivalence problem
for plane curves C ⊂ R

2 under rigid motions, i.e., the action of the special Euclidean group

SE(2) = SO(2)⋉R
2, the semi-direct product of the special orthogonal group of rotations

and the two-dimensional abelian group of translations. The basic differential invariant
is the curvature κ. However, κ is just the first of an infinite collection of independent
differential invariants. Indeed, differentiating any differential invariant of order n with
respect to the Euclidean-invariant arc length element ds produces a differential invariant
of order n+1. In this manner, we produce an infinite collection of independent differential
invariants, namely, κ, κs, κss, . . . . Moreover, it can be shown that these form a complete
system, in the sense that any other differential invariant can (locally) be written as a
function of a finite number of them: I = F (κ, κs, κss, . . . , κn−2) whenever I is a differential
invariant of order n.

Similarly, under the action of the equi-affine group SA(2) = SL(2) ⋉ R
2, consisting

of unimodular linear transformations and translations, on plane curves, there is a well-
known equi-affine curvature invariant† κ, which is of order 4, and an equi-affine arc length

† We employ a common notation, keeping in mind that the curvature and arc length invariants
will depend on the underlying group action.
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element ds, such that the complete system of differential invariants consists of κ, κs, κss, . . . .
Under the projective group PSL(3) acting by projective (linear fractional) transformations,
the complete system of differential invariants is provided by the seventh order projective
curvature invariant and its successive derivatives with respect to projective arc length
element, [25, 72, 111]. Indeed, a completely analogous statement holds for almost all
transitive planar Lie group actions. Every ordinary† Lie group action on plane curves
admits a unique, up to functions thereof, differential invariant of lowest order, denoted
by κ, identified as the group-invariant curvature, and a unique, up to constant multiple,
invariant‡ one-form ω = ds, viewed as the group-invariant arc length element. Moreover,
a complete system of differential invariants is provided by the curvature and its successive
derivatives with respect to the arc length: κ, κs, κss, . . . . See [111] for complete details,
including the corresponding statements in the intransitive and non-ordinary cases.

Turning to the equivalence of space curves C ⊂ R
3 under the action of the Eu-

clidean group SE(3) = SO(3) ⋉ R
3, there are two basic differential invariants: the cur-

vature κ, which is of second order, and its torsion τ , of third order. Moreover, they
and their successive derivatives with respect to arc length form a complete system of
differential invariants: κ, τ, κs, τs, κss, τss, . . . . Analogous results hold for space curves

under any ordinary group action on R
3, [49, 111]. Further, the Euclidean action on two-

dimensional surfaces S ⊂ R
3 has two familiar second order differential invariants: the

Gauss curvature K and the mean curvature H. Again, one can produce an infinite col-
lection of higher order differential invariants by invariantly differentiating the Gauss and
mean curvature. Specifically, at a non-umbilic point, there exist two (non-commuting)
invariant differential operators D1,D2, that effectively differentiate in the direction of
the orthonormal Darboux frame; a complete system of differential invariants consists of
K,H,D1K,D2K,D1H,D2H,D2

1K,D1D2K,D2D1K,D2
2K,D2

1H, . . . , [49, 111, 119]. How-
ever, as we will prove below, for suitably generic surfaces, the mean curvature alone can
be employed to generate the entire algebra of differential invariants! Further results on
the differential invariants of surfaces in three-dimensional space under various geometrical
group actions can be found in Theorem 5.8 below.

All of the preceding examples can be viewed as particular cases of the Fundamental

Basis Theorem, which states that, for any Lie group action, the entire algebra of differential
invariants can be generated from a finite number of low order invariants by repeated
invariant differentiation. In differential invariant theory, this result assumes the role played
by the algebraic Hilbert Basis Theorem for polynomial ideals, [32]. Bear in mind that here
we distinguish differential invariants that are functionally independent , and not merely
algebraically independent.

† A Lie group is said to act ordinarily , [111], if it acts transitively on M , and the maximal
dimension of the orbits of its successive prolongations strictly increase until the action becomes
locally free, as defined below; or, in other words, its prolongations do not “pseudo-stabilize”,
[112]. Almost all transitive Lie group actions are ordinary.

‡ Or, to be completely correct, “contact-invariant”; see below for the explanation.
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Theorem 2.1. Let G be a finite-dimensional Lie group acting on p-dimensional

submanifolds S ⊂M . Then, locally, there exist a finite collection of generating differential
invariants I = {I1, . . . , Iℓ}, along with exactly p invariant differential operatorsD1, . . . ,Dp,

such that every differential invariant can be expressed as a function of the generating

invariants and their invariant derivatives Iν,J = Dj1
Dj2

· · · Djk
Iν .

The Basis Theorem was first formulated by Lie, [82; p. 760]. Modern proofs of Lie’s
result can be found in [111, 130], while a fully constructive moving frame-based proof
appears in [37]. Under certain technical hypotheses, the Basis Theorem also holds as
stated for rather general infinite-dimensional Lie pseudo-group actions; a version first ap-
pears in the work of Tresse, [150]. A rigorous result, based on the machinery of Spencer
cohomology, was established by Kumpera, [79]. A global version for algebraic pseudo-
group actions, including an extension to actions on differential equations (subvarieties of
jet space) can be found in [77], while [105] introduces yet another approach, based on Weil
algebras. The first constructive proof of the pseudo-group Basis Theorem, based on the
equivariant moving frame machinery, appears in [128]. While many structural questions
remain as yet incompletely answered, the equivariant moving frame calculus provides a
complete, systematic, algorithmic suite of computational tools, eminently suited to imple-
mentation on standard computer algebra packages, for analyzing the associated differential
invariant algebra, its generators, relations (syzygies), and so on.

Knowing the differential invariants, we return to the equivalence problem. Clearly,
any two equivalent submanifolds must have the same differential invariants at points corre-
sponding under the equivalence transformation. If a differential invariant is constant, then
it must necessarily assume the same constant value on any equivalent submanifold. For
example, if a plane curve has Euclidean curvature κ = 2, it must be a circular arc of radius
1
2
. Any rigidly equivalent curve must also be a circular arc of the same radius, and hence

have the same curvature. On the other hand, if a differential invariant is not constant,
then this, in and of itself, does not provide much information, because its expression will
depend upon the parametrization of the underlying submanifold, and hence direct com-
parison of two non-constant differential invariants may be problematic. Instead, Cartan
tells us to look at the functional inter-relationships among the differential invariants, which
are intrinsic. These functional relationships are also known as syzygies , again in analogy
with the algebraic Hilbert Syzygy Theorem, [32], although, as above, we do not restrict to
polynomial relations but allow arbitrary smooth functions. For example, if a plane curve
satisfies the syzygy κs = eκ − 1 between its two lowest order differential invariants, then
so must any equivalent curve.

Remark : There are two distinct kinds of syzygy. Universal syzygies are satisfied by all
submanifolds. A celebrated example is the Gauss-Codazzi relation among the differential
invariants of Euclidean surfaces S ⊂ R

3, [49, 119]. The second kind are particular to the
individual submanifolds, and, as we will see, serve to prescribe their local equivalence and
symmetry properties.
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Cartan’s solution to the equivalence problem states, roughly, that two suitably non-
degenerate submanifolds are locally equivalent† if and only if they have identical syzygies
among all their differential invariants. Cartan’s proof relies on his “Technique of the
Graph”, in which the graph Γg ⊂ M ×M of the equivalence transformation g:M → M
is realized as a suitable solution (integral submanifold) of an overdetermined system of
partial differential equations on M ×M , the Cartesian product of the underlying mani-
fold with itself. In the proof, the first order of business is to establish involutivity of this
overdetermined system, which then implies, via Frobenius’ Theorem or, in the pseudo-
group case, assuming analyticity, the Cartan–Kähler Theorem, the existence of a suitable
integral submanifold which represents the graph of the desired equivalence map. See [111]
for a detailed development and complete proofs.

Of course, as we have just seen, there are an infinite number of differential invariants,
and hence an infinite number of syzygies since, locally, on any p-dimensional submanifold
there can be at most p independent functions. However, one finds that, in general, one
can generate all the higher order syzygies from only a finite number of low order ones.
To see why this might be the case consider the case of a plane curve under a prescribed
ordinary transformation group, e.g., Euclidean, equi-affine, projective, etc. Temporarily
leaving aside the case when the curvature invariant κ is constant, there is, when restricted
to the one-dimensional curve C, but one functionally independent differential invariant,
which we may as well take to be κ. At a point where κs 6= 0, we can locally write any
other differential invariant as a function of κ, and hence the syzygies are all consequences
of

κs = H1(κ), κss = H2(κ), κsss = H3(κ), . . . .

However, the first of these completely determines the rest. Indeed, by the chain rule,

κss =
dκs
ds

=
d

ds
H1(κ) = H ′

1(κ) κs = H ′
1(κ)H1(κ), hence H2(κ) = H ′

1(κ)H1(κ).

(2.1)
Iterating this computation enables one to explicitly determine all the higher order syzygy
functions H2(κ), H3(κ), . . . , in terms of H1(κ) and its derivatives. We conclude that,
generically, the local equivalence of plane curves under an ordinary transformation group

is entirely determined by the functional relationship among its two lowest order differential

invariants :
κs = H1(κ). (2.2)

The syzygy (2.2) relies on the assumption that κs 6= 0. Moreover, the explicit determi-
nation of the function H1(κ) may be problematic. As I observed in [111], both objections
can be overcome by instead regarding the differential invariants (κ, κs) as parametrizing
a plane curve Σ ⊂ R

2, known as the differential invariant signature curve. In the special

† For example, any two circular arcs having the same radius are locally equivalent under the
Euclidean group irrespective of their overall length, which is a global property. Global equivalence
issues are also very interesting, and in need of significant further investigation. In this vein, see
[125], which employs the language of groupoids, [160], to better understand the inherent local
versus global structure of symmetries and equivalences.
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case when κ is constant, and hence κs ≡ 0, the signature curve degenerates to a single
point.

More generally, as a consequence of the Fundamental Basis Theorem, one can prove
that, when restricted to any suitable submanifold, there always exists a finite number
of low order differential invariants, say J1, . . . , Jk with the property that all the higher
order differential invariant syzygies can be generated from the syzygies among the Jα’s
via invariant differentiation. These typically include the generating differential invariants
I1, . . . , Iℓ as well as a certain finite collection of their invariant derivatives Iν,J . These

differential invariants serve to define a signature map σ:S → Σ ⊂ R
N whose image is a

differential invariant signature of the original submanifold S. Under certain regularity as-
sumptions, the signature solves the equivalence problem: two p-dimensional submanifolds
are locally equivalent under the transformation group if and only if they have identical
signatures. The precise determination of the differential invariants required to form a sig-
nature is facilitated through the use of the moving frame calculus to be presented in the
final section.

Remark : In my earlier work, [37, 111], the differential invariant signature was called
the classifying manifold . The more compelling term signature was adopted in light of
significant applications in image processing, [23, 53], and is now consistently used in the
literature. In [111], an alternative approach to the construction of the differential invariant
signature is founded on the Cartan calculus of exterior differential systems, [19, 41].

Remark : The reader may be familiar with the classical result, [49], that a Euclidean
curve is uniquely determined up to rigid motion by its curvature function, expressed in
terms of arc length κ(s). This solution to the equivalence problem has several practical
shortcomings in comparison with the differential invariant signature. First, the arc length is
ambiguously defined, since it depends on the choice of an initial point on the curve. Hence,
one must identify two curvature functions that differ by a translation, κ(s+ c) ≃ κ(s). On
the other hand, the differential invariants parametrizing the signature curve are entirely
local. This is important in practical applications, particularly when occlusions are present,
and so part of the image curve is missing, [17, 18]. The effect on the signature curve is
minimal, being only the omission of a (hopefully) small part; on the other hand, it is not
even possible to reconstruct the arc length relating two disconnected pieces of an occluded
contour. Finally, and most importantly of all, there are, in general, no canonical invariant
parameters that can assume the role of arc length in the case of surfaces and higher
dimensional submanifolds, whereas the differential invariant signature method applies in
complete generality.

In this manner, we have effectively reduced the equivalence problem of submanifolds
under a transformation group to the problem of recognizing when their signatures are
identical. In the restricted case when the submanifolds (signatures) are rationally para-
metrized, the latter problem can be rigorously solved by Gröbner basis techniques, [20].
In practical applications, one introduces a measure of closeness of the signatures, keeping
in mind that noise and other artifacts may prevent their being exactly the same. Quite
a few measures have been proposed, such as Hausdorff distance, [61], metrics based on

8



Monge–Kantorovich optimal transport, [50, 159], and Gromov–Hausdorff and Gromov–
Wasserstein metrics, [96, 97]. A comparison of the advantages and disadvantages of several
proposed shape metrics can be found in [11, 104]. In the applications to jigsaw puzzle
assembly, discussed below, our preferred measure of closeness comes from viewing the
two signature curves as wires that have opposite electrical charges, and then computing
their electrostatic attraction, cf. [39, 163], or, equivalently, their gravitational attraction,
suitably renormalized. Statistical techniques based on latent semantic analysis have been
successfully applied in [5, 139], while in [47, 48], the skewness measure of the cumulative
distance and polar/spherical angle magnitudes was employed.

Since symmetries are merely self-equivalences, the signature also determines the (lo-
cal) symmetries of the submanifold. In particular, the dimension of the signature equals
the codimension of the symmetry group. More specifically, if a suitably nondegenerate,
connected, p-dimensional submanifold S ⊂ M has signature Σ of dimension 0 ≤ t ≤ p,
then the connected component of its local symmetry group GS containing the identity is
an (r − t)–dimensional local Lie subgroup of G. In particular, the signature of connected
submanifold degenerates to a single point if and only if all its differential invariants are
constant. Such maximally symmetric submanifolds, [120], can, in fact, be characterized
algebraically.

Theorem 2.2. A connected nondegenerate p-dimensional submanifold S has 0-
dimensional signature if and only if its local symmetry group is a p-dimensional subgroup

H ⊂ G and hence S is an open submanifold of an H–orbit: S ⊂ H · z0.
Remark : So-called totally singular submanifolds may admit even larger symmetry

groups. For example, in three-dimensional Euclidean geometry, the maximally symmetric
curves are arcs of circles, whose local symmetry group is contained in a one-parameter
rotation subgroup, and segments of circular helices, with a one-parameter local symmetry
group of screw motions. On the other hand, straight lines are totally singular curves, pos-
sessing a two-dimensional symmetry group, consisting of translations in its direction and
rotations around it. Similarly, the maximally symmetric surfaces are open submanifolds
of circular cylinders, whose local symmetry group consists of translations in the direction
of the axis of the cylinder and rotations around it. In contrast, both planes and spheres
are totally umbilic, and hence totally singular, each possessing a three-dimensional sym-
metry group. A complete Lie algebraic characterization of totally singular submanifolds
for general Lie group actions can be found in [114].

At the other extreme, if a nondegenerate p-dimensional submanifold has p-dimensional
signature, it only admits a discrete symmetry group. The number of local symmetries is
determined by its index , which is defined as the number of points in S map to a single
generic point of the signature:

indS = min
{
# σ−1{ζ}

∣∣ ζ ∈ Σ
}
. (2.3)

To illustrate, Figure 1 displays the Euclidean signatures of two images of a hardware
nut, computed using the invariant numerical approximations we developed in [24, 23]; the
horizontal axis in the signature graph is κ while the vertical axis is κs. The evident four-
fold (approximate) rotational symmetry is represented by the fact that the signature graph
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Figure 1. Signatures of Two Images of a Nut.

is approximately retraced four times. (Folding the graph, by plotting | κs | instead of κs
on the vertical axis, would reveal the 8-fold reflection and rotation symmetry group.) The
indicated measure of closeness of the two signatures is based on their (pseudo-)electrostatic
repulsion.

The following subsections contain brief descriptions of some novel applications of signature
curves.

An Initial Investigation into Medical Imaging:

The following is taken from [23] as a “proof-of-concept” illustration of the potential of
signature curve-based methods in practical image processing, concentrating on a particular
medical image. In Figure 3 at the end of the paper, we display our starting point: a 70×70,
8-bit gray-scale image of a cross section of a canine heart, obtained from an MRI scan.

The first step in geometric object recognition in digital images is to extract the bound-
ary of the object in question, an operation that is known as segmentation. A variety of
techniques have been developed to accomplish this, one of the most powerful being based
on the method of active contours , also known as snakes , which nowadays are included as
a standard tool in many basic image processing software packages. The aim is, starting
with a more or less arbitrary contour that encircles the object, to actively shrink the con-
tour so that it converges to the desired boundary. A variety of methods that realize this
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goal have been developed, many based on nonlinear geometric partial differential equa-
tions, [68, 137, 165]. The one used here starts with the celebrated Euclidean-invariant
curve shortening flow that was studied by Gage, Hamilton, and Grayson, [40, 44], as a
precursor to the deep analysis of the Ricci flow on higher dimensional manifolds that led
to Perelman’s celebrated solution to the Poincaré conjecture, [100]. Here, one evolves
the curve by moving each point in its normal direction in proportion to curvature; their
theorem is that any smooth Jordan curve remains a simple closed curve throughout the
evolution, ultimately becoming asymptotically circular before shrinking down to a point
in finite time. Now, in order to capture the boundary of an object in a digital image with
the shrinking curve, one modifies the underlying Euclidean metric by a conformal factor
that highlights† object boundaries, e.g., points where the gradient of the gray-scale image
is large.

Next, to illustrate robustness of the signature curve under smoothing/denoising, the
resulting segmented ventricle boundary curve is then further smoothed by application of the
unmodified curve shortening flow. The corresponding Euclidean signatures are computed
using the invariant numerical approximations introduced in [23], and then smoothly spline-
interpolated. Observe that, as the evolving curves approach circularity, their signatures
exhibit less variation in curvature and appear to be winding more and more tightly around
a point on the κ axis, which eventually runs off to ∞ as the asymptotic circle shrinks down
to a single point. Despite the rather extensive smoothing, except for an overall shrinkage as
the contour approaches circularity, the basic qualitative features of the different signature
curves, and particularly their winding behavior, appear to be remarkably robust. See [66]
for a theoretical justification of these observations, through use of the maximum principle
for the induced parabolic flow of the signature curve, which in turn is based on the moving
frame-based analysis of the evolution of differential invariants under invariant submanifold
flows, [118].

Jigsaw Puzzle Assembly:

In [54], the Euclidean-invariant signature was applied to design a Matlab program
that automatically assembles apictorial jigsaw puzzles. The term “apictorial” means that
the algorithm uses only the shapes of the pieces and not any superimposed picture or
design. An example, the Baffler Nonagon, [164], appears in Figure 5; assembly takes
under an hour on a standard Macintosh laptop. It is important to point out that, unlike
most automatic puzzle-solvers in the literature, the algorithm is not restricted to puzzles
with “traditionally shaped” pieces situated on a rectangular grid, nor does it depend
upon knowledge of the outer boundary of the puzzle. Indeed, it tends to prefer the more
exotically shaped pieces, and thus assembles the puzzle from the inside out. The algorithm
succeeds even when several pieces are missing, as it is not affected by any holes that might
show up in the final assembly.

In detail, the first step is to digitize the individual puzzle pieces, which are pho-
tographed at random orientations, and then segment their boundaries, again using a stan-

† Or, more accurately, is small near regions of interest, in this case potential boundaries of
objects.
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dard active contour package included within Matlab. The next step is to smooth the
resulting curves. It was found that the preceding smoothing process based on the curve
shortening flow was not suitable since it tends to blur important features such as arcs of
high curvature or corners. Instead, a näıve smoothing technique based on iterated spline
interpolation and respacing was employed.

Assembly of individual puzzle pieces requires only comparing certain a priori unknown
parts of their boundaries. The method, based on the extended signature introduced in [53]
in response to [107], is to split up the boundary curves into bivertex arcs , meaning sub-
arcs on which κs 6= 0 except at the endpoints. The signatures of the individual bivertex
arcs are compared, using the electrostatic-based measure of closeness, in order to locate
potential matches. Once a sufficient number of bivertex arcs contained in the boundaries
of two pieces are deemed to be equivalent under the same Euclidean transformation, a
second procedure, called piece locking and based on minimizing idealized forces and torques
between the edges, then refines the match. The resulting algorithm is surprisingly effective,
producing correct matches in such a fashion that it is able to completely assemble several
commercially available puzzles.

A subsequent project, the “Humpty Dumpty problem”, [47], looks at reassembly
of three-dimensional jigsaw puzzles obtained by decomposing a curved surface, e.g., a
broken eggshell. Here the boundaries of the pieces are space curves, whose Euclidean
signatures are parametrized by the curvature and torsion invariants κ, κs, τ . An argument
similar to that in (2.1) demonstrates that the syzygies among these three basic differential
invariants determine all the higher order ones, including τs. The resulting signature-
based algorithm works quite well on synthetically generated surface puzzles, even in the
presence of noise, and already has had some success in treating real-world data. It is worth
pointing out that the algorithm works only with the (digitized) pieces and does not require
any a priori knowledge of the overall shape of the assembled surface. Further potential
applications, especially after combining our approach with algorithms based on picture,
design, or texture, include the assembly of broken archaeological artifacts such as ceramics
or pottery shards [136, 152].

The extension to broken three-dimensional solid objects, e.g., statues, bones, etc.,
requires matching their bounding surfaces. While the theoretical underpinnings of the dif-
ferential invariant signature solution to the surface equivalence problem, based on the mean
and Gauss curvatures and their low order invariant derivatives, are known, [111, 119], a
number of practical issues remain to be resolved, including the identification of suitable
“signature codons” that will play the role of the bivertex arcs, as well as the construction
of suitably robust invariant numerical approximations to the required signature invariants.

Cancer Detection:

In a paper of Grim and Shakiban, [48], Euclidean signature curves are used to dis-
tinguish benign from malignant breast tumors in two-dimensional X-ray photos. (An
analogous analysis of melanomas and moles can be found in [145].) The guiding principle
is that the outline of cancerous tumors will display a higher degree of geometric complex-
ity, and this will be reflected in the overall structure of their associated signature curve.
One method of measuring curvature complexity is through the range and frequency of
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points at which the signature curve crosses the κ and κs axes. Indeed, it was found that
malignant signature curves exhibit a wider range and larger number of axis crossing points
than benign contours. A second measurement distinguishes local from global symmetry
of the signatures. Here “symmetry” means a simple bilateral reflectional symmetry of the
signature curve across the two axes. “Global symmetry” refers to the entire signature,
while “local symmetry” refers to individual sub-arcs. Malignant tumors tend to exhibit
a higher degree of local symmetry due to increased spiculation of their outline. On the
other hand, the higher degree of global symmetry seen in benign tumor signatures can be
viewed as a manifestation of a higher degree of cellular functionality. The above methods
of signature comparisons were applied to a data base consisting of 150 breast tumors, and
the resulting classification into malignant and benign proved to be statistically significant.
The proposed method thus has potential as a preliminary diagnostic tool enabling one to
sort through large numbers of such images.

Classical Invariant Theory:

In a more mathematical direction, we refer the reader to Example 4.2 below and also
[9, 72, 73, 113] for the construction of other types of differential invariant signatures in the
context of the basic problems of classical invariant theory: the equivalence and symmetry
properties of binary and ternary forms.

3. Equivariant Moving Frames.

In this section, we develop the basics of the equivariant method of moving frames.
To keep the exposition as simple as possible, we only consider global finite-dimensional
Lie group actions. Extensions to local Lie group actions are reasonably straightforward,
while infinite-dimensional Lie pseudo-groups are more technically demanding, and, for the
latter, we refer the interested reader to the survey paper [122] for an introduction.

Example 3.1. Let us begin on familiar ground. Consider the usual action of the
special Euclidean group SE(3) = SO(3)⋉R

3 on space curves C ⊂ R
3. In this situation, as

one learns in any basic differential geometry course, [34, 49], the moving frame contains
three distinguished orthonormal vectors along the curve: its unit tangent t, unit normal

n, and unit binormal b. In coordinates, if one parametrizes the curve by arc length,
z(s) ∈ R

3, then

t = zs, n =
zss

‖ zss ‖
, b = t× n. (3.1)

The basic curvature κ and torsion τ differential invariants then arise through the classical
Frénet–Serret equations

dt

ds
= κn,

dn

ds
= −κ t+ τ b,

db

ds
= − τ n. (3.2)

However, Cartan emphasizes that there is, in fact, one further constituent to the moving
frame: the point on the curve z = z(s), which he calls the “moving frame of order 0”, [25].
The moving frame of order 1 includes the unit tangent t, while the entire moving frame,
which consists of the point on the curve z along with the orthonormal frame vectors t,n,b
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based there, is of order 2 since it depends upon second order derivatives. The curvature
and torsion invariants have order 2 and 3, respectively.

Let us also look briefly at the equi-affine group SA(3) = SL(3) ⋉ R
3, consisting of

volume–preserving affine transformations z 7→ Az + b, detA = 1, acting on space curves
C ⊂ R

3. The moving frame, now of order 4, consists of a point on the curve, a tangent
vector t, no longer of unit length (indeed, there is no intrinsic notion of length in equi-affine
geometry) along with two vectors n,b transverse to the curve, with the property that the
three vectors form a unimodular frame: t ·n×b = 1. Again, Cartan clearly states that the
point on the curve z at which the frame vectors are based is an essential component of the
moving frame. The two independent differential invariants resulting from the associated
Frénet–Serret equations are both of order 5, [49].

For the equivariant approach, the starting point is an arbitrary r-dimensional Lie
group G acting smoothly on an m-dimensional manifold M . The general definition of an
equivariant moving frame proposed in [37] is as follows:

Definition 3.2. A moving frame is a smooth, G-equivariant map† ρ :M → G.

There are two principal types of equivariance:

ρ(g · z) =
{
g · ρ(z) : left moving frame,

ρ(z) · g−1 : right moving frame.
(3.3)

In classical geometries, as in [49], one can always reinterpret the frame-based moving
frames as left-equivariant maps. For example, in the standard Euclidean moving frame
for a space curve, if one views the orthonormal frame vectors (3.1) as the columns of an
orthogonal matrix and their base point on the curve z as a translation vector, this effectively
defines a map from the curve‡ to the Euclidean group E(3) = O(3)⋉ R

3, which is readily
seen to be left-equivariant, and hence satisfies the requirement of Definition 3.2. A similar
interpretation holds for the equi-affine moving frame described above — now the frame
vectors form the columns of a unimodular matrix, and the point on the curve continues
to serve as a translation vector, thus defining a left-equivariant map from the curve to the
equi-affine group, that now depends upon fourth order derivatives. On the other hand,
right-equivariant moving frames are at times easier to compute, and will be the primary
focus here. Bear in mind that if ρ(z) is a right-equivariant moving frame, then application
of the inversion map on G produces a left-equivariant counterpart: ρ̃(z) = ρ(z)−1.

With this definition in place, it is not difficult to establish the basic requirements for
the existence of an equivariant moving frame. To this end, recall that the group G is said
to act freely if the isotropy subgroup

Gz = { g ∈ G | g · z = z } (3.4)

† Throughout, functions, maps, etc., may only be defined on an open subset of their indicated
source space, so that dom ρ ⊆ M .

‡ Or, more accurately, the second order jet of the curve, since the frame vectors depend upon
second order derivatives of the curve’s parametrization.
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g = ρ(z)

Figure 2. Moving Construction Based on Cross–Section.

of each point z ∈ M is trivial: Gz = {e}. Slightly weaker is the notion of local freeness ,
which requires that the isotropy subgroups Gz be discrete, or, equivalently, that the group
orbits all have the same dimension, r, as G itself. On the other hand, regularity requires
that, in addition, the orbits form a regular foliation, but this is a global condition that
plays no role in practical applications and hence can be safely ignored.

Theorem 3.3. A moving frame exists in a neighborhood of a point z ∈ M if and

only if G acts freely and regularly near z.

The explicit construction of an equivariant moving frame map is based on Cartan’s
normalization procedure. This relies on the choice of a (local) cross-section to the group
orbits, meaning an (m− r)–dimensional submanifold K ⊂M that intersects each orbit at
most once, and transversally, meaning that the orbit and the cross-section have no non-zero
tangent vectors in common.

Theorem 3.4. Let G act freely and regularly on M , and let K ⊂ M be a cross-

section. Given z ∈ M , let g = ρ(z) be the unique group element that maps z to the

cross-section: g · z = ρ(z) · z = k ∈ K. Then ρ :M → G is a right moving frame.

The normalization construction of the moving frame is illustrated in Figure 2. The
curves represent group orbits, with Oz denoting the orbit through the point z ∈ M . The
unique point in the intersection, namely k = ρ(z) · z ∈ Oz ∩ K, can be viewed as the
canonical form or normal form of the point z, as prescribed by the cross-section K. In
practice, cross-sections are local, and the resulting moving frame defined on a certain open
subset of the entire manifold. Further, if the action is locally free, the resulting (local)
moving frame will be locally equivariant in the evident manner.

Introducing local coordinates z = (z1, . . . , zm) on M , the cross-section K will be
defined by r equations

W1(z) = c1, . . . Wr(z) = cr, (3.5)
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where W1, . . . ,Wr are scalar-valued functions, while c1, . . . , cr are suitably chosen con-
stants. In the vast majority of applications, the Wν are merely a subset of the coordinate
functions z1, . . . , zm, in which case they are said to define a coordinate cross-section. (In-
deed, Figure 2 is drawn as if K is a coordinate cross-section.) The associated right moving
frame g = ρ(z) is thus obtained by solving the normalization equations

W1(g · z) = c1, . . . Wr(g · z) = cr, (3.6)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z = (z1, . . . , zm).
Transversality of the cross-section combined with the Implicit Function Theorem ensures
the existence of a local solution g = ρ(z) to the normalization equations (3.6), whose
equivariance is assured by Theorem 3.4. In practical applications, the art of the method is
to select a well-adapted cross-section meaning, typically, one that simplifies the calculations
as much as possible. More prosaically, this usually means choosing a simple coordinate
cross-section and setting as many of the normalization constants cν = 0 as possible, keeping
in mind the requirement that the resulting equations define a valid cross-section. The
method is self-correcting, in that an invalid choice will lead to a system of equations that
is not uniquely and smoothly soluble for the group parameters.

With the equivariant moving frame in hand, the next step is to determine the in-

variants , that is, (locally defined) functions I:M → R that are unchanged by the group
action: I(g ·z) = I(z) for all z ∈ dom I and all g ∈ G such that g ·z ∈ dom I. Equivalently,
a function is invariant if and only if it is constant on the orbits. Since any orbit that
intersects the cross-section meets it in a unique point, the value of an invariant on those
orbits is uniquely determined by its value on the cross-section. This serves to define a
process (depending upon the cross-section) that converts functions to invariants.

Definition 3.5. The invariantization I = ι(F ) of a function F :M → R is the unique
invariant function that coincides with F on the cross-section: I | K = F | K.

In particular, if I is any invariant, then clearly ι(I) = I. Thus, invariantization
can be viewed as a projection from the space of functions to the space of invariants.
Moreover, by construction, invariantization preserves all algebraic operations on functions.
Invariantization (and its many consequences) constitutes a key advantage of the equivariant
approach over classical frame-based methods.

Computationally, a function F (z) is invariantized by first transforming it according
to the group action, producing F (g · z), and then replacing the group parameters by their
moving frame formulae g = ρ(z), so that

ι[F (z) ] = F (ρ(z) · z). (3.7)

Invariantization of the coordinate functions yields the fundamental invariants :

I1(z) = ι(z1), . . . Im(z) = ι(zm). (3.8)

With these in hand, the invariantization of a general function F (z) is simply obtained by
replacing each variable zj in its local coordinate expression by the corresponding funda-
mental invariant Ij :

ι
[
F (z1, . . . , zm)

]
= F (I1(z), . . . , Im(z)). (3.9)
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In particular, the functions defining the cross-section (3.5) have constant invariantization,
ι(Wν(z)) = cν , and are known as the phantom invariants . One can then select precisely
m− r functionally independent basic invariants from among the invariantized coordinate
functions (3.8), in accordance with Frobenius’ Theorem, [110]. For a coordinate cross-
section given by setting the first r, say, coordinates to constants: z1 = c1, . . . , zr = cr, then
the remaining m−r non-phantom fundamental invariants Ir+1(z) = ι(zr+1), . . . , Im(z) =
ι(zm) are the functionally independent basic invariants.

The fact that invariantization does not affect invariants implies the elegant and power-
ful Replacement Rule, that enables one to immediately rewrite any invariant J(z1, . . . , zm)
in terms of the basic invariants:

J(z1, . . . , zm) = J(I1(z), . . . , Im(z)). (3.10)

In symbolic analysis, (3.10) is known as a rewrite rule, [57, 58], and underscores the power
of the moving frame approach over rival invariant-theoretic constructions, including Hilbert
and Gröbner bases, [32].

According to Theorem 3.3, for the constructions presented above to succeed, the key
requirement is that the group act freely or, at the very least, locally freely. Of course, most
interesting group actions are not free — indeed, typically, the dimension of G is strictly
greater than the dimension of M , as is always the case when M = G/H is a nontrivial
homogeneous space — and therefore do not per se admit moving frames in the sense of
Definition 3.2. Thus, for example, the dimension of the three-dimensional Euclidean group
SE(3) is 6, which is greater than the dimension of the space it acts upon, namely 3, and
so the action cannot be free; indeed, the isotropy group of a point z ∈ R

3 consists of all
rotations aroud that point Gz ≃ SO(3).

There are two classical methods that (usually) convert a non-free action into a free
action. The first is the Cartesian product action of G on several copies of M ; application
of the moving frame normalization construction and invariantization produces joint invari-
ants, [115]. The second is to prolong the group action to jet space, which is the natural
setting for the traditional moving frame theory, and leads to differential invariants, [37].
Combining the two methods of jet prolongation and Cartesian product results in joint dif-
ferential invariants, [115], also known in the computer vision literature as semi-differential
invariants, [99, 157]. In applications of symmetry methods in numerical analysis, one re-
quires an amalgamation of all these actions into a common framework, called multi-space,
introduced in [116] — although the complete construction is so far only known for curves.
(However, a very recent preprint of Maŕı Beffa and Mansfield, [90], makes an initial foray
into the multivariate realm.) In this paper we will deal only with on the jet space version
of prolongation, and refer the interested reader to [124] for a more complete overview.

4. Moving Frames on Jet Space and Differential Invariants.

Given an action of the Lie group G on the manifold M , our goal is to understand its
induced action on (embedded) submanifolds S ⊂ M of a prescribed dimension 1 ≤ p <
m = dimM . We begin by prolonging the group action to the nth order (extended) jet

bundle Jn = Jn(M, p), which is defined as the set of equivalence classes of p-dimensional
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submanifolds under the equivalence relation of nth order contact at a single point; see
[108, 111] for details. Since G maps submanifolds to submanifolds while preserving the
contact equivalence relation, it induces an action on the jet space Jn, known as its nth

order prolongation and denoted here by z(n) 7−→ g · z(n) for g ∈ G and z(n) ∈ Jn. In
local coordinates — see below for details — the formulas for the prolonged group action
are straightforwardly found by implicit differentiation, the disadvantage being that the
resulting expressions can rapidly become extremely unwieldy.

We assume, without significant loss of generality, that G acts effectively on open

subsets of M , meaning that the only group element that fixes every point in any given
open U ⊂ M is the identity element:

⋂
z∈U Gz = {e}. This implies, [114], that the

prolonged action is locally free on a dense open subset Vn ⊂ Jn for n ≫ 0 sufficiently
large, whose points z(n) ∈ Vn are known as regular jets . In all known examples that arise
in applications, the prolonged action is, in fact, free on such an open subset Ṽn ⊂ Jn for
suitably large n. However, recently, Scot Adams, [1], constructed rather intricate examples
of smooth Lie group actions that do not become eventually free on any open subset of the jet
space. Indeed, Adams proves that if the group has compact center, the prolonged actions
always become eventually free on an open subset of jet space, whereas any connected Lie
group with non-compact center admits actions that do not become eventually free. In
practice, one is often content to work with locally free prolonged actions, producing locally
equivariant moving frames, keeping in mind that certain algebraic ambiguities arising from
the normalization construction, e.g., branches of square roots, must be handled with some
care.

A real-valued function on jet space, F : Jn → R is known as a differential function†.
A differential invariant is a differential function I: Jn → R that is an invariant for the
prolonged group transformations, so I(g · z(n)) = I(z(n)) for all z(n) ∈ Jn and all g ∈ G
such that both z(n) and g · z(n) lie in the domain of I. Clearly, any algebraic combination
of differential invariants is a differential invariant (on their common domain of definition)
and thus we speak, somewhat loosely, of the algebra of differential invariants associated
with the action of the transformation group on submanifolds of a specified dimension.
Since differential invariants are often only locally defined‡, to be fully rigorous, we should
introduce the category of sheaves of differential invariants , [78, 79]. However, since here
we concentrate entirely on local results, this extra level of abstraction is unnecessary, and
so we will leave the sheaf-theoretic reformulation of the theory as a translational exercise
for the experts.

As before, the normalization construction based on a choice of local cross-section Kn ⊂
Vn ⊂ Jn to the prolonged group orbits can be used to produce an nth order equivariant

† As noted above, functions, maps, etc., may only be defined on an open subset of their

indicated source space: domF ⊂ Jn. Also, we identify F with its pull-backs, F ◦πk
n, under the

standard jet projections πk
n: J

k
→ Jn for any k ≥ n. Similar remarks apply to differential forms

on jet space.

‡ On the other hand, in practical examples, differential invariants turn out to be algebraic
functions defined on Zariski open subsets of jet space, and so reformulating the theory in a more
algebro-geometric framework would be a worthwhile endeavor; see, for instance, [58, 78].
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moving frame ρ : Jn → G in a neighborhood of any regular jet. The cross-section Kn is
prescribed by setting a collection of r = dimG independent nth order differential functions
to suitably chosen constants

W1(z
(n)) = c1, . . . Wr(z

(n)) = cr. (4.1)

The associated right moving frame g = ρ(z(n)) is then obtained by solving the correspond-
ing normalization equations

W1(g · z(n)) = c1, . . . Wr(g · z(n)) = cr, (4.2)

for the group parameters g = (g1, . . . , gr) in terms of the jet coordinates z(n). Once
the moving frame is established, the induced invariantization process will map general
differential functions F (z(k)), of any order k, to differential invariants I = ι(F ), which are
obtained by first transforming them by the prolonged group action and then substituting
the moving frame formulas for the group parameters:

I(z(l)) = ι
[
F (z(k))

]
= F (ρ(z(n)) · z(k)), l = max{k, n}. (4.3)

Invariantization preserves differential invariants, ι(I) = I, and hence defines a canonical
projection (depending on the moving frame) from the algebra of differential functions to
the algebra of differential invariants that preserves all algebraic operations.

Remark : Although essential for theoretical progress, one practical disadvantage of
the normalization procedure described above is that it requires one to first prolong the
group action to a sufficiently high order in order that it become free. The intervening
formulae, obtained by implicit differentiation, may become unwieldy, making the symbolic
implementation of the algorithm on a computer impractical due to excessive expression
swell. To circumvent this difficulty, a recursive version of the moving frame construction,
that successively normalizes the group parameters at each jet space order before prolonging
the resulting reduced action to the next higher order can be found in [123]. See also [129]
for a recent extension of the recursive algorithm to Lie pseudo-group actions.

For calculations, we introduce local coordinates z = (x, u) = (x1, . . . , xp, u1, . . . , uq)
on M , considering the first p components x = (x1, . . . , xp) as independent variables, and
the latter q = m − p components u = (u1, . . . , uq) as dependent variables. Submanifolds
that are transverse to the vertical fibers {x = constant} can thus be locally identified
as the graphs of functions u = f(x). This splitting into independent and dependent
variables induces corresponding local coordinates z(n) = (x, u(n)) = ( . . . xi . . . uαJ . . . )
on Jn, whose components uαJ , with 1 ≤ α ≤ q, and J = (j1, . . . , jk), with 1 ≤ jν ≤ p,
a symmetric multi-index of order 0 ≤ k = #J ≤ n, represent the partial derivatives,
∂kuα/∂xj1 · · ·∂xjk , of the dependent variables with respect to the independent variables,
cf. [110, 111]. Equivalently, we can identify the jet (x, u(n)) with the nth order Taylor
polynomial of the function at the point x — or, when n = ∞, its Taylor series.

The fundamental differential invariants are obtained by invariantization of the indi-
vidual jet coordinate functions, in accordance with (4.3):

Hi = ι(xi), IαJ = ι(uαJ ), α = 1, . . . , q, #J ≥ 0. (4.4)
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We abbreviate those obtained from all the jet coordinates of order ≤ k by (H, I(k)) =
ι(x, u(k)). Keep in mind that the invariant IαJ has order ≤ max{#J, n}, where n is the
order of the moving frame, whileHi has order ≤ n. The fundamental differential invariants
(4.4) are of two types. The r = dimG combinations defining the cross-section (4.1) will
be constant, and are known as the phantom differential invariants . (In particular, if G
acts transitively on M and the moving frame is of minimal order, as in [117], then all the
Hi and Iα are constant.) For k ≥ n, the remaining basic differential invariants provide a
complete system of functionally independent differential invariants of order ≤ k.

According to (3.9), the invariantization of a differential function F (x, u(k)) can be
immediately found by replacing each jet coordinate by the corresponding fundamental
differential invariant (4.4):

ι
[
F (x, u(k))

]
= F (H, I(k)). (4.5)

In particular, the Replacement Rule (3.10) allows one to immediately rewrite any differ-
ential invariant J(x, u(k)) in terms the basic differential invariants:

J(x, u(k)) = J(H, I(k)), (4.6)

which thereby trivially establishes their completeness.

The specification of independent and dependent variables on M further splits the dif-
ferential one-forms on the infinite order† jet bundle J∞ into horizontal one-forms , spanned
by dx1, . . . , dxp, and contact one-forms , spanned by the basic contact one-forms

θαJ = duαJ −
p∑

i=1

uαJ,i dx
i, α = 1, . . . , q, 0 ≤ #J. (4.7)

In general, a differential one-form θ on Jn is called a contact form if and only if it is anni-
hilated by all jets, so θ | jnS = 0 for all p-dimensional submanifolds S ⊂M . Every contact
one-form is a linear combination of the basic contact one-forms (4.7). This splitting in-
duces a bigrading of the space of differential forms on J∞ where the differential decomposes
into horizontal and vertical components: d = dH + dV , with dH increasing the horizon-
tal degree and dV the vertical (contact) degree. Clearly, closure, d ◦d = 0, implies that
dH ◦ dH = 0 = dV ◦ dV , while dH ◦ dV = − dV ◦ dH . The resulting structure is known
as the variational bicomplex , and lies at the heart of the geometric/topological approach to
differential equations, variational problems, symmetries and conservation laws, character-
istic classes, etc., bringing powerful cohomological tools such as spectral sequences, [93],
to bear on analytical and geometrical problems. A complete development plus a broad
range of applications can be found in [6, 151].

The invariantization process induced by a moving frame can also be applied to dif-
ferential forms on jet space. Thus, given a differential form ω on Jk, its invariantization

ι(ω) is the unique invariant differential form that agrees with ω when pulled back to the
cross-section. As with differential functions, the invariantized form is found by first trans-
forming (pulling back) the form by the prolonged group action, and then replacing the

† The splitting only works at infinite order, [6, 111].
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group parameters by their moving frame formulae. An invariantized contact form remains
a contact form, while an invariantized horizontal form is, in general, a combination of
horizontal and contact forms. The complete collection of invariantized differential forms
serves to define the invariant variational bicomplex , studied in detail in [74, 147].

For the purposes of analyzing the differential invariants, we can ignore the contact
forms. (They do, however, play an important role in other applications, including in-
variant variational problems, [74], submanifold flows, [118], and cohomology classes,
[62, 63, 147].) We let πH denote the projection that maps a one-form onto its horizontal
component. The horizontal components of the invariantized basis horizontal one-forms

ωi = πH(̟i), where ̟i = ι(dxi), i = 1, . . . , p, (4.8)

form, in the language of [111], a contact-invariant coframe, meaning that each ωi is
invariant modulo contact forms under the prolonged group action. The corresponding
dual invariant differential operators D1, . . . ,Dp are defined by

p∑

i=1

(DiF ) dx
i = dH F =

p∑

i=1

(DiF )ω
i, (4.9)

for any differential function F , where

Di =
∂

∂xi
+

q∑

α=1

∑

J

uαJ,i
∂

∂uαJ
, i = 1, . . . , p, (4.10)

are the usual total derivative operators, [110, 111], and the initial equality in (4.9) follows
directly from the definition of dH . In practice, the invariant differential operator Di

can be obtained by substituting the moving frame formulas for the group parameters
into the corresponding implicit differentiation operators used to produce the prolonged
group actions. As usual, the invariant differential operators map differential invariants to
differential invariants, and hence can be iteratively applied to generate the higher order
differential invariants.

Example 4.1. The paradigmatic example is the action of the special Euclidean group
SE(2), consisting of orientation-preserving rigid motions — translations and rotations — on
plane curves C ⊂M = R

2. The group transformation g = (ϕ, a, b) ∈ SE(2) = SO(2)⋉R
2

maps the point z = (x, u) to the point w = (y, v) = g · z, given by

y = x cosϕ− u sinϕ+ a, v = x sinϕ+ u cosϕ+ b. (4.11)

If the curve C is given as the graph of a function u = f(x), the equations (4.11) for the

transformed curve C̃ = g · C implicitly define the graph of a function v = h(y), at least
away from points with vertical tangents. The derivatives of v with respect to y are then
obtained by successively applying the implicit differentiation operator

Dy =
1

cosϕ− ux sinϕ
Dx, (4.12)

21



producing

vy = Dyv =
sinϕ+ ux cosϕ

cosϕ− ux sinϕ
, vyy = D2

yv =
uxx

(cosϕ− ux sinϕ)
3
,

vyyy = D3
yv =

(cosϕ − ux sinϕ )uxxx + 3u2xx sinϕ

(cosϕ− ux sinϕ)
5

, . . . ,

(4.13)

which serve to define the successive prolonged actions of SE(2). The only group elements
that fix a given first order jet (x, u, ux) are the identity, ϕ = a = b = 0, and rotation by
180◦, with ϕ = π, a = b = 0. (This reflects the fact that a 180◦ around a point on a curve
preserves its tangent line.) We conclude that the prolonged action is locally free on the
entire first order jet space, and so V1 = J1.

The classical Euclidean moving frame is based on the cross-section

K1 = {x = u = ux = 0}. (4.14)

The corresponding normalization equations (4.2) are

y = v = vy = 0 (4.15)

as prescribed by (4.11), (4.13). Solving the normalization equations for the group param-
eters produces the right moving frame

ϕ = − tan−1 ux , a = − x+ uux√
1 + u2x

, b =
xux − u√
1 + u2x

, (4.16)

which defines a locally right-equivariant map from J1 to SE(2), the ambiguity in the
inverse tangent indicative of the above-mentioned local freeness of the prolonged action.
The classical left-equivariant Frenet frame, [49], is obtained by inverting the Euclidean
group element (4.16), with resulting group parameters

ϕ̃ = tan−1 ux , ã = x, b̃ = u. (4.17)

Observe that the translation component ( ã, b̃) = (x, u) = z can be identified with the point
on the curve (Cartan’s moving frame of order 0), while the columns of the corresponding
rotation matrix

R =

(
cos ϕ̃ − sin ϕ̃

sin ϕ̃ cos ϕ̃

)
=

1√
1 + u2x

(
1 −ux
ux 1

)
=
(
t, n

)

are precisely the orthonormal frame vectors t,n based at z ∈ C, thereby identifying the
left moving frame (4.17) with the classical construction, [49].

Invariantization of the jet coordinate functions is accomplished by substituting the
moving frame formulae (4.16) into the prolonged group transformations (4.13), producing
the fundamental differential invariants:

H = ι(x) = 0, I0 = ι(u) = 0, I1 = ι(ux) = 0,

I2 = ι(uxx) =
uxx

(1 + u2x)
3/2

, I3 = ι(uxxx) =
(1 + u2x)uxxx − 3uxu

2
xx

(1 + u2x)
3

,
(4.18)
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and so on. The first three, corresponding to the functions defining the cross-section (4.14),
are the phantom invariants . The lowest order basic differential invariant is the Euclidean
curvature: I2 = κ. The higher order differential invariants I3, I4, . . . will be identified
below.

Similarly, to invariantize the horizontal form dx, we first apply a Euclidean transfor-
mation:

dy = cosϕdx− sinϕdu = (cosϕ− ux sinϕ) dx− (sinϕ) θ, (4.19)

where θ = du − ux dx is the order zero basic contact form. Note that its horizontal
component

dH y = πH(dy) = (cosϕ− ux sinϕ) dx = (Dxy) dx

serves to define the dual implicit differentiation operator Dy given in (4.12), since

dH F = (DyF ) dH y = (DxF ) dx

for any differential function F . Substituting the moving frame formulae (4.16) into (4.19)
produces the invariant one-form

̟ = ι(dx) =
√

1 + u2x dx+
ux√
1 + u2x

θ. (4.20)

Its horizontal component

ω = πH(̟) =
√

1 + u2x dx = ds (4.21)

is the usual Euclidean arc length element, and is itself contact-invariant. The dual invariant
differential operator, cf. (4.9), is the arc length derivative

D =
1√

1 + u2x
Dx = Ds, (4.22)

which can also be directly obtained by substituting the moving frame formulae (4.16) into
the implicit differentiation operator (4.12). As we will see, the higher order differential
invariants can all be found by successively differentiating the basic curvature invariant
with respect to arc length.

Example 4.2. Let us next consider a non-geometrically-based, but very classical
example. Let n ≥ 2 be an integer. In classical invariant theory, the planar actions

y =
αx+ β

γ x+ δ
, v = (γ x+ δ)−nu, (4.23)

of the general linear group G = GL(2) govern the equivalence and symmetry properties
of binary forms , meaning polynomial functions u = q(x) of degree ≤ n under the action
of the projective group, [9, 52, 109, 113], although the results below apply equally well to
the equivalence of general smooth functions. The graph of u = q(x) is viewed as a plane
curve, and the equivariant moving frame method is applied to determine the differential
invariants and associated differential invariant signature.
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Since

dy = dH y =
∆

σ2
dx, where σ = γ x+ δ, ∆ = αδ − βγ,

the prolonged action, relating the derivatives of a binary form or function and its trans-
formed counterpart, is computed by successively applying the dual implicit differentiation
operator

Dy =
σ2

∆
Dx (4.24)

to v, producing

vy =
σux − nγ u

∆σn−1
, vyy =

σ2uxx − 2(n− 1)γ σux + n(n− 1)γ2u

∆2σn−2
,

vyyy =
σ3uxxx − 3(n− 2)γ σ2uxx + 3(n− 1)(n− 2)γ2σux − n(n− 1)(n− 2)γ3u

∆3σn−3
,

(4.25)

and so on. It is not hard to show† that the prolonged action is locally free on the regular
subdomain

V2 = {uH 6= 0} ⊂ J2, where H = uuxx − n− 1

n
u2x

is the classical Hessian covariant of u, cf. [52, 113]. Let us choose the cross-section defined
by the normalizations

y = 0, v = 1, vy = 0, vyy = 1.

Substituting (4.23), (4.25), and then solving the resulting algebraic equations for the group
parameters produces

α = u(1−n)/n
√
H, β = −x u(1−n)/n

√
H,

γ =
1

n
u(1−n)/nux, δ = u1/n − 1

n
xu(1−n)/nux,

(4.26)

which serve to define a locally‡ right-equivariant moving frame map ρ :V2 → GL(2). Sub-
stituting the moving frame formulae (4.26) into the higher order transformation rules yields
the desired differential invariants, the first two of which are

vyyy 7−→ J =
T

H3/2
, vyyyy 7−→ K =

V

H2
, (4.27)

where the differential polynomials

T = u2uxxx − 3
n− 2

n
uuxuxx + 2

(n− 1)(n− 2)

n2
u3x,

V = u3uxxxx − 4
n− 3

n
u2uxuxxx + 6

(n− 2)(n− 3)

n2
uu2xuxx − 3

(n− 1)(n− 2)(n− 3)

n3
u4x,

† The simplest way to accomplish this is to show that the prolonged infinitesimal generators
are linearly independent at each point of V2; see below for details.

‡ See [9] for a detailed discussion of how to systematically resolve the square root ambiguities
caused by local freeness.
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can be identified with classical covariants of the binary form u = q(x) obtained through
the transvection process, cf. [52, 113]. Using J2 = T 2/H3 as the fundamental differential
invariant of lowest order will remove the ambiguity caused by the square root. As in
the Euclidean case, the higher order differential invariants can be written in terms of the
basic “curvature invariant” J and its successive invariant derivatives with respect to the
invariant differential operator

D = uH−1/2Dx, (4.28)

which is itself obtained by substituting the moving frame formulae (4.26) into the implicit
differentiation operator (4.24).

We can now produce a signature-based solution to the equivalence and symmetry
problems for binary forms. The signature curve Σ = Σq of a polynomial u = q(x) — or,

indeed, of any smooth function — is parametrized by the covariants J2 and K, given in
(4.27). In this manner, we have established a strikingly simple solution to the equivalence
problem for complex-valued binary forms that, surprisingly, does not appear in any of the
classical literature on the subject. Extensions of this result to real forms can be found in
[109, 113].

Theorem 4.3. Two nondegenerate complex-valued binary forms q(x) and q̃(x) are
equivalent if and only if their signature curves are identical: Σq = Σq̃.

Thus, the equivalence and symmetry properties of binary forms are entirely encoded
by the functional relation between two particular absolute rational covariants, namely,
J2 and K. Moreover, any equivalence map x̃ = ψ(x) must satisfy the pair of rational
equations

J(x)2 = J̃( x̃)2, K(x) = K̃( x̃). (4.29)

Indeed, the theory guarantees that any solution to this system is necessarily a linear
fractional transformation! Specializing to the case when q̃ = q, the symmetries of a non-
singular binary form can be explicitly determined by solving the rational equations (4.29)

with J̃ = J and K̃ = K. See [9] for a Maple package, based on this method, that
automatically computes discrete symmetries of univariate polynomials.

As a consequence of Theorem 2.2 and (2.3), we are led to a complete characterization
of the symmetry groups of binary forms. (The totally singular case (a) is established by a
separate calculation.)

Theorem 4.4. The symmetry group of a binary form q(x) 6≡ 0 of degree n is:

(a) A two-parameter group if and only if it Hessian H ≡ 0 if and only if q(x) is equivalent
to a constant.

(b) A one-parameter group if and only if H 6≡ 0 and T 2 is a constant multiple of H3 if and

only if q(x) is complex-equivalent to a monomial xk, with k 6= 0, n. In this case

the signature Σq is just a single point, and the graph of q coincides with the orbit

of the connected component of its one-parameter symmetry subgroup of GL(2).

(c) A finite group in all other cases. The cardinality of the group equals the index of the

signature curve Σq.
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In her thesis, Kogan, [72], extends these results to forms in several variables. In
particular, the resulting signature for ternary forms, including elliptic curves, leads to a
practical algorithm for computing their discrete symmetries, [73].

5. Recurrence and the Algebra of Differential Invariants.

While the invariantization process respects all algebraic operations on functions and
differential forms, it does not commute with differentiation. A recurrence relation expresses
a differentiated invariant in terms of the basic differential invariants — or, more generally,
a differentiated invariant differential form in terms of the normalized invariant differential
forms. The recurrence relations are the master key that unlocks the entire structure of the
algebra of differential invariants, including the specification of generators, the classification
of syzygies and, as a result, the general specification of differential invariant signatures.
Remarkably, the recurrence relations can be explicitly determined even in the absence
of explicit formulas for the differential invariants, or the invariant differential operators,
or even the moving frame itself! The only necessities are the well-known and relatively
simple formulas for the infinitesimal generators of the group action and their jet space
prolongations, combined with the choice of cross-section normalizations.

A basis for the infinitesimal generators of our effectively acting r-dimensional trans-
formation group G is provided by linearly independent vector fields on M taking the local
coordinate form

vσ =

p∑

i=1

ξiσ(x, u)
∂

∂xi
+

q∑

α=1

ϕα
σ(x, u)

∂

∂uα
, σ = 1, . . . , r, (5.1)

which we identify with a basis of its Lie algebra g. Their associated flows exp(tvσ) form
one-parameter subgroups that serve to generate the action of the (connected component
containing the identity of) the transformation group. The corresponding prolonged in-
finitesimal generator

prvσ =

p∑

i=1

ξiσ(x, u)
∂

∂xi
+

q∑

α=1

∑

k=#J≥0

ϕα
J,σ(x, u

(k))
∂

∂uαJ
, σ = 1, . . . , r, (5.2)

generates the prolongation of the associated one-parameter subgroup acting on jet bundles.
The higher order coefficients

ϕα
J,σ = prvσ(u

α
J ), #J ≥ 1,

are calculated using the prolongation formula, [110], first written in the following explicit,
non-recursive form in [108]:

ϕα
J,σ = DJ

(
ϕα
σ −

p∑

i=1

ξiσ u
α
i

)
+

p∑

i=1

ξiσu
α
J,i. (5.3)

Here DJ = Dj1
· · · Djk

are iterated total derivative operators, cf. (4.10), and uαi = Diu
α

represents ∂uα/∂xi.
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Given an equivariant moving frame on jet space, the universal recurrence relation

for differentiated invariants can now be stated. As in (4.9), Di = ι(Di) will denote the
associated invariant differential operators.

Theorem 5.1. Let F (x, u(k)) be a differential function and ι(F ) its moving frame

invariantization. Then

Di

[
ι(F )

]
= ι
[
Di(F )

]
+

r∑

σ=1

Rσ
i ι
[
prvσ(F )

]
, (5.4)

where Rσ
i , i = 1, . . . , p, σ = 1, . . . , r, are called the Maurer–Cartan differential invariants.

The Maurer–Cartan differential invariants Rσ
i can, in fact, be characterized as the

coefficients of the horizontal components of the pull-backs of the Maurer–Cartan forms
on G via the moving frame map ρ : Jn → G, [37]. But in practical calculations, one, in
fact, does not need to know where the Maurer–Cartan invariants come from, or even what
a Maurer–Cartan form is, since the Rσ

i can be directly determined from the recurrence
relations for the phantom differential invariants, as prescribed by the cross-section (4.1).
Namely, since ι(Wν) = cν is constant, for each 1 ≤ i ≤ p, the phantom recurrence relations

0 = ι
[
Di(Wν)

]
+

r∑

σ=1

Rσ
i ι
[
prvσ(Wν)

]
, ν = 1, . . . , r, (5.5)

form a system of r linear equations that, as a consequence of the transversality of the
cross-section, can be uniquely solved for the r Maurer–Cartan invariants R1

i , . . . , R
r
i . Sub-

stituting the resulting expressions back into the remaining non-phantom recurrence for-
mulae (5.4) produces the complete system of differential identities satisfied by the basic
differential invariants, which in turn fully characterizes the structure of the differential
invariant algebra, [37, 117, 128].

Example 5.2. Using (5.2), (5.3), the prolonged infinitesimal generators of the planar
Euclidean group action on curve jets, as described in Example 4.1, are

prv1 = ∂x, prv2 = ∂u,

prv3 = −u ∂x + x ∂u + (1 + u2x) ∂ux
+ 3uxuxx ∂uxx

+ (4uxuxxx + 3u2xx) ∂uxxx
+ · · · ,

where v1,v2 generate translations, while v3 generates rotations. According to (5.4), the
invariant arc length derivative D = ι(Dx) of any differential invariant I = ι(F ) obtained
by invariantizing a differential function F is specified by the recurrence relation

DI = D ι(F ) = ι(DxF ) +R1 ι
(
prv1(F )

)
+R2 ι

(
prv2(F )

)
+R3 ι

(
prv3(F )

)
, (5.6)

where R1, R2, R3 are the three Maurer–Cartan invariants. To determine their formulas,
we write out (5.6) for the three phantom invariants which come from the cross-section
variables x, u, ux, cf. (4.14):

0 = D ι(x) = ι(1) +R1 ι(prv1(x)) +R2 ι(prv2(x)) +R3 ι(prv3(x)) = 1 +R1,

0 = D ι(u) = ι(ux) +R1 ι(prv1(u)) +R2 ι(prv2(u)) +R3 ι(prv3(u)) = R2,

0 = D ι(ux) = ι(uxx) +R1 ι(prv1(ux)) +R2 ι(prv2(ux)) +R3 ι(prv3(ux)) = κ+R3.
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Solving the resulting linear system of equations yields

R1 = −1, R2 = 0, R3 = −κ = −I2. (5.7)

Thus, the general recurrence relation (5.6) becomes

D ι(F ) = ι(DxF )− ι
(
prv1(F )

)
− κ ι

(
prv3(F )

)
. (5.8)

In particular, the first few — obtained by successively setting F = uxx, uxxx, uxxxx, uxxxxx
in (5.8), and letting Ik = ι(uk) denote the normalized differential invariants corresponding
to uk = Dk

xu — are

κ = I2,
κs = DI2 = I3,

κss = DI3 = I4 − 3I32 ,

DI4 = I5 − 10I22I3,

DI5 = I6 − 15I22 I4 − 10I2 I
2
3 .

(5.9)

These can be iteratively solved to produce the explicit formulae

κ = I2, I2 = κ,

κs = I3, I3 = κs,

κss = I4 − 3I32 , I4 = κss + 3κ3,

κsss = I5 − 19I22 I3, I5 = κsss + 19κ2κs,

κssss = I6 − 34I22 I4 − 48I2 I
2
3 + 57I52 , I6 = κssss + 34κ2κss + 48κκ2s + 45κ5,

(5.10)

and so on, relating the normalized and differentiated curvature invariants. The skeptical
reader is invited to verify these identities by substituting the explicit formulae that were
computed in Example 4.1.

The invariant differential operators D1, . . . ,Dp given in (4.9) map differential invari-
ants to differential invariants. Keep in mind that they do not necessarily commute, and
so the order of differentiation is important. On the other hand, each commutator can be
re-expressed as a linear combination

[Dj,Dk ] = Dj Dk −Dk Dj =

p∑

i=1

Y i
jkDi, (5.11)

where the coefficients

Y i
jk = −Y i

kj =
r∑

σ=1

[
Rσ

k ι(Djξ
i
σ)−Rσ

j ι(Dkξ
i
σ)
]

(5.12)

are known as the commutator invariants , whose explicit formulae are a consequence of the
recurrence relations adapted to differential forms; see [37] for a derivation of formula (5.12).

Furthermore, the differentiated invariants DJIν are not necessarily functionally inde-
pendent, but may be subject to certain functional relations or differential syzygies of the
form

H( . . . DJIν . . . ) ≡ 0. (5.13)

The Syzygy Theorem, first stated (not quite correctly) in [37] for finite-dimensional ac-
tions, and then rigorously formulated and proved in [128], states that there are, in essence,
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a finite number of generating differential syzygies along with those induced by the com-
mutator equations (5.11). Again, this result can be viewed as the differential invariant
algebra counterpart of the Hilbert Syzygy Theorem for polynomial ideals, [32].

Let us end with a synopsis of some recent results on generating sets I = {I1, . . . , I l}
of differential invariants, satisfying the conditions of the Basis Theorem 2.1. The first is
an immediate consequence of the recurrence formulae (5.4) and the induced construction
of the Maurer–Cartan invariants.

Theorem 5.3. If the moving frame has order n, then the set of fundamental differ-

ential invariants

I(n+1) = {Hi, I
α
J | i = 1, . . . , p, α = 1, . . . , q, #J ≤ n+ 1 }

of order ≤ n+ 1 forms a generating set.

Of course, one can immediately omit any constant phantom differential invariants
from this collection. Even so, the resulting set of generating invariants is typically far from
minimal.

Another interesting consequence of the recurrence formulae, first noticed by Hubert,
[55], is that the Maurer–Cartan invariants

R = {Rσ
i | i = 1, . . . , p, σ = 1, . . . , r }

also form a, again typically non-minimal, generating set when the action is transitive on
M . More generally:

Theorem 5.4. The differential invariants I(0) ∪ R form a generating set.

Let us now discuss the problem of finding a minimal generating set of differential
invariants. The case of curves, p = 1, has been well understood for some time. For an
ordinary Lie group action on curves in a m-dimensional manifold, there are precisely m−1
generating differential invariants, [111, 45], and this is a minimal system, meaning that
none of them can be expressed as a combination of the invariant arc length derivatives
of the others. Moreover, there are no syzygies among their invariant derivatives. (The
relatively rare non-ordinary actions are not significantly more complicated and are also
well understood.) Thus, for space curves C ⊂ R

3, there are two generating invariants,
which are typically identified as the group-invariant curvature and torsion.

On the other hand, when dealing with submanifolds of dimension p ≥ 2, i.e., functions
of more than one variable, there are, as yet, no general results on the minimal number of
generating differential invariants. Indeed, even in well-studied examples, the conventional
wisdom on minimal generating sets is often mistaken.

Example 5.5. Consider the action of the Euclidean group E(3) = O(3) ⋉ R
3 on

surfaces S ⊂ R
3. In local coordinates, we can identify (transverse) surfaces with graphs

of functions u = f(x, y). The corresponding local coordinates on the surface jet bundle
Jn = Jn(R3, 2) are x, y, u, ux, uy, uxx, uxy, uyy, . . . , and, in general, ujk = Dj

xD
k
yu for

j + k ≤ n. The classical moving frame construction, [49], relies on the coordinate cross-
section

K2 = {x = y = u = ux = uy = uxy = 0, uxx 6= uyy }. (5.14)

29



The resulting left moving frame consists of the point on the curve defining the translation
component a = z ∈ R

3, while the columns of the rotation matrix R = [ t1, t2,n ] ∈ O(3)
consist of the orthonormal tangent vectors t1, t2 forming the diagonalizing Darboux frame,
along with the unit normal n.

The fundamental differential invariants are denoted as Ijk = ι(ujk). In particular,

κ1 = I20 = ι(uxx), κ2 = I02 = ι(uyy),

are the principal curvatures ; the moving frame is valid provided κ1 6= κ2, meaning that we
are at a non-umbilic point. Indeed, the prolonged Euclidean action is locally free on the
regular subset V2 ⊂ J2 consisting of second order jets of surfaces at non-umbilic points.
The mean and Gaussian curvature invariants

H = 1
2 (κ1 + κ2), K = κ1κ2,

are often used as convenient alternatives, since they eliminate some (but not all, owing to
the local freeness of the second order prolonged action) of the residual discrete ambiguities
in the locally equivariant moving frame. Higher order differential invariants are obtained
by differentiation with respect to the dual Darboux coframe ω1 = πH ι(dx), ω

2 = πH ι(dy).
We let D1 = ι(Dx), D2 = ι(Dy), denote the dual invariant differential operators, which are
in the directions of the Darboux frame vectors. These are not the same as the operators of
covariant differentiation, but are closely related, [49, 111]; indeed, the latter do not map
differential invariants to differential invariants.

To characterize the full differential invariant algebra, we derive the recurrence rela-
tions. A basis for the infinitesimal generators for the action on R

3 is provided by the six
vector fields

v1 = − y ∂x + x ∂y, v2 = −u ∂x + x ∂u, v3 = −u ∂y + y ∂u,

w1 = ∂x, w2 = ∂y, w3 = ∂u,
(5.15)

the first three generating the rotations and the second three the translations. The recur-
rence formulae (5.4) of order ≥ 1 have the explicit form

D1Ijk = Ij+1,k +

3∑

σ=1

ϕjk
σ (0, 0, I(j+k))Rσ

1 , D2Ijk = Ij,k+1 +

3∑

σ=1

ϕjk
σ (0, 0, I(j+k))Rσ

2 ,

(5.16)
provided j + k ≥ 1. Here Rσ

1 , R
σ
2 are the Maurer–Cartan invariants associated with the

rotational group generator vσ, while

ϕjk
σ (0, 0, I(j+k)) = ι

[
ϕjk
σ (x, y, u(j+k))

]
= ι
[
prvσ(ujk)

]

are its invariantized prolongation coefficients, as given by the standard formula (5.3).
(The translational generators and associated Maurer–Cartan invariants only appear in the
order 0 recurrence formulae, and so, for our purposes, can be ignored.) In particular, the
phantom recurrence formulae of order > 0 are

0 = D1I10 = I20 +R2
1, 0 = D2I10 = R2

2,

0 = D1I01 = R3
1, 0 = D2I01 = I02 +R3

2,

0 = D1I11 = I21 + (I20 − I02)R
1
1, 0 = D2I11 = I12 + (I20 − I02)R

1
2.

(5.17)
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Solving these produces the Maurer–Cartan invariants:

R1
1 = Y2, R2

1 = −κ1, R3
1 = 0, R1

2 = −Y1, R2
2 = 0, R3

2 = −κ2, (5.18)

where

Y1 =
I12

I20 − I02
=

D1κ2
κ1 − κ2

, Y2 =
I21

I02 − I20
=

D2κ1
κ2 − κ1

, (5.19)

the latter expressions following from the third order recurrence formulae, obtained by
substituting (5.18) into (5.16):

I30 = D1I20 = D1κ1, I21 = D2I20 = D2κ1,

I12 = D1I02 = D1κ2, I03 = D2I02 = D2κ2.
(5.20)

The general commutator formula (5.12) implies that the Maurer–Cartan invariants (5.19)
are also the commutator invariants :

[
D1,D2

]
= D1 D2 −D2 D1 = Y2 D1 − Y1 D2. (5.21)

Further, equating the two fourth order recurrence relations for I22 = ι(uxxyy), namely,

D2I21 +
I30I12 − 2I212
κ1 − κ2

+ κ1κ
2
2 = I22 = D1I12 −

I21I03 − 2I221
κ1 − κ2

+ κ21κ2,

leads us to the celebrated Codazzi syzygy

D2
2κ1 −D2

1κ2 +
D1κ1 D1κ2 +D2κ1 D2κ2 − 2(D1κ2)

2 − 2(D2κ1)
2

κ1 − κ2
− κ1κ2(κ1 − κ2) = 0.

(5.22)
Using (5.19), we can, in fact, rewrite the Codazzi syzygy in the more succinct form

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2. (5.23)

As noted in [49], the right hand side of (5.23) depends only on the first fundamental form
of the surface. Thus, the Codazzi syzygy (5.23) immediately implies Gauss’ Theorema

Egregium, that the Gauss curvature is an intrinsic, isometric invariant. Another direct
consequence of (5.23) is the celebrated Gauss–Bonnet Theorem; see [74] for details.

Since we are dealing with a second order moving frame, Theorem 5.3 implies that the
differential invariant algebra for Euclidean surfaces is generated by the basic differential
invariants of order ≤ 3. However, (5.20) express the third order invariants as invariant
derivatives of the principal curvatures κ1, κ2, and hence they, or, equivalently, the Gauss
and mean curvatures H,K, form a generating system of differential invariants. This is well
known, [111]. However, surprisingly, [119, 125], neither is a minimal generating set! To
investigate, we begin by distinguishing a special class of surfaces.

Definition 5.6. A surface S ⊂ R
3 is mean curvature degenerate if, for any non-

umbilic point z0 ∈ S, there exist scalar functions f1(t), f2(t), such that

D1H = f1(H), D2H = f2(H), (5.24)

at all points z ∈ S in a suitable neighborhood of z0.
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Clearly any constant mean curvature surface is mean curvature degenerate, with
f1(t) ≡ f2(t) ≡ 0. Surfaces with non-constant mean curvature that admit a one-parameter
group of Euclidean symmetries, i.e., non-cylindrical or non-spherical surfaces of rotation,
non-planar surfaces of translation, or helicoidal surfaces, obtained by, respectively, rotat-
ing, translating, or screwing a plane curve, are also mean curvature degenerate since, by the
signature characterization of symmetry groups, [37], they have exactly one non-constant
functionally independent differential invariant, namely the mean curvature H and hence
any other differential invariant, including the invariant derivatives of H — as well as the
Gauss curvature K — must be functionally dependent upon H. There also exist surfaces
without continuous symmetries that are, nevertheless, mean curvature degenerate since it
is entirely possible that (5.24) holds, but the Gauss curvature remains functionally inde-
pendent of H. However, I do not know a nice geometric characterization of such surfaces,
which are well deserving of further investigation.

Theorem 5.7. If a surface is mean curvature nondegenerate then its algebra of Eu-

clidean differential invariants is generated entirely by the mean curvature and its successive

invariant derivatives.

Proof : In view of the Codazzi formula (5.23), it suffices to write the commutator
invariants Y1, Y2 in terms of the mean curvature. To this end, we note that the commutator
identity (5.21) can be applied to any differential invariant. In particular,

D1D2H −D2D1H = Y2 D1H − Y1 D2H, (5.25)

and, furthermore,

D1D2DjH −D2D1DjH = Y2 D1DjH − Y1 D2DjH, j = 1, 2. (5.26)

Provided at least one of the nondegeneracy conditions

(D1H) (D2DjH) 6= (D2H) (D1DjH), for j = 1 or 2, (5.27)

holds, we can solve (5.25–26) to write the commutator invariants Y1, Y2 as explicit rational
functions of invariant derivatives of H. Plugging these expressions into the right hand side
of the Codazzi identity (5.23) produces an explicit formula for the Gauss curvature as a
rational function of the invariant derivatives, of order ≤ 4, of the mean curvature, valid
for all surfaces satisfying the nondegeneracy condition (5.27).

Thus it remains to show that (5.27) is equivalent to mean curvature nondegeneracy
of the surface. First, if (5.24) holds, then

DiDjH = Difj(H) = f ′
j (H)DiH = f ′

j (H) fi(H), i, j = 1, 2.

This immediately implies that

(D1H) (D2DjH) = (D2H) (D1DjH), j = 1, 2, (5.28)

proving mean curvature degeneracy. Vice versa, noting that, when restricted to the sur-
face, since the contact forms all vanish, dH reduces to the usual differential, and hence the
degeneracy condition (5.28) implies that, for each j = 1, 2, the differentials dH and d(DjH)

32



are linearly dependent everywhere on S. The standard characterization of functional de-
pendency, cf. [110; Theorem 2.16], thus implies that, locally, DjH can be written as a
function of H, thus establishing the mean curvature degeneracy condition (5.24). Q.E.D.

Analogous results hold for surfaces in several other classical three-dimensional Klein
geometries; see [60, 121] for details.

Theorem 5.8. The differential invariant algebra of a generic surface S ⊂ R
3 under

the standard action of

• the centro-equi-affine group SL(3) is generated by a single second order differential

invariant;

• the equi-affine group SA(3) = SL(3) ⋉ R
3 is generated by a single third order differ-

ential invariant, known as the Pick invariant, [144];

• the conformal group SO(4, 1) is generated by a single third order differential invariant;

• the projective group PSL(4) is generated by a single fourth order differential invariant.

Lest the reader be tempted at this juncture to make a general conjecture concerning
the differential invariants of surfaces in three-dimensional space, the following elementary
example shows that, even for surfaces in R

3, the number of generating invariants can be
arbitrarily large.

Example 5.9. Consider the abelian group action

z = (x, y, u) 7−→
(
x+ a, y + b, u+ p(x, y)

)
, (5.29)

where a, b ∈ R, and p(x, y) is an arbitrary polynomial of degree ≤ n. In this case, for
surfaces u = f(x, y), the individual jet coordinate functions ujk = Dj

xD
k
yu with j+k ≥ n+1

form a complete system of independent differential invariants. The invariant differential
operators are the usual total derivatives: D1 = Dx, D2 = Dy , which happen to commute.

The higher order differential invariants are generated by differentiating the differential
invariants ujk of order n + 1 = j + k. Moreover, these invariants clearly form a minimal
generating set, of cardinality n+ 2.

Complete local classifications of Lie group actions on plane curves and their associ-
ated differential invariant algebras are known, [111]. Lie, in volume 3 of his monumental
treatise on transformation groups, [81], exhibits a large fraction of the three-dimensional
classification, and claims to have completed it, but writes there is not enough space to
present the full details. As far as I know, his calculations have not been found in his
archived notes or personal papers. Later, Amaldi, [3, 4], lists what he says is the com-
plete classification. More recently, unaware of Amaldi’s papers, Komrakov, [76], asserts
that such a classification is not possible since one of the branches contains an intractable
algebraic problem. Amaldi and Komrakov’s competing claims remain to be reconciled,
although I suspect that Komrakov is right. Whether or not the Lie–Amaldi classification
is complete, it would, nevertheless, be a worthwhile project to systematically analyze the
differential invariant algebras of space curves and, especially, surfaces under each of the
transformation groups appearing in the Lie–Amaldi lists.
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In conclusion, even with the powerful recurrence formulae at our disposal, the general
problem of finding and characterizing a minimal set of generating differential invariants
when the dimension of the submanifold is ≥ 2 remains open. Indeed, I do not know of a
verifiable criterion for minimality, except in the trivial case when there is a single generating
invariant, let alone an algorithm that will produce a minimal generating set. The main
difficulty lies in establishing a bound on the order of possible syzygies among a given
set of differential invariants. It is worth pointing out that the corresponding problem
for polynomial ideals — finding a minimal Hilbert basis — appears to be intractable.
However, the special structure of the differential invariant algebra prescribed by the form
of the recurrence relations gives some reasons for optimism that such a procedure might
be possible.
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Figure 3. Canine Left Ventricle Signature.
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Figure 5. The Baffler Jigsaw Puzzle.

46


