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Abstract. This article presents the equivariant method of moving frames for finite-
dimensional Lie group actions, surveying a variety of applications, including geometry,
differential equations, computer vision, numerical analysis, the calculus of variations, and
invariant flows.

1. Introduction.

According to Akivis, [1], the method of moving frames originates in work of the Esto-
nian mathematician Martin Bartels (1769–1836), a teacher of both Gauss and Lobachevsky.
The field is most closely associated with Élie Cartan, [21], who forged earlier contributions
by Darboux, Frenet, Serret, and Cotton into a powerful tool for analyzing the geometric
properties of submanifolds and their invariants under the action of transformation groups.
In the 1970’s, several researchers, cf. [24, 36, 37, 48], began the process of developing a
firm theoretical foundation for the method. The final crucial step, [31], is to define a
moving frame simply as an equivariant map from the manifold back to the transformation
group. All classical moving frames can be reinterpreted in this manner. Moreover, the
equivariant approach is completely algorithmic, and applies to very general group actions.

Cartan’s normalization construction of a moving frame can be interpreted as the choice
of a cross-section to the group orbits. This enables one to algorithmically construct an
equivariant moving frame along with a complete systems of invariants through the induced
invariantization process. The existence of an equivariant moving frame requires freeness
of the underlying group action, i.e., the isotropy subgroup of any single point is trivial.
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Classically, non-free actions are made free by prolonging to jet space, leading to differential
invariants and the solution to equivalence and symmetry problems via the differential in-
variant signature. Alternatively, applying the moving frame method to Cartesian product
actions leads to the classification of joint invariants and joint differential invariants, [77].
Finally, an amalgamation of jet and Cartesian product actions dubbed multi-space was pro-
posed in [78] to serve as the basis for the geometric analysis of numerical approximations,
and systematic construction of invariant numerical algorithms, [54].

With the basic moving frame machinery in hand, a plethora of new, unexpected,
and significant applications soon appeared. In [75, 7, 55, 56], the theory was applied to
produce new algorithms for solving the basic symmetry and equivalence problems of poly-
nomials that form the foundation of classical invariant theory. In [20, 10, 2, 6, 91, 72],
the characterization of submanifolds via their differential invariant signatures was applied
to the problem of object recognition and symmetry detection, [16, 17, 30, 87]. Appli-
cations to the classification of joint invariants and joint differential invariants appear in
[31, 77, 11]. In computer vision, joint differential invariants have been proposed as noise-
resistant alternatives to the standard differential invariant signatures, [28, 69]. The ap-
proximation of higher order differential invariants by joint differential invariants and, gen-
erally, ordinary joint invariants leads to fully invariant finite difference numerical schemes,
[19, 20, 10, 78, 54]. The all-important recurrence formulae lead to a complete charac-
terization of the differential invariant algebra of group actions, and lead to new results
on minimal generating invariants, even in very classical geometries, [79, 43, 81, 47, 44].
The general problem from the calculus of variations of directly constructing the invariant
Euler-Lagrange equations from their invariant Lagrangians was solved in [57]. Applica-
tions to the evolution of differential invariants under invariant submanifold flows, leading
to integrable soliton equations and signature evolution in computer vision, can be found
in [80, 50].

Applications of equivariant moving frames that are being developed by other research
groups include the computation of symmetry groups and classification of partial differ-
ential equations [60, 70]; geometry of curves and surfaces in homogeneous spaces, with
applications to integrable systems, [61, 62, 63]; symmetry and equivalence of polygons
and point configurations, [12, 49], recognition of DNA supercoils, [90], recovering struc-
ture of three-dimensional objects from motion, [6], classification of projective curves in
visual recognition, [41]; construction of integral invariant signatures for object recognition
in 2D and 3D images, [32]; determination of invariants and covariants of Killing tensors,
with applications to general relativity, separation of variables, and Hamiltonian systems,
[27, 67, 66]; further developments in classical invariant theory, [7, 55, 56]; computation
of Casimir invariants of Lie algebras and the classification of subalgebras, with applica-
tions in quantum mechanics, [13, 14]. A rigorous, algebraically-based reformulation of the
method, suitable for symbolic computations, has been proposed by Hubert and Kogan,
[45, 46].

Finally, in recent work with Pohjanpelto, [83, 84, 85], the theory and algorithms
have recently been extended to the vastly more complicated case of infinite-dimensional Lie
pseudo-groups. Applications to infinite-dimensional symmetry groups of partial differential
equations can be found in [22, 23, 71, 94], and to the classification of Laplace invariants
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and factorization of linear partial differential operators in [92].

2. Equivariant Moving Frames.

We begin by describing the general equivariant moving frame construction. Let G be
an r-dimensional Lie group acting smoothly on an m-dimensional manifold M .

Definition 2.1. A moving frame is a smooth, G-equivariant map ρ :M → G.

There are two principal types of equivariance:

ρ(g · z) =

{
g · ρ(z) left moving frame

ρ(z) · g−1 right moving frame
(2.1)

If ρ(z) is any right-equivariant moving frame then ρ̃(z) = ρ(z)−1 is left-equivariant and
conversely. All classical moving frames are left-equivariant, but the right versions are often
easier to compute. In classical geometrical situations, one can identify left-equivariant
moving frames with the usual frame-based versions, cf. [39].

It is not difficult to establish the basic requirements for the existence of an equivariant
moving frame.

Theorem 2.2. A moving frame exists in a neighborhood of a point z ∈ M if and

only if G acts freely and regularly near z.

Recall that G acts freely if the isotropy subgroup Gz = { g ∈ G | g · z = z } of each
point z ∈ M is trivial: Gz = {e}. This implies local freeness , meaning that the isotropy
subgroups Gz are all discrete, or, equivalently, that the orbits all have the same dimension,
r, as G itself. Regularity requires that, in addition, the orbits form a regular foliation.

The explicit construction of a moving frame relies on the choice of a (local) cross-

section to the group orbits, meaning an (m − r)-dimensional submanifold K ⊂ M that
intersects each orbit transversally and at most once.

Theorem 2.3. Let G act freely and regularly on M , and let K ⊂ M be a cross-

section. Given z ∈ M , let g = ρ(z) be the unique group element that maps z to the

cross-section: g · z = ρ(z) · z ∈ K. Then ρ :M → G is a right moving frame.

Given local coordinates z = (z1, . . . , zm) on M , suppose the cross-section K is defined
by the r equations

Z1(z) = c1, . . . Zr(z) = cr, (2.2)

where Z1, . . . , Zr are scalar-valued functions, while c1, . . . , cr are suitably chosen constants.
In many applications, the Zλ are merely coordinate functions. The associated right moving
frame g = ρ(z) is obtained by solving the normalization equations

Z1(g · z) = c1, . . . Zr(g · z) = cr, (2.3)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z = (z1, . . . , zm).
Transversality combined with the Implicit Function Theorem implies the existence of a
local solution to these algebraic equations.

The specification of a moving frame by choice of a cross-section induces an invarianti-
zation process that maps functions to invariants.
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Definition 2.4. The invariantization of a function F :M → R is the unique invariant
function I = ι(F ) that agrees with F on the cross-section: I | K = F | K.

In practice, the invariantization of a function F (z) is obtained by first transforming it
according to the group, F (g · z) and then replacing the group parameters by their moving
frame formulae g = ρ(z), so that ι[F (z) ] = F (ρ(z) · z). In particular, invariantization
of the coordinate functions yields the fundamental invariants : Iν(z) = ι(zν). Once these
have been computed, the invariantization of a general function F (z) is simply given by

ι
[
F (z1, . . . , zn)

]
= F (I1(z), . . . , In(z)). (2.4)

In particular, the functions defining the cross-section (2.2) have constant invariantization,
ι(Zν) = cν , and are known as the phantom invariants . Thus, there are precisely m − r
functionally independent fundamental invariants. Moreover, if I(z) is any invariant, then
clearly ι(I) = I, which implies the elegant and powerful Replacement Rule

I(z1, . . . , zn) = I(I1(z), . . . , In(z)), (2.5)

that can be used to immediately rewrite I(z) in terms of the fundamental invariants.

Of course, most interesting group actions are not free, and therefore do not admit
moving frames in the sense of Definition 2.1. There are two well-known methods that con-
vert a non-free (but effective) action into a free action. The first is to look at the Cartesian
product action of G on several copies of M , which leads to joint invariants. The second
is to prolong the group action to jet space, which is the natural setting for the traditional
moving frame theory, leading to differential invariants. Combining the two methods of jet
prolongation and Cartesian product results in joint differential invariants. In applications
of symmetry constructions to numerical approximations of derivatives and differential in-
variants, one requires a unification of these different actions into a common framework,
called multispace, [54, 78]. These are discussed in turn in the following sections.

3. Moving Frames on Jet Space and Differential Invariants.

Traditional moving frames are obtained by prolonging the group action to the nth

order submanifold jet bundle Jn = Jn(M, p), which is defined as the set of equivalence
classes of p-dimensional submanifolds S ⊂ M under the equivalence relation of nth order
contact at a single point; see [73; Chapter 3] for details. Since G preserves the contact
equivalence relation, it induces an action on the jet space Jn, known as its nth order
prolongation and denoted by G(n). The formulas for the prolonged group action are found
by implicit differentiation.

We can assume, without significant loss of generality, that G acts effectively on open
subsets of M , meaning that the only group element that fixes every point in any open
U ⊂M is the identity element. This implies, [76], that the prolonged action is locally free
on a dense open subset Vn ⊂ Jn for n ≫ 0 sufficiently large. In all known examples, the
prolonged action is, in fact, free on such a Vn although there is, frustratingly, no general
proof of this property. The points z(n) ∈ Vn are known as regular jets .

The normalization construction based on a choice of local cross-section Kn ⊂ Vn to
the prolonged group orbits can be used to produce a (locally defined) nth order equivariant
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moving frame ρ(n): Jn → G in a neighborhood of any regular jet. Once the moving frame
is established, the induced invariantization process will map general differential functions
F (x, u(n)) to differential invariants I = ι(F ). The fundamental differential invariants are
obtained by invariantization of the coordinate functions:

Hi = ι(xi), IαJ = ι(uαJ ), α = 1, . . . , q, #J ≥ 0. (3.1)

These naturally split into two classes: The r = dimG combinations defining the cross-
section will be constant, and are known as the phantom differential invariants . The re-
mainder, called the basic differential invariants , form a complete system of functionally
independent differential invariants. Indeed, if I(x, u(n)) = I(. . . xi . . . uαJ . . .) is any dif-
ferential invariant, then the Replacement Rule (2.5) allows one to immediately rewrite
I = I(. . .Hi . . . IαJ . . .) in terms of the fundamental differential invariants. The moving
frame also produces p independent invariant differential operators by invariantizing the
usual total derivative operators, D1 = ι(D1), . . . ,Dp = ι(Dp), which can be iteratively
applied to lower order differential invariants to generate the higher order differential in-
variants; see below for full details.

Example 3.1. The paradigmatic example is the action of the orientation-preserving
Euclidean group SE(2) on plane curves C ⊂M = R

2. The group transformation g ∈ SE(2)
maps the point z = (x, u) to the point w = (y, v) = g · z, given by

y = x cosφ− u sinφ+ a, v = x sinφ+ u cosφ+ b, (3.2)

where g = (φ, a, b) ∈ SE(2) are the group parameters. The prolonged group transforma-
tions are obtained by successively applying the implicit differentiation operator

Dy = (cosφ− ux sinφ)
−1Dx (3.3)

to v, producing

vy =
sinφ+ ux cosφ

cosφ− ux sinφ
, vyy =

uxx
(cosφ− ux sinφ)

3
, . . . (3.4)

Observe that the prolonged action is locally free on the first order jet space J1. (To simplify
the exposition, we gloss over the remaining discrete ambiguity caused by a 180◦ rotation;
see [77] for a more precise development.) The classical moving frame is based on the
cross-section

K1 = {x = u = ux = 0}. (3.5)

Solving the corresponding normalization equations y = v = vy = 0 for the group parame-
ters produces the right moving frame

φ = − tan−1 ux , a = −
x+ uux√
1 + u2x

, b =
xux − u√
1 + u2x

. (3.6)

The classical left-equivariant Frenet frame, [39], is obtained by inverting the Euclidean
group element given by (3.6). Invariantization of the coordinate functions, which is done
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by substituting the moving frame formulae (3.6) into the prolonged group transformations
(3.4), produces the fundamental normalized differential invariants:

ι(x) = H = 0, ι(u) = I0 = 0, ι(ux) = I1 = 0,

ι(uxx) = I2 = κ, ι(uxxx) = I3 = κs, ι(uxxxx) = I4 = κss + 3κ3,
(3.7)

and so on. The first three are the phantom invariants . The lowest order basic differential
invariant is the Euclidean curvature I2 = κ = (1+u2x)

−3/2uxx. The corresponding invariant
differential operator is the arc length derivative,

D = Ds =
1√

1 + u2x
Dx (3.8)

which is obtained by invariantizing (3.3). Using the general recursion formulae, that relate
the normalized and differentiated differential invariants, to be presented in detail below,
we can readily prove that the curvature and its successive derivatives with respect to arc
length, κ, κs, κss, . . . , form a complete system of differential invariants.

4. Equivalence and Signatures.

A motivating application of the moving frame method is to solve problems of equiv-
alence and symmetry of submanifolds under group actions. Given a group action of G on
M , two submanifolds S, S ⊂ M are said to be equivalent if S = g · S for some g ∈ G.
A symmetry of a submanifold is a self-equivalence, that is a group transformation g ∈ G
that maps S to itself: S = g · S. The solution to the equivalence and symmetry prob-
lems for submanifolds is based on the functional interrelationships among the fundamental
differential invariants restricted to the submanifold.

Suppose we have constructed an nth order moving frame ρ(n): Jn → G defined on an
open subset of jet space. A submanifold S is called regular if its n-jet jnS lies in the
domain of definition of the moving frame. For any k ≥ n, we use J (k) = I(k) | jkS, where
I(k) = (. . .Hi . . . IαJ . . .), #J ≤ k, to denote the kth order restricted differential invariants .

Definition 4.1. The kth order signature S(k) = S(k)(S) is the set parametrized by
the restricted differential invariants J (k): jkS → R

nk , where nk = p+ q
(
p+k
k

)
= dimJk.

The submanifold S is called fully regular if J (k) has constant rank 0 ≤ tk ≤ p = dimS
for all k ≥ n. In this case, S(k) forms a submanifold of dimension tk — perhaps with
self-intersections. In the fully regular case,

tn < tn+1 < tn+2 < · · · < ts = ts+1 = · · · = t ≤ p, (4.1)

where t is the differential invariant rank and s the differential invariant order of S.

Theorem 4.2. Two fully regular p-dimensional submanifolds S, S ⊂M are (locally)
equivalent if and only if they have the same differential invariant order s and their signature

manifolds of order s+ 1 are identical: S(s+1)(S) = S(s+1)(S).

Since symmetries are merely self-equivalences, the signature also determines the sym-
metry group of the submanifold.
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Theorem 4.3. If S ⊂M is a fully regular p-dimensional submanifold of differential

invariant rank t, then its symmetry group GS is an (r− t)–dimensional subgroup of G that

acts locally freely on S.

A submanifold with maximal differential invariant rank t = p, and hence only a
discrete symmetry group, is called nonsingular . The number of symmetries of a nonsingular
submanifold is determined by its index , which is defined as the number of points in S map
to a single generic point of its signature:

indS = min
{
# (J (s+1))−1{ζ}

∣∣∣ ζ ∈ S(s+1)
}
. (4.2)

Theorem 4.4. If S is a nonsingular submanifold, then its symmetry group is a

discrete subgroup of cardinality indS.

At the other extreme, a rank 0 or maximally symmetric submanifold, [82], has all
constant differential invariants, and so its signature degenerates to a single point.

Theorem 4.5. A regular p-dimensional submanifold S has differential invariant rank

0 if and only if its symmetry group is a p-dimensional subgroup H ⊂ G and hence S is an

open submanifold of an H–orbit: S ⊂ H · z0.

Remark : “Totally singular” submanifolds may have even larger, non-free symmetry
groups, but these are not covered by the preceding results. See [76] for details, including
Lie algebraic characterizations.

Remark : See [72] for some counterexamples when one tries to relax the regularity
assumptions in the above results.

Example 4.6. The Euclidean signature for a curve C ⊂M = R
2 is the planar curve

S(C) = {(κ, κs)} parametrized by the curvature invariant κ and its first derivative with
respect to arc length. Two fully regular planar curves are equivalent under an oriented rigid
motion if and only if they have the same signature curve. The maximally symmetric curves
have constant Euclidean curvature, and so their signature curve degenerates to a single
point. These are the circles and straight lines, and, in accordance with Theorem 4.5, each
is the orbit of its one-parameter symmetry subgroup of SE(2). The number of Euclidean
symmetries of a nonsingular curve is equal to its index — the number of times the Euclidean
signature is retraced as we go around the curve.

In Figure 1 we display some signature curves computed from the left ventricle of a
gray-scale digital MRI scan of a canine heart. The boundary of the ventricle has been
automatically segmented through use of the conformally Riemannian snake flow proposed
in [51, 96]. The ventricle boundary curve is then smoothed with the Euclidean-invariant
curve shortening flow (see the final section for details) and the Euclidean signatures of
the resulting curves computed. As the progressively smoothed curves approach circularity,
their signatures exhibit less variation in curvature and wind more and more tightly around
a single point, which is the signature of a circle of area equal to the area inside the evolving
curve. Despite the rather extensive smoothing involved, except for an overall shrinking as
the contour approaches circularity, the basic qualitative features of the different signature
curves appear to be remarkably robust.
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Figure 1. Signature of a Canine Ventricle.

8



5. Joint Invariants and Joint Differential Invariants.

As always, the starting point the the action of a Lie group G on a manifold M .
Consider the joint action

g · (z0, . . . , zn) = (g · z0, . . . , g · zn), g ∈ G, z0, . . . , zn ∈M. (5.1)

on the (n+1)-fold Cartesian product M×(n+1) =M ×· · ·×M . An invariant I(z0, . . . , zn)
of (5.1) is an (n + 1)-point joint invariant of the original transformation group. In most
cases of interest (although not in general), if G acts effectively on M , then, for n ≫ 0
sufficiently large, the product action is free and regular on an open subset of M×(n+1),
cf. [77]. Consequently, the equivariant moving frame method can be applied to such
joint actions, and thereby establish complete classifications of joint invariants and, via
prolongation to Cartesian products of jet spaces, joint differential invariants.

Example 5.1. Consider the Euclidean group SE(2) acting on curves C ⊂ M =
R

2. For the Cartesian product action on M×n, we take the simplest cross-section K ={
x0 = u0 = x1 = 0, u1 > 0

}
leads to the normalization equations

y0 = x0 cosφ− u0 sinφ+ a = 0, v0 = x0 sinφ+ u0 cosφ+ b = 0,

y1 = x1 cosφ− u1 sinφ+ a = 0.
(5.2)

Solving, we obtain a right moving frame

φ = tan−1

(
x1 − x0
u1 − u0

)
, a = −x0 cosφ+ u0 sinφ, b = −x0 sinφ− u0 cosφ, (5.3)

along with the fundamental interpoint distance invariant

I = ι(u1) = ‖ z1 − z0 ‖. (5.4)

Substituting (5.3) into the prolongation formulae (3.4) leads to the the normalized first
and second order joint differential invariants

Jk = ι

(
duk
dx

)
= −

(z1 − z0) ·
�

zk
(z1 − z0) ∧

�

zk
, Kk = ι

(
d2uk
dx2

)
= −

‖ z1 − z0 ‖
3 (

�

zk ∧
��

zk)[
(z1 − z0) ∧

�

z0
]3 ,

(5.5)
where the dots indicate derivatives of zk(tk) with respect to the curve parameter tk.

Theorem 5.2. If n ≥ 2, then every n-point joint Euclidean differential invariant is

a function of the interpoint distances ‖ zi − zj ‖ and their iterated derivatives with respect

to the invariant differential operators

Dk = ι(Dtk
) = −

‖ z1 − z0 ‖

(z1 − z0) ∧
�

zk
Dtk

.

Consequently, to create a Euclidean signature based entirely on joint invariants, we
can take four points z0, z1, z2, z3 on our curve C ⊂ R

2. As illustrated in Figure 2, there
are six different interpoint distance invariants

a = ‖ z1 − z0 ‖, b = ‖ z2 − z0 ‖, c = ‖ z3 − z0 ‖,

d = ‖ z2 − z1 ‖, e = ‖ z3 − z1 ‖, f = ‖ z3 − z2 ‖,
(5.6)
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Figure 2. Four-Point Euclidean Curve Invariants.

which parametrize the joint signature Ŝ = Ŝ(C) that uniquely characterizes the curve C
up to Euclidean motion. Since this signature avoids any differentiation, it is insensitive to
noisy image data. There are two local syzygies

Φ1(a, b, c, d, e, f) = 0, Φ2(a, b, c, d, e, f) = 0, (5.7)

among the the six interpoint distances. One of these is the universal Cayley–Menger syzygy

det

∣∣∣∣∣∣

2a2 a2 + b2 − d2 a2 + c2 − e2

a2 + b2 − d2 2b2 b2 + c2 − f2

a2 + c2 − e2 b2 + c2 − f2 2c2

∣∣∣∣∣∣
= 0, (5.8)

which is valid for all possible planar configurations of the four points, cf. [8]. The second
syzygy in (5.7) is curve-dependent and serves to effectively characterize the joint invariant
signature.

A variety of additional examples, including curves and surfaces in two and three-
dimensional space under the Euclidean, equi-affine, affine and projective groups, are inves-
tigated in detail in [77].

6. Invariant Numerical Approximations.

In modern numerical analysis, the development of numerical schemes that incorpo-
rate additional structure enjoyed by the problem being approximated, e.g., symmetries,
conservation laws, symplectic structure, etc., is now known as geometric numerical inte-

gration, [18, 29, 40, 65]. In practical applications of invariant theory to computer vision,
group-invariant numerical schemes to approximate differential invariants have been ap-
plied to the problem of symmetry-based object recognition, [10, 20, 19]. In this section.,
I discuss the use of moving frame methods to construct symmetry-preserving numerical
approximations.

The first step is to construct a suitable manifold that incorporates both the differential
equation under consideration and its numerical approximations. Currently, only the case
of ordinary differential equations, involving p = 1 independent variables, is completely
understood, and so we restrict ourselves to this context.
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Finite difference approximations to the derivatives of a function u = f(x) rely on its
values u0 = f(x0), . . . , un = f(xn) at several distinct points zi = (xi, ui) = (xi, f(xi))
on the graph. Thus, discrete approximations to jet coordinates on Jn are functions
F (z0, . . . , zn) defined on the (n+1)-fold Cartesian product space M×(n+1). As the points
z0, . . . , zn coalesce, the approximation F (z0, . . . , zn) will not be well-defined unless we
specify the “direction” of convergence. Thus, strictly speaking, F is not defined on all of
M×(n+1), but, rather, on the “off-diagonal” part

M⋄(n+1) =
{
(z0, . . . , zn)

∣∣ zi 6= zj for all i 6= j
}
⊂M×(n+1).

As two or more points come together, the limiting value of F (z0, . . . , zn) will be governed
by the derivatives (or jet) of the appropriate order governing the direction of convergence.
This motivates our construction of the nth order multi-space M (n).

Definition 6.1. An (n + 1)-pointed curve C = (z0, . . . , zn;C) consists of a smooth
curve C and n + 1 not necessarily distinct points z0, . . . , zn ∈ C thereon. Two (n + 1)-

pointed curves C = (z0, . . . , zn;C), C̃ = (z̃0, . . . , z̃n; C̃), have n
th order multi-contact if

and only if zi = z̃i, and j#i−1C|zi = j#i−1C̃|zi , where #i = #{ j | zj = zi }, for each
i = 0, . . . , n.

Definition 6.2. The nth order multi-space, denoted M (n) is the set of equivalence
classes of (n + 1)-pointed curves in M under the equivalence relation of nth order multi-
contact. The equivalence class of an (n + 1)-pointed curves C is called its nth order
multi-jet , and denoted jnC ∈M (n).

We can identify the subset of multi-jets of multi-pointed curves having distinct points
with the off-diagonal Cartesian product space M⋄(n+1) ⊂ Jn. On the other hand, the
multi-space equivalence relation reduces to the ordinary jet space equivalence relation on
the set of coincident multi-pointed curves, and in this way Jn ⊂M (n). Intermediate cases,
when some but not all points coincide, correspond to “off-diagonal” Cartesian products of
jet spaces

Jk1 ⋄ · · · ⋄ Jki ≡
{
(z

(k1)
0 , . . . , z

(ki)
i ) ∈ Jk1 × · · · × Jki

∣∣∣ π(z(kν)
ν ) are distinct

}
, (6.1)

where
∑
kν = n and π: Jk →M is the usual jet space projection.

Theorem 6.3. If M is a smooth m-dimensional manifold, then its nth order multi-

space M (n) is a smooth manifold of dimension (n + 1)m, which contains the off-diagonal

part M⋄(n+1) of the Cartesian product space as an open, dense submanifold, and the nth

order jet space Jn as a smooth submanifold.

Just as local coordinates on Jn are provided by the coefficients of Taylor polynomials,
local coordinates on M (n) are provided by the coefficients of interpolating polynomials,
which are the classical divided differences of numerical interpolation theory, [78].

Definition 6.4. Given an (n + 1)-pointed graph C = (z0, . . . , zn;C), its divided
differences are defined by [ zj ]C = f(xj), and

[ z0z1 . . . zk−1zk ]C = lim
z→zk

[ z0z1z2 . . . zk−2z ]C − [ z0z1z2 . . . zk−2zk−1 ]C
x− xk−1

. (6.2)
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When taking the limit, the point z = (x, f(x)) must lie on the curve C, and take limiting
values x→ xk and f(x) → f(xk).

It is not hard to show that two (n + 1)-pointed graphs C, C̃ have nth order multi-
contact if and only if they have the same divided differences: [ z0z1 . . . zk ]C = [ z0z1 . . . zk ]C̃
for all k = 0, . . . , n. Therefore, the required local coordinates on multi-space M (n) consist
of the independent variables along with all the divided differences

x0, . . . , xn, u(0) = u0 = [ z0 ]C , u(1) = [ z0z1 ]C , . . . u(n) = n! [ z0z1 . . . zn ]C . (6.3)

The n! factor is included so that u(n) agrees with the usual derivative coordinate when
restricted to Jn.

In general, implementation of a finite difference numerical solution scheme for a system
of ordinary differential equations

∆1(x, u, u
(1), . . . , u(n)) = · · · = ∆k(x, u, u

(1), . . . , u(n)) = 0, (6.4)

requires suitable discrete approximations to each of its defining differential functions ∆ν .
This requires extending the differential functions from the jet space to the associated
multi-space, in accordance with the following definition.

Definition 6.5. An (n+1)-point numerical approximation of order k to a differential
function ∆: Jn → R is an function F :M (n) → R that, when restricted to the jet space,
agrees with ∆ to order k.

Now let us consider an r-dimensional Lie group G which acts smoothly on M . Since
G evidently maps multi-pointed curves to multi-pointed curves while preserving the multi-
contact equivalence relation, it induces an action on the multi-space M (n) that will be
called the nth multi-prolongation of G and denoted by G(n). On the jet subset Jn ⊂M (n)

the multi-prolonged action reduces to the usual jet space prolongation. On the other
hand, on the off-diagonal part M⋄(n+1) ⊂M (n) the action coincides with the (n+ 1)-fold
Cartesian product action of G on M×(n+1).

We define a multi-invariant to be a function K:M (n) → R on multi-space which is
invariant under the multi-prolonged action of G(n). The restriction of a multi-invariant
K to jet space will be a differential invariant, I = K | Jn, while restriction to M⋄(n+1)

will define a joint invariant J = K |M⋄(n+1). Restriction to intermediate multi-jet sub-
spaces (6.1) will produce joint differential invariants. Smoothness of K will imply that
the joint invariant J is an invariant nth order numerical approximation to the differential

invariant I. Moreover, every invariant finite difference numerical approximation arises in
this manner. Thus, the theory of multi-invariants is the theory of invariant numerical
approximations!

Assuming regularity and freeness of the multi-prolonged action on an open subset
of M (n), we can apply the equivariant moving frame construction. The resulting multi-

frame ρ(n):M (n) → G will lead us immediately to the required multi-invariants and hence
a general, systematic construction for invariant numerical approximations to differential
invariants through its induced invariantization procedure. The basic multi-invariants are

(Hi, Ki) = Ii = ι(zi) =
(
ι(xi), ι(ui)

)
, i = 1, . . . , n, (6.5)
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and their divided differences

I(k) = ι( [ z0z1 . . . zk ] ) = [ I0 . . . Ik ] =
[ I0 . . . Ik−2Ik ]− [ I0 . . . Ik−2Ik−1 ]

Hk −Hk−1

. (6.6)

Example 6.6. For the planar Euclidean action (3.2), the multi-prolonged action is
locally free on M (n) for n ≥ 1. We can thereby determine a first order multi-frame and
use it to completely classify Euclidean multi-invariants. The first order transformation
formulae are

y0 = x0 cosφ− u0 sinφ+ a, v0 = x0 sinφ+ u0 cosφ+ b,

y1 = x1 cosφ− u1 sinφ+ a, v(1) =
sinφ+ u(1) cosφ

cosφ− u(1) sinφ
,

(6.7)

where u(1) = [ z0z1 ] = (u1 − u0)/(x1 − x0). Normalization based on the cross-section
y0 = v0 = v1 = 0 results in the right moving frame

a = −x0 cosφ+ u0 sinφ = −
x0 + u(1) u0√
1 + (u(1))2

,

b = −x0 sinφ− u0 cosφ =
x0 u

(1) − u0√
1 + (u(1))2

,

tanφ = −u(1) . (6.8)

Substituting the moving frame formulae (6.8) into the lifted divided differences produces
a complete system of (oriented) Euclidean multi-invariants. These are easily computed by
beginning with the fundamental joint invariants

Hk = ι(xk) =
(xk − x0) + u(1) (uk − u0)√

1 + (u(1))2
= (xk − x0)

1 + [ z0z1 ] [ z0zk ]√
1 + [ z0z1 ]

2
,

Kk = ι(uk) =
(uk − u0)− u(1) (xk − x0)√

1 + (u(1))2
= (xk − x0)

[ z0zk ]− [ z0z1 ]√
1 + [ z0z1 ]

2
.

The higher order multi-invariants are obtained by forming divided difference quotients

[ I0Ik ] =
Kk −K0

Hk −H0

=
Kk

Hk

=
(xk − x1)[ z0z1zk ]

1 + [ z0zk ] [ z0z1 ]
,

where, in particular, I(1) = [ I0I1 ] = 0. The second order multi-invariant

I(2) = 2 [ I0I1I2 ] = 2
[ I0I2 ]− [ I0I1 ]

H2 −H1

=
2 [ z0z1z2 ]

√
1 + [ z0z1 ]

2

(
1 + [ z0z1 ] [ z1z2 ]

)(
1 + [ z0z1 ] [ z0z2 ]

)

=
u(2)

√
1 + (u(1))2[

1 + (u(1))2 + 1
2u

(1)u(2)(x2 − x0)
] [

1 + (u(1))2 + 1
2u

(1)u(2)(x2 − x1)
]

provides a Euclidean–invariant numerical approximation to the Euclidean curvature:

lim
z1,z2→z0

I(2) = κ =
u(2)

(1 + (u(1))2)3/2
.
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Figure 3. Invariantized Runge–Kutta Schemes for Ames’ Equation.

Similarly, the third order multi-invariant

I(3) = 6 [ I0I1I2I3 ] = 6
[ I0I1I3 ]− [ I0I1I2 ]

H3 −H2

will form a Euclidean–invariant approximation for the normalized differential invariant
κs = ι(uxxx), the derivative of curvature with respect to arc length, [20, 31]. In [26],
my undergraduate student Derek Dalle makes detailed comparisons between the various
divided difference approximations to differential invariants, and shows a number of advan-
tages of such moving frame-based approximations.

Given a symmetry group of an ordinary differential equation, we can construct a mov-
ing frame on the associated multispace and apply the induced invariantization procedure to
standard numerical schemes, e.g., Runge–Kutta methods, to systematically derive invari-
antized schemes that respect the symmetries. As emphasized by Pilwon Kim, [52, 53, 54],
the key to the success of the invariantized numerical scheme lies in the intelligent choice
of cross-section for the moving frame. Let us look at one simple illustrative example taken
from [52].

Example 6.7. Ames’ equation

uxx = −
ux
x

− eu (6.9)

is a well-studied stiff ordinary differential equation that arises in a wide range of fields,
including kinetics and heat transfer, vortex motion of incompressible fluids, and the mass
distribution of gaseous interstellar material under influence of its own gravitational fields,
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[3]. The infinitesimal generators

v1 = −x
∂

∂x
+ 2

∂

∂u
, v2 = −

1

2
x log x

∂

∂x
+ (1 + log x)

∂

∂u
,

induce one-parameter symmetry groups mapping (x, u) to

(eε1x, u+ 2ε1), (xe
−:ε2/2

, u+ 2(1− e−:ε2/2) log x+ ε2),

respectively. Individually, neither group leads to a significant improvement in the integra-
tion scheme, but a suitable combination induces a moving frame that maps every point
(x, u) to the cross-section {u = 0}. Figure 3 compares the Runge–Kutta and the invari-
antized Runge–Kutta schemes starting at x = 5. Even in this region, the invariantized
scheme outperforms the standard scheme. A more dramatic effect appears when they
are applied around x = 0, where the ordinary Runge–Kutta breaks down, while the in-
variantized Runge–Kutta method successfully avoids the stiffness of the equation in that
regime.

Extensions to partial differential equations are under development. In [53], Kim de-
velops an invariantized Crank-Nicolson scheme for Burgers’ equation that avoids problems
with numerical oscillations near sharp transition regions. In [95], the authors develop
invariant schemes for nonlinear partial differential equations of use in image processing,
including the Hamilton–Jacobi equation.

7. The Invariant Bicomplex.

Let us return to the case of prolonged group actions on jet space and develop some
further machinery required in the more advanced applications of moving frames to differ-
ential invariants, differential equations, and the calculus of variations. The full power of
the equivariant construction becomes evident once we incorporate the contact structure
and induced variational bicomplex on the infinite order jet bundle J∞ = J∞(M, p), which
we now review, [4, 74].

Separating the local coordinates (x, u) = (x1, . . . , xp, u1, . . . , uq) on M into indepen-
dent and dependent variables naturally splits† the differential one-forms on J∞ into hor-

izontal forms , spanned by dx1, . . . , dxp, and vertical forms , spanned by the basic contact

one-forms

θαJ = duαJ −

p∑

i=1

uαJ,i dx
i, α = 1, . . . , q, #J ≥ 0. (7.1)

Let πH and πV denote the projections mapping one-forms on J∞ to their horizontal and
vertical (contact) components, respectively. We accordingly decompose the differential

† The splitting, which depends on the choice of local coordinates, only works at infinite order,
which is the reason we work on J∞.
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d = πH ◦d + πV ◦d = dH + dV , which results in the variational bicomplex on J∞. If
F (x, u(n)) is any differential function, its horizontal differential is

dH F =

p∑

i=1

(DiF ) dx
i, (7.2)

in which Di = Dxi denote the usual total derivatives with respect to the independent
variables. Thus, dH F can be identified with the “total gradient” of F . Similarly, its
vertical differential is

dV F =
∑

α,J

∂F

∂uαJ
θαJ =

∑

α,J

∂F

∂uαJ
DJθ

α = DF (θ), (7.3)

in which the total derivatives act as Lie derivatives on the contact forms θ = (θ1, . . . , θq)T ,
and DF denotes the formal linearization operator or Fréchet derivative of the differential
function F . Thus, the vertical differential dV F can be identified† with the (first) variation,
hence the name “variational bicomplex”.

Let πn: J
∞ → Jn be the natural jet space projections. Choosing a cross-section

Kn ⊂ Vn ⊂ Jn, we extend the induced nth order moving frame ρ(n) to the infinite jet
bundle by setting ρ(x, u(∞)) = ρ(n)(x, u(n)) whenever (x, u(n)) = πn(x, u

(∞)) lies in the
domain of definition of ρ(n). We will employ our moving frame to invariantize the vari-
ational bicomplex. As before, the invariantization of a differential form is the unique
invariant differential form that agrees with its progenitor on the cross-section. In particu-
lar, the invariantization process does not affect invariant differential forms. In practice, one
determines the invariantization by first transforming the differential form by the prolonged
group action and then substituting the moving frame formulae for the group parameters.

As in (3.1), the fundamental differential invariants are obtained by invariantizing the
jet coordinates: Hi = ι(xi), IαJ = ι(uαJ ). Let

̟i = ι(dxi) = ωi + ηi, where ωi = πH(̟i), ηi = πV (̟
i), (7.4)

denote the invariantized horizontal one-forms . Their horizontal components ω1, . . . , ωp

prescribe, in the language of [74], a contact-invariant coframe for the prolonged group ac-
tion, while the contact forms η1, . . . , ηp are required to make ̟1, . . . , ̟p fully G-invariant.
Finally, the invariantized basis contact forms are denoted by

ϑαJ = ι(θαJ ), α = 1, . . . , q, #J ≥ 0. (7.5)

Invariantization of more general differential forms relies on the fact that it preserves the
exterior algebra structure, and so

ι(Ω + Ψ) = ι(Ω) + ι(Ψ), ι(Ω ∧Ψ) = ι(Ω) ∧ ι(Ψ), (7.6)

for any differential forms (or functions) Ω,Ψ on J∞.

† This becomes clearer when you rewrite θ
α
J = δu

α
J .
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As in the ordinary bicomplex construction, the decomposition of invariant one-forms
on J∞ into invariant horizontal and invariant contact components induces a decomposition
of the differential. However, now d = dH + dV + dW splits into three constituents, where
dH adds an invariant horizontal form, dV adds a invariant contact form, while dW replaces
an invariant horizontal one-form with a combination of wedge products of two invariant
contact forms. They satisfy the “quasi-tricomplex” identities

d2H = 0, dH dV + dV dH = 0,

d2W = 0, dV dW + dW dV = 0,
d2V + dH dW + dW dH = 0. (7.7)

Fortunately, the third, anomalous component dW plays no role (to date) in the applica-
tions; in particular, dW F = 0 for any differential function F . Even better, if the group acts
projectably, dW ≡ 0. The corresponding dual invariant differential operators D1, . . . ,Dp

are then defined so that

dH F =

p∑

i=1

(DiF )̟
i, dH Ω =

p∑

i=1

̟i ∧ Di Ω, (7.8)

for any differential function F and, more generally, differential form Ω, on which the Di act
via Lie differentiation. Keep in mind that, in general, the invariant differential operators
do not commute; see (7.17) below.

The most important fact underlying the moving frame construction is that, while
it does preserve algebraic structure, the invariantization map ι does not respect the dif-
ferential. The recurrence formulae, [31, 57], which we now review, provide the missing
“correction terms”, i.e., dι(Ω)− ι(dΩ). Remarkably, they can be explicitly and algorithmi-
cally constructed using merely linear differential algebra — without knowing the explicit
formulas for either the differential invariants or invariant differential forms, the invariant
differential operators, or even the moving frame!

Let v1, . . . ,vr be a basis for the infinitesimal generators of our transformation group.
For conciseness, we will retain the same notation for the corresponding prolonged vector
fields on J∞ which, in local coordinates, take the form

vκ =

p∑

i=1

ξiκ(x, u)
∂

∂xi
+

q∑

α=1

∑

j=#J≥0

ϕα
J,κ(x, u

(j))
∂

∂uαJ
, κ = 1, . . . , r. (7.9)

The coefficients ϕα
J,κ = vκ(u

α
J ) can be successively constructed by Lie’s recursive prolon-

gation formula, [73, 74]:

ϕα
Ji,κ = Diϕ

α
J,κ −

p∑

j=1

uαJj Diξ
j
κ. (7.10)

With this in hand, we can formulate the universal recurrence formula.

Theorem 7.1. If Ω is any differential function or form on J∞, then

d ι(Ω) = ι(dΩ) +

r∑

κ=1

νκ ∧ ι [vκ(Ω)], (7.11)
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where ν1, . . . , νr are the invariantized Maurer–Cartan forms dual to the infinitesimal gen-

erators v1, . . . ,vr, while vκ(Ω) denotes the corresponding Lie derivative of Ω.

In general, the invariantized Maurer–Cartan forms are obtained by pulling back the
dual Maurer–Cartan forms µ1, . . . , µr on G via the moving frame map: νκ = ρ∗µκ. The
full details, [57], are, fortunately, not required thanks to the following marvelous result
that allows us to compute them directly without reference to their underlying definition:

Proposition 7.2. Let K = {Z1(x, u
(n)) = c1, . . . , Zr(x, u

(n)) = cr } be the cross-

section defining our moving frame, so that cλ = ι(Zλ) are the phantom differential invari-

ants. Then the corresponding phantom recurrence formulae

0 = dι(Zλ) = ι(dZλ) +

r∑

κ=1

νκ ∧ ι [vκ(Zλ)], λ = 1, . . . , r, (7.12)

can be uniquely solved for the invariantized Maurer–Cartan forms:

νκ =

p∑

i=1

Rκ
i ̟

i +
∑

α,J

Sκ,J
α ϑαJ , (7.13)

where Rκ
i , S

κ,J
α are certain differential invariants.

The Rκ
i are called the Maurer–Cartan invariants , [44, 79]. In the case of curves,

p = 1, they are the entries of the Frenet–Serret matrix Dρ(n)(x, u(n)) · ρ(n)(x, u(n))−1,
cf. [39].

Substituting (7.13) into the universal formula (7.11) produces a complete system of
explicit recurrence relations for all the differentiated invariants and invariant differential
forms. In particular, taking Ω to be any one of the individual jet coordinate functions xi,
uαJ , results in the recurrence formulae for the fundamental differential invariants (3.1):

DiH
j = δji +

r∑

κ=1

Rκ
i ι(ξ

i
κ), DiI

α
J = IαJi +

r∑

κ=1

Rκ
i ι(ϕ

α
J,κ), (7.14)

where δji is the usual Kronecker delta, and ξiκ, ϕ
α
J,κ are the coefficients of the prolonged

infinitesimal generators (7.9). Owing to the functional independence of the non-phantom
differential invariants, these formulae, in fact, serve to completely prescribe the structure
of the non-commutative differential invariant algebra engendered by G, [31, 43, 79].

Similarly, the recurrence formulae (7.11) for the invariant horizontal forms are

d̟i = d[ι(dxi)] = ι(d2xi) +

r∑

κ=1

νκ ∧ ι [vκ(dx
i)]

=

r∑

κ=1

p∑

k=1

ι
(
Dkξ

i
κ

)
νκ ∧̟k +

r∑

κ=1

q∑

α=1

ι

(
∂ξiκ
∂uα

)
νκ ∧ ϑα.

(7.15)

The terms in (7.15) involving wedge products of two horizontal forms are

dH̟i = −
∑

j<k

Y i
jk̟

j ∧̟k,
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where

Y i
jk = −Y i

kj =
r∑

κ=1

[
Rκ

k ι(Djξ
i
κ)−Rκ

j ι(Dkξ
i
κ)

]
(7.16)

are called the commutator invariants , since they prescribe the commutators of the invariant
differential operators:

[Dj ,Dk ] =

p∑

i=1

Y i
jk Di. (7.17)

The terms in (7.15) involving wedge products of a horizontal and a contact form yield

dV ̟
i =

r∑

κ=1

[
q∑

α=1

ι

(
∂ξiκ
∂uα

)
Rκ

j ̟
i ∧ ϑα −

p∑

k=1

ι(Dkξ
i
κ)S

κ,J
α ̟k ∧ ϑαJ

]
. (7.18)

Finally, the remaining terms, involving wedge products of two contact forms, provide the
formulas for the anomalous third component of the differential:

dW ̟i =
r∑

κ=1

q∑

α=1

ι

(
∂ξiκ
∂uα

)
Sκ,J
α ϑαJ ∧ ϑα. (7.19)

In a similar fashion, we derive the recurrence formulae (7.11) for the differentiated invariant
contact forms: In particular, the horizontal components

Diϑ
α
J = ϑαJi +

r∑

κ=1

Rκ
i ι

(
vκ(θ

α
J )

)
. (7.20)

can be inductively solved to express the higher order invariantized contact forms as certain
invariant derivatives of those of order 0:

ϑαJ = Eα
J (ϑ) =

q∑

β=1

Eα
J,β(ϑ

β), (7.21)

in which ϑ = (ϑ1, . . . , ϑq)T denotes the column vector containing the order zero invari-
antized contact forms, while Eα

J = (Eα
J,1, . . . , E

α
J,q) is a row vector of invariant differential

operators, i.e., each EJ,α =
∑

AK
J,αD

K for certain differential invariants AK
J,α.

Combining these formulae allows us to express the invariant vertical derivative or
invariant variation of any differential invariant K in the form

dV K = AK(ϑ), (7.22)

in which AK is a row vector of invariant differential operators. Formula (7.22) can be
viewed as the invariant version of the vertical differentiation formula (7.3), and so will refer
to AK as the invariant linearization operator associated with the differential invariant K.
Similarly, we derive the recurrence formulae for the vertical differentials of the invariant
horizontal forms:

dV ̟
i =

p∑

j=1

q∑

α=1

Bi
jα(ϑ

α) ∧̟j =

p∑

j=1

Bi
j(ϑ) ∧̟

j (7.23)
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in which Bi
j = (Bi

j1, . . . ,B
i
jq) is a family of p2 row-vector-valued invariant differential

operators, known, collectively, as the invariant Hamiltonian operator complex , stemming
from its role in the calculus of variations, cf. [57, 88].

Example 7.3. Let us return to the Euclidean group acting on plane curves initiated
in Example 3.1. The basic invariant horizontal one-form ̟ = ι(dx) is obtained by first
transforming dx by a general group element:

dx 7−→ dy = (cosφ− ux sinφ) dx+ (sinφ)θ, (7.24)

where
θ = du− ux dx, θx = dux − uxx dx, . . . , (7.25)

are the ordinary basis contact forms. Substituting the moving frame formulae (3.6) for the
group parameters into (7.24) yields the basic invariant horizontal one-form

̟ = ι(dx) =
dx+ ux du√

1 + u2x
=

√
1 + u2x dx+

ux√
1 + u2x

θ. (7.26)

Its (non-invariant) horizontal component is the contact-invariant arc length form

ω = πH(̟) = ds =
√
1 + u2x dx,

and so the corresponding invariant differential operator is the usual arc length derivative
D = Ds. In the same manner we obtain the basis invariant contact forms

ϑ = ι(θ) =
θ√

1 + u2x
, ϑ1 = ι(θx) =

(1 + u2x) θx − uxuxxθ

(1 + u2x)
2

, . . . . (7.27)

To construct the recurrence formulae for the differentiated functions and forms, we
begin with the prolonged infinitesimal generators of SE(2):

v1 = ∂x, v2 = ∂u,

v3 = −u ∂x + x ∂u + (1 + u2x) ∂ux
+ 3uxuxx ∂uxx

+ (4uxuxxx + 3u2xx) ∂uxxx
+ · · · .

The pulled back dual Maurer–Cartan forms ν1, ν2, ν3 are found by applying the universal
recurrence formulae (7.11) to the phantom invariants:

0 = dH = ι(dx) + ι(v1(x)) ν
1 + ι(v2(x)) ν

2 + ι(v3(x)) ν
3 = ̟ + ν1,

0 = dI0 = ι(du) + ι(v1(u)) ν
1 + ι(v2(u)) ν

2 + ι(v3(u)) ν
3 = ϑ+ ν2,

0 = dI1 = ι(dux) + ι(v1(ux)) ν
1 + ι(v2(ux)) ν

2 + ι(v3(ux)) ν
3 = κ̟ + ϑ1 + ν3,

since du = ux dx+ θ, dux = uxx dx+ θx. Therefore,

ν1 = −̟, ν2 = −ϑ, ν3 = −κ̟ − ϑ1. (7.28)

We are now ready to substitute the non-phantom invariants into (7.11):

dκ = dι(uxx) = ι(duxx) + ι(v1(uxx)) ν
1 + ι(v2(uxx)) ν

2 + ι(v3(uxx)) ν
3

= ι(uxxx dx+ θxx)− ι(3uxuxx) (κ̟ + ϑ1) = I3̟ + ϑ2,

dI3 = dι(uxxx) = ι(duxxx) + ι(v1(uxxx)) ν
1 + ι(v2(uxxx)) ν

2 + ι(v3(uxxx)) ν
3

= ι(uxxxx dx+ θxxx)− ι(4uxuxxx + 3u2xx) (κ̟ + ϑ1) = (I4 − 3κ3)̟ + ϑ3 − 3κ2ϑ1,
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and so on. Breaking these formulas into their horizontal and vertical components yields

I3 = Dκ = κs, dV κ = ϑ2,

I4 = DI3 + 3κ3 = κss + 3κ3, dV I3 = dV κs = ϑ3 − 3κ2ϑ1.
(7.29)

To proceed further, we compute the differentials of the invariant contact forms, again using
(7.11, 28):

dϑ = ι(dθ) + ν1 ∧ ι(v1(θ)) + ν2 ∧ ι(v2(θ)) + ν3 ∧ ι(v3(θ))

= ι(dx ∧ θx)− (κ̟ + ϑ1) ∧ ι(ux θ) = ̟ ∧ ϑ1,

dϑ1 = ι(dθx) + ν1 ∧ ι(v1(θx)) + ν2 ∧ ι(v2(θx)) + ν3 ∧ ι(v3(θx))

= ι(dx ∧ θxx)− (κ̟ + ϑ1) ∧ ι(2uxθx + uxxθ) = ̟ ∧ (ϑ2 − κ2ϑ)− κϑ1 ∧ ϑ,

dϑ2 = ι(dθxx) + ν1 ∧ ι(v1(θxx)) + ν2 ∧ ι(v2(θxx)) + ν3 ∧ ι(v3(θxx))

= ι(dx ∧ θxxx)− (κ̟ + ϑ1) ∧ ι(3uxθxx + 3uxxθx + uxxxθ)

= ̟ ∧ (ϑ3 − 3κ2ϑ1 − κκsϑ)− κsϑ1 ∧ ϑ,

and so on. Concentrating on the terms involving the invariant horizontal form and com-
paring with (7.8), we deduce

ϑ1 = Dϑ, ϑ2 = Dϑ1 + κ2 ϑ = (D2 + κ2)ϑ,

ϑ3 = Dϑ2 + 3κ2ϑ1 + κκsϑ = (D3 + 4κ2D + 3κκs)ϑ.

Substituting back into (7.29), we find

dV κ = (D2 + κ2)ϑ, dV κs = (D3 + κ2D + 3κκs)ϑ.

Thus, the invariant linearization operators for the curvature and its arc length derivative
are

Aκ = D2 + κ2, Aκs
= D3 + κ2D + 3κκs. (7.30)

Finally, applying (7.11) and (7.28) to the invariant arc length form ̟ = ι(dx) yields

d̟ = ι(d2x) + ν1 ∧ ι(v1(dx)) + ν2 ∧ ι(v2(dx)) + ν3 ∧ ι(v3(dx))

= (κ̟ + ϑ1) ∧ ι(ux dx+ θ) = κ̟ ∧ ϑ+ ϑ1 ∧ ϑ.

Therefore,
dV ̟ = −κϑ ∧̟, and so B = −κ (7.31)

is the invariant Hamiltonian operator.

8. Generating Differential Invariants.

Let us now apply the recurrence formulae to study the structure of the differential
invariant algebra associated with the prolonged group action. A set of differential invariants
I = {I1, . . . , Ik} is said to be generating if, locally, every differential invariant can be
expressed as a function of the generators and their iterated invariant derivatives DJIν .
Let

I(n) = {H1, . . . , Hp} ∪ { IαJ | α = 1, . . . , q, #J ≤ n } (8.1)
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denote the entire set of fundamental differential invariants (3.1) of order ≤ n. In particular,
assuming we choose a cross-section that projects to a cross-section on M , then I(0) =
{H1, . . . , Hp, I1, . . . Iq } are the ordinary invariants for the action of G on M . If, as in the
examples treated here, G acts transitively on M , the normalized order 0 invariants are all
constant, and hence are superfluous in any generating systems.

The first result is a direct consequence of the recurrence formulae (7.14) for the fun-
damental differential invariants and the fact that the Maurer–Cartan invariants, being
solutions to the phantom recurrence relations, have order bounded by that of the moving
frame.

Theorem 8.1. If the moving frame has order n, then the set of normalized differen-

tial invariants I(n+1) of order ≤ n+ 1 forms a generating set.

Almost all applications rely on a cross-section Kn ⊂ Jn of minimal order , which means
that its projections Kk = πn

k (K
n) ⊂ Jk form cross-sections for all 0 ≤ k < n. In this case,

one can significantly reduce the set of required generators, [43, 79]:

Theorem 8.2. If Kn = {Z1(x, u
(n)) = c1, . . . , Zr(x, u

(n)) = cr } is a minimal order

cross-section, then I(0) ∪ Z(1), where Z(1) = { ι(Di(Zj)) | 1 ≤ i ≤ p, 1 ≤ j ≤ r }, form a

generating set of differential invariants.

The result is false in general if the cross-section is not minimal, [79]. An alternative
interesting generating system was found in [44]; again, the proof is entirely based on the
recurrence formulae.

Theorem 8.3. Let R = {Ri
a | 1 ≤ i ≤ p, 1 ≤ a ≤ r} be the Maurer–Cartan

invariants. Then I(0) ∪ R form a generating system.

In both cases, the I(0) constituent can be omitted if G acts transitively on M . The
preceding generating sets are rarely minimal. For curves, where p = 1, under mild re-
strictions on the group action (specifically transitivity and no pseudo-stabilization under
prolongation), there are exactly m− 1 independent generating differential invariants, and
any other differential invariant is a function of the generating invariants and their succes-
sive derivatives with respect to the G-invariant arc length element. Thus, for instance, the
differential invariants of a space curve C ⊂ R

3 under the standard action of the Euclidean
group SE(3) = SO(3) ⋉ R

3 are generated by m − 1 = 2 differential invariants, namely its
curvature and torsion.

For higher dimensional submanifolds, the minimal number of generating differential
invariants cannot be fixed a priori, but depends the particularities of the group action and,
in fact, can be arbitrarily large, even for surfaces in three-dimensional space, [79]. Even
in very well-studied, classical situations, there are interesting subtleties that have not been
noted before, [47, 81].

Example 8.4. Consider the standard action of the special Euclidean group SE(3)
on surfaces S ⊂ R

3. The classical moving frame construction, [39; Chapter 10], or its
equivariant reformulation, [57; Example 9.9], relies on the cross-section

x = y = u = ux = uy = uxy = 0, uxx 6= uyy. (8.2)
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The two basic differential invariants are the principal curvatures

κ1 = ι(uxx), κ2 = ι(uyy), (8.3)

or, equivalently, the mean curvature and Gauss curvature

H = 1
2 (κ1 + κ2), K = κ1κ2. (8.4)

The surface admits a classical moving frame provided we are at a non-umbilic point, where
κ1 6= κ2. (At a non-degenerate umbilic, one could, in principle, employ a higher order
moving frame.) The corresponding invariant horizontal coframe ̟1 = ι(dx), ̟2 = ι(dy),
can be identified with the diagonalizing Frenet frame on the surface, [39]. We let D1,D2

denote the dual invariant differential operators.

Let Ijk = ι(ujk) denote the higher order normalized differential invariants, so I20 = κ1,
I11 = 0, I02 = κ2. The third order recurrence relations are readily found:

I30 = D1κ1 = κ1,1, I21 = D2κ1 = κ1,2, I12 = D1κ2 = κ2,1, I03 = D2κ2 = κ2,2. (8.5)

The two fourth order recurrence relations for

I22 = D2I21 +
I30I12 − 2I212
κ1 − κ2

+ κ1κ
2
2 = D1I12 −

I21I03 − 2I221
κ1 − κ2

+ κ21κ2

imply the celebrated Codazzi syzygy

κ1,22 − κ2,11 +
κ1,1κ2,1 + κ1,2κ2,2 − 2κ22,1 − 2κ21,2

κ1 − κ2
− κ1κ2(κ1 − κ2) = 0. (8.6)

The well-known fact that the principal curvatures κ1, κ2, or, equivalently, the Gauss and
mean curvatures H,K, form a generating system follows from Theorem 8.1 combined with
(8.5). Remarkably, as we now show, neither is a minimal generating set!

Applying the moving frame machinery, the recurrence relations for the invariant hor-
izontal forms are found to be

dH̟1 = Y2̟
1 ∧̟2,

dH̟2 = Y1̟
1 ∧̟2,

where Y1 =
κ2,1

κ1 − κ2
, Y2 =

κ1,2
κ2 − κ1

, (8.7)

are the commutator invariants. The invariant differential operators therefore satisfy the
commutation relation

[
D1,D2

]
= D1 D2 −D2 D1 = Y2 D1 − Y1 D2. (8.8)

An easy computation shows that the Codazzi syzygy (8.6) can be written compactly as

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2. (8.9)

which is the key identity employed by Guggenheimer, [39], for a short proof of Gauss’
Theorema Egregium.

Let us now show how, for suitably nondegenerate surfaces, we can write the Gauss
curvature K as a universal rational combination of the invariant derivatives of the mean
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curvature H. In view of the Codazzi formula (8.9), it suffices to write the commutator
invariants Y1, Y2 in terms of the mean curvature. To this end, we note that the commutator
identity (8.8) can be applied to any differential invariant. In particular,

D1D2H −D2D1H = Y2 D1H − Y1 D2H, (8.10)

and, furthermore, for j = 1 or 2,

D1D2DjH −D2D1DjH = Y2 D1DjH − Y1 D2DjH. (8.11)

Provided the nondegeneracy condition

(D1H)(D2DjH) 6= (D2H)(D1DjH), for j = 1 or 2, (8.12)

holds, we can solve (8.10–11) to write the commutator invariants Y1, Y2 as rational functions
of invariant derivatives of H. Plugging these expressions into the right hand side of the
Codazzi identity (8.9) produces an explicit formula for the Gauss curvature as a rational
function of the invariant derivatives, of order ≤ 4, of the mean curvature, valid for all
surfaces satisfying the nondegeneracy condition (8.12).

In [81] it was also proved that, for suitably generic surfaces in R
3, the algebra of equi-

affine differential invariants is generated by the third order Pick invariant alone through
invariant differentiation. In [47] it was proved that the algebras of conformal and projective
differential invariants are also both generated by a single differential invariant.

9. Invariant Variational Problems.

As first recognized by Sophus Lie, [59], every invariant variational problem can be
written in terms of the differential invariants of the symmetry group. The associated Euler-
Lagrange equations automatically inherit the symmetry group of the variational problem,
and so can also be written in terms of the differential invariants, [73]. The formula
for directly constructing the differential invariant form of the Euler–Lagrange equations
from that of the variational problem was only known in a handful of particular cases,
[4, 38], until, applying the invariant variational bicomplex machinery, the general version
was established in [57]. Recent applications to the equilibrium configurations of flexible
Möbius bands can be found in [93].

Let us begin by recalling how variational problems L[u ] =
∫
L(x, u(n)) dx appear in

the variational bicomplex, [4]. The integrand or Lagrangian form

λ = L(x, u(n)) dx = L(x, u(n)) dx1 ∧ · · · ∧ dxp, (9.1)

is a differential form on J∞ of type (p, 0), meaning that it involves p horizontal forms and
no contact forms. Classically, to compute the associated Euler–Lagrange equations, one
begins with the first variation, followed by an integration by parts. According to (7.3), we
identify the first variation with the vertical differential dV λ = dV L∧dx of the Lagrangian
form, which is a form of type (p, 1). Integration by parts can be viewed as quotienting
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out by the image of the horizontal differential, so ω ≡ ω̃ whenever ω− ω̃ = dH ψ for some
differential form ψ. The induced equivalence classes are represented by source forms

ω =

q∑

α=1

∆α(x, u
(n)) θα ∧ dx, (9.2)

whose vanishing defines a system of differential equations: ∆α(x, u
(n)) = 0. In the case of

a variational problem, ∆α = Eα(L) = 0 are the classical Euler–Lagrange equations.

The Lagrangian of a G-invariant variational problem can be written in the invariant
form

λ = L̃(I(n))ω1 ∧ · · · ∧ ωp,

where ω1, . . . , ωp denote the contact invariant coframe induced by the moving frame, (7.4),

while L̃(I(n)) is a function of the generating differential invariants I = (I1, . . . , I l) and their
invariant derivatives DJI

κ up to some finite order #J ≤ k. Since they differ by contact
forms (which vanish when evaluated on submanifold jets), we do not affect anything by
replacing the ωi by their fully invariant counterparts ̟i, and so will use the fully invariant

Lagrangian form

λ̃ = L̃(I(n))̟1 ∧ · · · ∧̟p (9.3)

in our subsequent computations. To find the invariant form of the Euler–Lagrange equa-
tions, we first compute the invariant variation dV λ̃, followed by an invariant integration
by parts. Two new complications arise: first, whereas the ordinary vertical derivative does
not affect the basis horizontal forms dxi, formula (7.18) shows that this is not true for
the invariant vertical derivatives of the invariant horizontal forms ̟i. Secondly, invariant
integration by parts, which amounts to working modulo the image of the invariant horizon-
tal differential dH , also introduces new terms owing to (7.16). As a result, the invariant
Euler–Lagrange equation expressions are considerably more complicated.

For simplicity, let’s just work out the case of curves, so we have only p = 1 inde-
pendent variable, and q ≥ 1 dependent variables. (The higher dimensional case has some

extra twists; see [57] for details.) Consider an invariant Lagrangian form λ̃ = L̃(I(n))̟
depending on the generating differential invariants I = (I1, . . . , I l), their invariant deriva-
tives Iα,i = DiIα, and the fully G-invariant arc length form ̟ = ι(dx). Its first variation
is computed as follows:

dV λ̃ = dV (L̟̃) = dV L̃ ∧̟ + L̃ dV ̟ =
∑

i,α

∂L̃

∂Iα,i
dV I

α
,i ∧̟ + L̃ dV ̟. (9.4)

We then invariantly integrate by parts by applying the basic identity

F dV (DH) ∧̟ ≡ −DF dV H ∧̟ − F (DH) dV ̟, (9.5)

where we work modulo the image of dH . We eventually arrive at the formula

dV λ̃ ≡ E(L̃) dV I ∧̟ −H(L̃) dV ̟, (9.6)
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where E(L̃), the invariantized Eulerian of L̃, has components

Eα(L̃) =

∞∑

i=0

(−D)i
∂L̃

∂Iα,i
, α = 1, . . . , l, (9.7)

while

H(L̃) =

m∑

α=1

∑

i>j

Iα,i−j(−D)j
∂L̃

∂Iα,i
− L̃ (9.8)

is known as the invariantized Hamiltonian, being the invariant counterpart of the usual
Hamiltonian associated with a higher order Lagrangian L(x, u(n)), cf. [4, 88].

In the second phase of the computation, we use the recurrence formulae (7.22, 23) to
compute the vertical differentials

dV I = A(ϑ), dV ̟ = B(ϑ) ∧̟, (9.9)

of the differential invariants I = (I1, . . . , I l) and the invariant horizontal (arc length) form
in terms of invariant derivatives of the zeroth order invariant contact forms ϑ = (ϑ1, . . . , ϑq).
Substituting (9.9) into (9.6) and performing one last integration by parts, we arrive at the
key formula

dV λ̃ ≡ E(L̃)A(ϑ) ∧̟ −H(L̃)B(ϑ) ∧̟ ≡
[
A∗E(L̃)− B∗H(L̃)

]
ϑ ∧̟,

where ∗ denotes the formal invariant adjoint of an invariant differential operator, so if

P =
∑

n

Pk D
k, then P∗ =

∑

k

(−D)k · Pk.

We conclude that the Euler-Lagrange equations for our invariant variational problem are
equivalent to the invariant system of differential equations

A∗E(L̃)− B∗H(L̃) = 0. (9.10)

Example 9.1. Any Euclidean-invariant variational problem corresponds to an in-
variant Lagrangian λ̃ = L̃(κ, κs, κss, . . .)̟ depending on the arc length derivatives of
the curvature, and the invariant arc length form (7.26). According to (7.30, 31), A =
D2 + κ2 = A∗, while B = −κ = B∗. The invariant Euler-Lagrange formula (9.10) reduces
to the known formula

(D2 + κ2) E(L̃) + κH(L̃) = 0 (9.11)

for the Euclidean-invariant Euler-Lagrange equation, [4, 38].

Additional, more intricate examples can be found in [80].

10. Invariant Curve Flows.

Finally, let us discuss some recent applications of the invariant variational bicomplex
construction to invariant curve flows. (Extensions to higher dimensional invariant subman-
ifold flows can be found in [80].) Setting p = 1, let us single out the m = 1 + q invariant
one-forms

̟, ϑ1, . . . , ϑq (10.1)
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consisting of the invariant arc length form ̟ = ι(dx) and the order 0 invariant contact
forms ϑα = ι(θα). Let C ⊂M be a curve. Evaluating the coefficients of (10.1) on the curve
jet (x, u(n)) = jnC|z produces a G-equivariant coframe, i.e., a basis for the cotangent space
T∗M |z at z = (x, u) ∈ C. Let t,n1, . . . ,nq, denote the corresponding dual G–equivariant
frame on C, with t tangent, while n1, . . . ,nq form a basis for the complementary G–
invariant normal bundle N → C induced by the moving frame.

In general, let

V = VT +VN = I t+

q∑

α=1

Jα nα (10.2)

be a G-equivariant section of TM → C, where VT ,VN denote, respectively, its tangential
and normal components, while I, J1, . . . , Jq are differential invariants. We will, somewhat
imprecisely, refer to V as a vector field , even though it depends on the underlying curve
jet. Any V generates a G-invariant curve flow:

∂C

∂t
= V|C(t). (10.3)

The tangential component VT only affects the curve’s internal parametrization, and hence
can be ignored as far as the external curve geometry goes. For example, if we set VT = 0,
the resulting vector field VN is said to generate a normal flow , since each point on the
curve moves in the G-invariant normal direction.

Example 10.1. The most well-studied are the Euclidean-invariant plane curve flows.
The dual frame vectors to the invariant one-forms (7.26, 27) are the usual Euclidean frame
vectors† — the unit tangent and unit normal:

t =
1√

1 + u2x

(
∂

∂x
+ ux

∂

∂u

)
, n =

1√
1 + u2x

(
−ux

∂

∂x
+

∂

∂u

)
. (10.4)

A Euclidean-invariant normal flow is generated by a vector field of the formV = VN = J n,
in which J(κ, κs, . . .) is any differential invariant. Particular cases include:

• V = n: the geometric optics or grassfire flow, [9, 89];

• V = κn: the celebrated curve shortening flow, [33, 35], also used to great effect in
image processing, [86, 89];

• V = κ1/3 n: the induced flow is equivalent, modulo reparametrization, to the equi-
affine invariant curve shortening flow, also used in image processing, [5, 86, 89];

• V = κs n: this flow induces the modified Korteweg–deVries equation for the curvature
evolution, and is the simplest example of a soliton equation arising in a geometric
curve flow, [25, 34, 64];

• V = κss n: this flow models thermal grooving of metals, [15].

A key question is how the differential invariants evolve under an invariant curve flow.

† For simplicity, we are assuming the curve is represented as the graph of a function u = u(x);
generalizing the formulas to arbitrarily parametrized curves is straightforward, [80].
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Theorem 10.2. Let VN =
∑

Jα nα generate an invariant normal curve flow. If K
is any differential invariant, then

∂K

∂t
= V(K) = AK(J), (10.5)

where AK is the corresponding invariant linearization operator .

Example 10.3. For any of the Euclidean invariant normal plane curve flows Ct = J n

listed in Example 10.1, we have, according to (7.30),

∂κ

∂t
= (D2 + κ2) J,

∂κs
∂t

= (D3 + κ2D + 3κκs) J. (10.6)

For instance, for the grassfire flow J = 1, and so

∂κ

∂t
= κ2,

∂κs
∂t

= 3κκs. (10.7)

The first equation immediately implies finite time blow-up at a caustic for a convex initial
curve segment, where κ > 0. For the curve shortening flow, J = κ, and

∂κ

∂t
= κss + κ3,

∂κs
∂t

= κsss + 4κ2κs, (10.8)

thereby recovering formulas used in Gage and Hamilton’s analysis, [33]; see also [68].
Finally, for the modified Korteweg-deVries flow, J = κs,

∂κ

∂t
= κsss + κ2κs,

∂κs
∂t

= κssss + κ2κss + 3κκ2s . (10.9)

Warning : Normal flows do not preserve arc length, and so the arc length parameter
s will vary in time. Or, to phrase it another way, time differentiation ∂t and arc length
differentiation D = Ds do not commute — as can easily be seen in the preceding exam-
ples. Thus, one must be very careful not to interpret the resulting evolutions (10.7–9) as
partial differential equations in the usual sense. Rather, one should regard the differential
invariants κ, κs, κss, . . . as satisfying an infinite dimensional dynamical system of coupled
ordinary differential equations.

A second important class are the invariant curve flows that preserve arc length, which
requires

[
V,D

]
= 0, or, equivalently that the Lie derivative V(̟) ≡ 0 is a contact form.

Applying the Cartan formula and (7.23) to the latter characterization, we conclude that
arc length preservation under (10.2) requires

DI = B(J) =

q∑

α=1

Bα(J
α), (10.10)

where D is the arc length derivative, while B = (B1, . . . ,Bq) is the invariant Hamiltonian

operator (7.23).
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Theorem 10.4. Under an arc-length preserving flow,

κt = Rκ(J) where Rκ = Aκ − κs D
−1B. (10.11)

More generally, the time evolution of κn = Dnκ is given by arc length differentiation:

∂κn/∂t = DnRκ(J).

Here, the arc length and time derivatives commute, and hence the arc-length preserv-
ing flow (10.11) is an ordinary evolution equation — albeit possibly with nonlocal terms.
Moreover, when (10.11) is a local evolution equation, it often turns out to be integrable,
with Rκ the associated recursion operator, [73]. However, as yet, there is no general
explanation for this phenomenon.

Example 10.5. For the Euclidean action on plane curves, the condition (10.10) that
a curve flow generated by the vector field V = I t+ J n preserve arc length is that

DI = −κJ. (10.12)

Most of the curve flows listed in Example 10.1 have non-local arc length preserving coun-
terparts owing to the non-invertibility of the arc length derivative operator on κJ . An
exception is the modified Korteweg-deVries flow, where J = κs, and so I = − 1

2 κ
2. For

such flows, the evolution of the curvature is given by (10.11), where

Rκ = Aκ − κsD
−1B = D2 + κ2 + κsD

−1 · κ = D2
s + κ2 + κsD

−1
s · κ (10.13)

is the modified Korteweg-deVries recursion operator, [73]. In particular, when J = κs,
(10.11) is the modified Korteweg-deVries equation

κt = Rκ(κs) = κsss +
3
2 κ

2κs.

Example 10.6. In the case of space curves C ⊂ R
3, under the usual action of the

Euclidean group G = SE(3), the coordinate cross-section

K2 = {x = u = v = ux = vx = vxx = 0}

produces the classical moving frame, [39, 57]. There are two generating differential invari-
ants: the curvature κ = ι(uxx) and the torsion τ = ι(vxxx/uxx). According to [57], the
relevant moving frame formulae are

dV κ = Aκ(ϑ), dV τ = Aτ (ϑ), dV ̟ = B(ϑ) ∧̟,

where ϑ = (ϑ1, ϑ2)
T are the order 0 invariant contact forms, while

Aκ =
(
D2 + (κ2 − τ2), −2τD − τs

)
,

Aτ =

(
2τ

κ
D2 +

3κτs − 2κsτ

κ2
D +

κτss − κsτs + 2κ3τ

κ2
,

1

κ
D3 −

κs
κ2

D2 +
κ2 − τ2

κ
D +

κsτ
2 − 2κτ τs
κ2

)
,

B =
(
−κ, 0

)
.
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Thus, under an arc length preserving flow with normal component VN = J n1+K n2, the
curvature and torsion evolve according to

(
κt
τt

)
= R

(
J
K

)
, where R =

(
Rκ

Rτ

)
=

(
Aκ

Aτ

)
−

(
κsD

−1κ 0
τsD

−1κ 0

)

is the recursion operator for the integrable vortex filament flow, which corresponds to the
choice J = κs, K = τs. The latter flow can be mapped to the nonlinear Schrödinger
equation via the Hasimoto transformation, [42, 58].

Further developments, including applications to image processing and object recogni-
tion, can be found in Kenney’s thesis, [50].
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