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Abstract. The method of equivariant moving frames is employed to construct and
completely classify the differential invariants for the action of the projective group on func-
tions defined on the two-dimensional projective plane. While there are four independent
differential invariants of order ≤ 3, it is proved that the algebra of differential invariants is
generated by just two of them through invariant differentiation. The projective differential
invariants are, in particular, of importance in image processing applications.

The differential invariants pertaining to several basic planar transformation groups of
geometric significance — Euclidean, similarity, equi-affine, affine, Möbius, and projective
— have played important roles in image processing over many years; see, for instance,
[11] for a survey for developments through the early 1990’s. Except for the Möbius group,
[10, 22], all the groups noted above are subgroups of the projective group, which governs
the transformations of camera projections of three-dimensional objects and forms the focus
of this note. Research has tended to concentrate on the induced action on planar curves,
representing the outlines of (the projections of) objects, [3, 5, 6]. One can, alternatively,
study the action on the entire image. For us, this means a gray scale image, represented
(in the continuum limit) by a smooth function u = f(x, y) defined on some planar region
Ω ⊂ R

2, often, but not necessarily, a rectangle. The group acts trivially on the dependent
variable u, whose value (usually between 0 = black and 1 = white) corresponds to the gray
level of the pixel at position (x, y) ∈ Ω. Extensions of this analysis to color images, where
the dependent variable u is vector-valued, will not be treated here, although our moving
frame methods can be readily extended to this more general context.
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Let RP2 be the real projective plane consisting of all lines passing through the origin
in R

3. On the dense open subset containing those lines that do not lie in the xy plane,
we can employ the inhomogeneous coordinates (x, y) to represent the line in the direction
(x, y, 1). The standard action of the general linear group GL(3,R) on R

3 induces an action
of the 8 dimensional projective linear group PSL(3,R) = GL(3,R)/{λ I | 0 6= λ ∈ R } on
the lines in RP

2. We are thus interested in the induced intransitive action

X =
αx+ βy + γ

ρx+ σy + τ
, Y =

λx+ µy + ν

ρx+ σy + τ
, U = u, (1)

of PSL(3,R) on the trivial bundle M = RP
2 × R. To avoid the overall scaling ambiguity,

we impose the unimodularity condition

∆ = det




α β γ
λ µ ν
ρ σ τ


 = 1 (2)

on the group parameters appearing in the coefficient matrix. This action coincides with
the special case n = 0 for the one-parameter family of actions of the general linear group
GL(3) that was studied in [20]. However, this particular case was not relevant to the
main focus of that work — ternary forms in classical invariant theory — and so was not
analyzed.

The goal is to conduct a similar moving frame-based analysis, cf. [4, 9, 18, 19], of the
differential invariants of the induced action of (1) on two-dimensional surfaces S ⊂ M
representing the graphs of functions u = f(x, y); in other words, we have two independent
variables and one dependent variable. We prolong the group action to the surface jet
bundles Jn = Jn(M, 2), n = 0, 1, 2, . . . , [12], which are coordinatized by the independent
variables x, y, along with the dependent variable u = u00 and its derivatives:

ujk = Dj
xD

k
y u for 0 ≤ j + k ≤ n, (3)

in which Dx,Dy denote the total derivative operators with respect to x, y, respectively.
A smooth function of the jet coordinates, defined an open subset of Jn, is known as a
differential function. A projective differential invariant is a differential function that is
unchanged by the prolonged projective group action. Note: When writing “differential
invariant” without qualification, we always mean an absolute differential invariant. Often
these are ratios of two relative differential invariants having the same weight; see [13]. We
begin by noting the obvious differential invariant of order 0

I0 = u, (4)

resulting from the intransitivity of the group action.

In local coordinates, the prolonged action is explicitly given by

ujk 7−→ Ujk = Dj
X Dk

Y U, (5)

where

DX =
ρx+ σy + τ

∆

( [
(µρ− λσ)x+ µτ − ν σ

]
Dx +

[
(µρ− λσ)y − λτ + ν ρ

]
Dy

)
,

DY =
ρx+ σy + τ

∆

( [
(ασ − βρ)x− β τ + γ σ

]
Dx +

[
(ασ − βρ)y + ατ − γ ρ

]
Dy

)
,
(6)
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are the operators of implicit differentiation. They are dual to the transformed one-forms

dX =

[
(ασ − βρ)y + ατ − γ ρ

]
dx+

[
(βρ− ασ)x+ β τ − γ σ

]
dy

(ρx+ σy + τ)2
,

dY =

[
(λσ − µρ)y + λτ − ν ρ

]
dx+

[
(µρ− λσ)x+ µτ − ν σ

]
dy

(ρx+ σy + τ)2
,

(7)

which are obtained by differentiating the expressions for X, Y in (1). Duality means that
the horizontal differential, [13], of a differential function F (x, u(n)) is given by

dHF = (DxF ) dx+ (DyF ) dy = (DXF ) dX + (DY F ) dY.

Let us construct the moving frame based on the cross-section

K =
{
x = y = 0, ux = uyy = 1, uy = uxx = uxy = uyyy = 0

}
⊂ J3. (8)

We will not write out the explicit formulas for the transformed jet coordinates (5) during
our implementation of the normalization procedure, but just display the results of the
Mathematica calculation. At each stage, the successive partial normalizations of the
group parameters are substituted into the remaining formulas before effecting the next
round of normalizations. However, it is important that the prolonged transformation
formulae be computed in advance, before any normalization is implemented; an alternative
strategy would be to employ the recursive normalization algorithm developed in [16], which
has the advantage of determining the formulas for the projective differential invariants in
terms of differential invariants of its subgroups; this remains to be written down in detail.

First, setting X = Y = 0 produces

γ = −αx− βy, ν = −λx− µy. (9)

Next, setting UX = 1, UY = 0, implies

α = (ρx+ σy + τ) ux, β = (ρx+ σy + τ) uy. (10)

The second order normalizations are done in two steps. First, setting UXX = UXY = 0
yields

σ = − A

C
ρ, τ = − B

C
ρ, (11)

where

A = µ2(uyuxx − 2uxuxy) + 2λµuxuyy − λ2uyuyy,

B = µ2(xuxuxx + 2yuxuxy − yuyuxx + 2u2
x)− 2λµ(xuyuxx + yuxuyy + 2uxuy)

+ λ2(−xuxuyy + 2xuyuxy + yuyuyy + 2u2
y),

C = µ2uxuxx − 2λµuyuxx + λ2(2uyuxy − uxuyy).

(12)

We then substitute these values and solve UY Y = 1 for

ρ = −
µ2uxuxx − 2λµuyuxx + λ2(2uyuxy − uxuyy)

2(µux − λuy)
√
J

, (13)
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where

J = u2
y uxx − 2uxuyuxy + u2

xuyy. (14)

Substituting (13) into (11) produces the slightly simpler formulas

σ =
E

2(µux − λuy)
√
J
, τ =

F

2(µux − λuy)
√
J
. (15)

where

E = µ2(uyuxx − 2uxuxy) + 2λµuxuyy − λ2uyuyy,

F = µ2(xuxuxx + 2yuxuxy − yuyuxx + 2u2
x)− 2λµ(xuyuxx + yuxuyy + 2uxuy)

+ λ2(−xuxuyy + 2xuyuxy + yuyuyy + 2u2
y),

(16)

We note that the second order differential polynomial J given in (14) is a relative
differential invariant, transforming under the projective action (1) according to

J 7−→ W 2 J, where W =
(ρx+ σy + τ)3

∆
. (17)

The multiplier function W 2 is also known as the weight of J . We refer the reader to [8]
and [21] for applications of J in image analysis. We are assuming J > 0. If J < 0, we can
replace J by −J in any square roots that appear or, alternatively, use its absolute value
throughout. Also, as in most moving frame calculations in the literature, we ignore any
discrete ambiguities caused by the change of sign in a square root, which are due to the
local freeness of the prolonged group action, cf. [4]. (See [15] for a complete discussion of
sign ambiguities in the case of Euclidean curves.)

The points where J vanishes define the singular subvariety V = {J = 0}, where the
orbits of the prolonged the action of PSL(2) have less than maximal dimension, and are
not covered by the moving frame constructed here. Isolated points where J vanishes can
be handled by using a higher order moving frame. On the other hand, the functions for
which J ≡ 0 are totally singular, [14], and therefore do not admit a moving frame of any
order. They can be explicitly characterized as follows.

Theorem 1. Let u(x, y) be a C2 function with domain D ⊂ R
2 that has non-zero

gradient everywhere in its domain: ∇u = (ux, uy) 6= 0. Then u is a solution to the

quasilinear partial differential equation

J = u2
y uxx − 2uxuyuxy + u2

xuyy = 0 (18)

if and only if all its level curves u(x, y) = c, for c ∈ R, are straight line segments or disjoint

unions thereof.

Note that if ∇u ≡ 0 on a connected open set, then u is constant and has no level
curves there. Otherwise, isolated points and curves on which ∇u = 0 will correspond to
intersections, limit points, and envelopes, [2], of its level curves.
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Remark : The second order parabolic quasilinear partial differential equation (18) was
analyzed in [1], where it was shown to have vanishing Goursat invariant and hence in-
finitely many non-trivial (generalized) conservation laws and, in particular, infinitely many
inequivalent Lagrangians.

Proof : Let (x0, y0) ∈ D. We assume, without loss of generality, that uy(x0, y0) 6= 0,
and hence, by continuity, also in a neighborhood of (x0, y0). Otherwise, we must have
ux(x0, y0) 6= 0, and we can apply the following arguments with the roles of x and y reversed.
The implicit function theorem implies that the level curve passing through (x0, y0) can be
locally parametrized by y = y(x). Then, differentiating the level curve equation

u(x, y(x)) = c, where c ∈ R,

twice with respect to x yields

ux + uy yx = 0, uxx + 2uxy yx + uyy y
2
x + uy yxx = 0.

Combining the second and third equations produces

yxx = −u−3
y J.

Thus, if u satisfies (18), then its level curve satisfies yxx = 0, and hence must be a straight
line.

An alternative proof proceeds by noting that one can write J as multiple of a Jacobian
determinant:

J = u2
x

∂(u, uy/ux)

∂(x, y)
= u3

xDy(uy/ux)− u2
xuyDx(uy/ux). (19)

Thus, if (18) holds, then the functions u and uy/ux are functionally dependent, so, locally,
uy/ux = h(u) for some scalar function h(u), or, equivalently,

uy − h(u)ux = 0. (20)

Using the method of characteristics, [17], one finds that any solution to such a quasilinear
first order partial differential equation is constant on its characteristic curves, which, in
this case, are straight lines. Q.E.D.

In particular, if the solution to (18) is defined and has non-vanishing gradient for all
(x, y) ∈ R

2, then its level curves corresponding to different values of c cannot cross†, and
hence must all be parallel straight lines. This implies:

Corollary 2. The only globally defined solutions to (18) are functions of the form

u = g(ax+ by) for a, b ∈ R and g(t) an arbitrary scalar function.

† The crossing of the level curves underlies the formation of shocks in the solutions to the
partial differential equation (20).
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Of course, there are many locally defined solutions that are not of this special form.

Returning to our moving frame calculation, we now recall the unimodularity constraint
(2). Under the normalizations accumulated so far, (9, 10, 13, 15), this becomes

∆ =
(µux − λuy)

J
= 1,

which serves to constrain the values of λ, µ when we perform the final normalization
UY Y Y = 0, which yields

λ =
uxK − 6u3

yu
2
xx + 18uxu

2
yuxxuxy − 6u2

xuy(uxxuyy + 2u2
xy) + 6u3

xuxyuyy

6J5/3
,

µ =
uyK − 6u3

yuxxuxy + 6uxu
2
y(uxxuyy + 2u2

xy)− 18u2
xuyuxyuyy + 6u3

xu
2
yy

6J5/3
,

(21)

where
K = u3

yuxxx − 3uxu
2
yuxxy + 3u2

xuyuxyy − u3
xuyyy. (22)

We remark that, despite its elegance and similarity to (14), the differential polynomial
K in (22) is not a relative invariant, meaning that, under the group action (1), it does
not transform to a multiple of itself. Third order relative invariants will appear in the
expressions for the (absolute) differential invariants below.

This completes our derivation of the moving frame based on the cross-section (8).
The right equivariant moving frame map ρ: J3 \ V → PSL(3) is obtained by combining the
preceding normalization formulas (9, 10, 13, 15, 21), producing fairly long formulas for all
the group parameters in terms of the third order jet coordinates, which we will not write
out in detail.

There are three functionally independent third order (absolute) differential invariants,
corresponding to the invariantizations of the remaining third order jet coordinates:

I1 = ι(uxxx), I2 = ι(uxxy), I3 = ι(uxyy).

To obtain their explicit formulas, we merely substitute the moving frame normalizations
(9, 10, 13, 15, 21) into the formulas for the unnormalized transformed third order jet co-
ordinates UXXX , UXXY , UXY Y , respectively, to eliminate all the group parameters. The
resulting expressions are the third order differential invariants. First,

Î1 = I1 − 1
2 I

2
3 =

L1

2J2
, I2 =

L2

54J9/2
, I3 =

L3

12J3
. (23)

The fact that Î1, I2, I3 are absolute differential invariants implies that their numerators,

L1, L2, L3 are relative differential invariants, of weights W 4,W 9,W 6, respectively, where

W 2 denotes the weight of J , cf. (17). The explicit formulas are as follows:

L1 = u2
x(uxxyuyyy − u2

xyy) + uxuy(uxxyuxyy − uxxxuyyy) + u2
y(uxxxuxyy − u2

xxy)

+ 2ux

(
u2
yyuxxx − 3uxyuyyuxxy + (uxxuyy + 2u2

xy)uxyy − uxxuxyuyyy

)

+ 2uy

(
−uxyuyyuxxx + (uxxuyy + 2u2

xy)uxxy − 3uxxuxyuxyy + u2
xxuyyy

)
− 4H2,

(24)
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where

H = uxxuyy − u2
xy (25)

is the Hessian of the function u, while

L2 = −K3 + 18J2M1 + 18JM2, L3 = K2 − 12J2H + 12JM3, (26)

where

M1 =
[
u3
y(uxxuyy − 4u2

xy) + 6uxu
2
yuxyuyy − 3u2

xuyu
2
yy

]
uxxx

+
[
6u3

yuxxuxy − 9uxu
2
yuxxuyy + 3u3

xu
2
yy

]
uxxy

+
[
−3u3

yu
2
xx + 9u2

xuyuxxuyy − 6u3
xuxyuyy

]
uxyy

+
[
3uxu

2
yu

2
xx − 6u2

xuyuxxuxy − u3
x(uxxuyy − 4u2

xy)
]
uyyy,

M2 = u5
y(uyuxy − uxuyy)u

2
xxx + u4

y(−u2
yuxx − 4uxuyuxy + 5u2

xuyy)uxxxuxxy

+ uxu
3
y(u

2
yuxx + uxuyuxy − 2u2

xuyy)(2uxxxuxyy + 3u2
xxy)

+ u2
xu

2
y(−u2

yuxx + u2
xuyy)(uxxxuyyy + 9uxxyuxyy)

+ u3
xuy(2u

2
yuxx − uxuyuxy − u2

xuyy)(3u
2
xyy + 2uxxyuyyy)

+ u4
x(−5u2

yuxx + 4uxuyuxy + u2
xuyy)uxyyuyyy + u5

x(uyuxx − uxuxy)u
2
yyy,

M3 = (−u3
yuxy + uxu

2
yuyy)uxxx + (u3

yuxx + uxu
2
yuxy − 2u2

xuyuyy)uxxy

+ (−2uxu
2
yuxx + u2

xuyuxy + u3
xuyy)uxyy + (u2

xuyuxx − u3
xuxy)uyyy.

(27)

Again, it is worth noting that, while J and L1, L2, L3 are relative differential invariants,
their individual summands are not, and neither are H,K,M1,M2,M3. The third order rel-
ative differential invariant L3 was found in [8]; the other two third order relative differential
invariants L1, L2 appear to be new.

There are five independent fourth order differential invariants, given by invariantizing
the corresponding jet coordinates:

I4 = ι(uxxxx), I5 = ι(uxxxy), I6 = ι(uxxyy), I7 = ι(uxyyy), I8 = ι(uyyyy). (28)

As we will see, these can all be generated by invariantly differentiating the third order
differential invariants, which implies that the latter, along with the order 0 differential
invariant I0 = u form a generating set for the differential invariant algebra. To prove this,
we use the symbolic moving frame calculus, [4, 18], to construct the recurrence formulae
that relate the invariantly differentiated and normalized differential invariants.

First, normalizing the implicit differentiation operators (6) using the moving frame
formulas yields the explicit formulas for the two invariant differential operators :

D1 =

[
uyK + 6(−uyuxy + uxuyy)J

]
Dx +

[
−uxK + 6(uyuxx − uxuxy)J

]
Dy

6J2
,

D2 =
−uyDx + uxDy√

J
.

(29)
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By definition, applying D1,D2 to any (absolute) differential invariant produces another
differential invariant. (However, applying D1 or D2 to a relative differential invariant
does not necessarily produce a relative differential invariant; see below.) According to the
Lie–Tresse Theorem, [4, 7], we can generate all the higher order differential invariants by
applying these operators to a finite generating set of differential invariants. We note that
the invariant differential operators do not commute; indeed, their commutator is given by

[D1,D2 ] = D1 D2 −D2 D1 = Y D2, where Y = − 1
6
I8 + I3 (30)

is the sole commutator invariant . The commutator formula (30) can also be straightfor-
wardly deduced using the general symbolic moving frame calculus.

We begin by invariantly differentiating the order 0 invariant I0 = u:

D1u = 1, D2u = 0, (31)

which are easy to check directly from the formula (29). The right hand sides of (31) are
trivially invariant since they are constant, and consequently not of any help. We also note

D1J =
K2 + 6JM3 + 12J2H

J2
, D2J =

K√
J
, (32)

which are found by direct calculation. However, these are not relative differential invari-
ants, and we will not make use of these formulas here.

We compute the higher order recurrence formulas by implementing the standard sym-
bolic algorithm, cf. [4, 20], in Mathematica. The starting point is the following basis for
the infinitesimal generators of the projective action (1):

v1 = ∂x, v2 = ∂y, v3 = x∂x, v4 = y∂y,

v5 = y∂x, v6 = x∂y, v7 = x2∂x + xy∂y, v8 = xy∂x + y2∂y.
(33)

These are prolonged to the jet spaces and then used to write out the associated recur-
rence formulae. Leaving out the intermediate details, after solving for the Maurer–Cartan
invariants, the third order recurrence formulas take a relatively simple form:

D1I1 = I4 +
1
2
I2I7 − 3I22 , D2I1 = I5 +

1
2
I2I8 − 9

2
I2I3,

D1I2 = I5 +
1
3 I3I7 − 5

2 I2I3, D2I2 = I6 +
1
3 I3I8 − I1 − 3I23 ,

D1I3 = I6 − I1 − I23 , D2I3 = I7 − 3I2.

(34)

Thus, we can generate all the fourth order differential invariants (28) except I8 by differen-
tiating the third order differential invariants. Moreover, since I8 can be deduced from the
commutator invariant Y , we can use the commutator trick, as in [20], to also generate it.
Moreover, since the moving frame has order 3, a general theorem, [4], implies that we can
generate all differential invariants by invariantly differentiating the normalized differential
invariants of order ≤ 4. The only differential invariant we cannot generate in this fashion
is the trivial order 0 invariant I0 = u. We have thus proved that the four differential
invariants I0, I1, I2, I3 of order ≤ 3 generate the projective differential invariant algebra.

Further detailed analysis of the recurrence formulae can be used to reduce the number
of generators to two.
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Theorem 3. The differential invariant algebra for the projective action (1) on sur-

faces S ⊂ RP
2 ×R is generated by the order 0 invariant I0 = u along with the third order

differential invariant I3, as given in (23, 26, 27).

Remark : This almost proves that I0, I3 form a minimal generating set. Indeed, by
(31), we clearly cannot generate I3 from I0. On the other hand, invariantly differentiating
I3 does not produce a differential invariant that explicitly depends on u, and hence we also
clearly cannot generate I0 from I3. However, there is the (remote) possibility that starting
with some cleverly chosen differential invariant that depends on both u and the higher
order invariants, one might be able to generate both I0 and I3 by combining its invariant
derivatives. This seems extremely unlikely, but I am as yet unable to completely rule this
out. On the other hand, if this were the case, one could start with the commutator trick to
generate Y , as given in (30), in terms of the purported generator, and then proceed from
there. But I find it hard to believe this strategy would be successful. Unfortunately, when
dealing with more than one independent variable, there is no known criterion for proving
that a generating set of differential invariants is minimal — unless it happens to consist of
just one differential invariant!

Proof : Starting with I3, we first apply the commutator trick referenced above to
I3 in order to generate the commutator invariant Y = − 1

6 I8 + I3, and hence I8, as a
rational function of I3 and its invariant derivatives. On the other hand, using the last
two recurrence formulas (34) for the derivatives of I3, we can also generate the third order
differential invariants I6 − I1 and I7 − 3I2.

We now need the fourth order recurrence formulas:

D1I4 = I9 +
2
3
I5I7 − 4I2I5 − 6I21 ,

D2I4 = I10 +
2
3 I5I8 − 6I3I5 − 6I1I2,

D1I5 = I10 +
1
2
I6I7 − 1

2
I3I5 − 3I2I6 − 1

2
I1I7 − 9

2
I1I2,

D2I5 = I11 − I4 − 9
2
I3I6 − 1

2
I1I8 +

1
2
I6I8 +

3
2
I1I3 − 9

2
I22 ,

D1I6 = I11 − I3I6 +
1
3 I

2
7 − 3I2I7 − 3I1I3,

D2I6 = I12 − 2I5 − 3I3I7 − I2I8 +
1
3
I7I8,

D1I7 = I12 − 3I3I7 − I2I8 +
1
6 I7I8,

D2I7 = I13 − 3I6 − 3I3I8 +
1
6 I

2
8 + 9

2 I
2
3 ,

D1I8 = I13 − 2I3I8,

D2I8 = I14 − 4I7,

(35)

where
I9 = ι(uxxxxx), I10 = ι(uxxxxy), I11 = ι(uxxxyy),

I12 = ι(uxxyyy), I13 = ι(uxyyyy), I14 = ι(uyyyyy),
(36)

are the functionally independent fifth order differential invariants. This allows us to com-
pute

D2(I7 − 3I2)−D1I8 = 3I1 − 6I6 +
(

1
6 I

2
8 − 2I3I8 +

27
2 I23

)
.
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We have already shown how to generate the terms on the left hand side and the terms
in the parentheses by suitably combining invariant derivatives of I3, and hence the same
holds for I1 − 2I6 . But we also know how to generate I1 − I6, and hence we can generate
both I1 and I6 individually. Finally, we use the recurrence formulae (34, 35) to compute

D1I6 −D2
2I1 −D1I1 − 1

3

(
D2I3

)2

= − 1
2 I2 D2

(
I8 − 6I3

)
+ I1I8 + 8I3I6 − 1

6 I3I
2
8 − I6I8 + 3I23I8 − 27

2 I33 − 9I1I3.
(37)

The right hand side depends linearly on I2. Moreover, we already know how to express
the left hand side and all terms other than I2 on the right hand side in terms of I3 and its
invariant derivatives. Thus, assuming

D2(I8 − 6I3) 6= 0, (38)

then we can solve (37) to express I2 as a rational function of I3 and its invariant derivatives.
Since I8 has order 4, while I3 has order 3, and the invariant differential operator D2 is
explicitly given in (29), it is easily checked that condition (38) holds for generic surfaces
u = f(x, y). It would be of interest to classify those surfaces for which the non-degeneracy
condition (38) fails.

We have thus generated both I1 and I2 from I3, thereby completing the proof of
Theorem 3. The explicit formulas expressing them as rational combinations of the in-
variant derivatives of I3 can be constructed by implementing the above manipulations.
However, they are quite complicated and not especially enlightening, and thus will not be
displayed. Q.E.D.

Remark : The commutator trick used at the outset also requires that the surface be
suitably generic. Applying the argument in [19], genericity fails when the surface is degen-
erate in the sense that there exist scalar functions F1(t), F2(t), such that, when evaluated
on the surface, the differential invariant I3 satisfies the equations

D1I3 = F1(I3), D2I3 = F2(I3). (39)

It would also be of interest to classify such projectively degenerate surfaces.

Acknowledgments : It is a pleasure to thank Hua Li for inspiring me to undertake
these calculations, Niky Kamran for comments on an earlier version, and Marc Härkönen
for further remarks.
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