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Sur la théorie, si importante sans doute, mais pour nous si obscure, des <K groupes
de Lie infinis>, nous ne savons rien que ce qui se trouve dans les mémoires de Cartan,
premiere exploration a travers une jungle presque impénétrable; mais cell-ci menace de se
refermer sur les sentiers déja tracés, si l’on ne procede bientot a un indispensable travail
de défrichement.

— André Weil, [76]

Abstract.

This paper begins a series devoted to developing a general and practical theory of
moving frames for infinite-dimensional Lie pseudo-groups. In this first, preparatory part,
we present a new, direct approach to the construction of invariant Maurer—Cartan forms
and the Cartan structure equations for a pseudo-group. Our approach is completely explicit
and avoids reliance on the theory of exterior differential systems and prolongation.

The second paper [60] will apply these constructions in order to develop the moving
frame algorithm for the action of the pseudo-group on submanifolds. The third paper
[61] will apply Grobner basis methods to prove a fundamental theorem on the freeness of
pseudo-group actions on jet bundles, and a constructive version of the finiteness theorem of
Tresse and Kumpera for generating systems of differential invariants and also their syzygies.
Applications of the moving frame method include practical algorithms for constructing
complete systems of differential invariants and invariant differential forms, classifying their
syzygies and recurrence relations, analyzing invariant variational principles, and solving
equivalence and symmetry problems arising in geometry and physics.
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1. Introduction.

Lie pseudo-groups are the infinite-dimensional counterparts of a local Lie groups of
transformations. In Lie’s day, abstract Lie groups were as yet unknown, and, as a result,
no significant distinction was drawn between finite-dimensional and infinite-dimensional
theory. However, since then the two subjects have traveled along radically different
paths. The finite-dimensional theory has been rigorously formalized, and is a well ac-
cepted and widely used mathematical tool. In contrast, the theory of infinite-dimensional
pseudo-groups remains surprisingly primitive in its current overall state of development.
Since there is still no generally accepted abstract object to play the role of the infinite-
dimensional Lie group, Lie pseudo-groups only arise through their concrete action on a
space. This makes the classification and analytical foundations of the subject problem-
atic, particularly in the intransitive situation. We refer the reader to the original papers
of Lie, Medolaghi, and Vessiot, [43, 44, 51, 74|, for the classical theory of pseudo-groups,
to Cartan, [13, 14], for their reformulation in terms of exterior differential systems, and
(21, 22, 33, 34, 35,41, 42,46, 62,63, 67,68, 70, 72] for a variety of modern approaches.
Lie pseudo-groups appear in many fundamental physical and geometrical contexts, includ-
ing gauge symmetries, [6], Hamiltonian mechanics and symplectic and Poisson geometry,
[54], conformal geometry of surfaces and conformal field theory, [20, 23], the geometry of
real hypersurfaces, [17], symmetry groups of both linear and nonlinear partial differential
equations, such as the Navier-Stokes and Kadomtsev—Petviashvili (KP) equations appear-
ing in fluid and plasma mechanics, [5,11,19, 54|, and geometric numerical integration,
[50]. Pseudogroups also appear as foliation-preserving groups of transformations, with the
associated characteristic classes defined by certain invariant forms, cf. [26].

The main goal of this series of papers is to develop a moving frame theory for Lie
pseudo-groups. The motivation behind moving frames or “reperes mobiles”, as developed
by Cartan, [12], is to solve the equivalence problem for submanifolds under the action of
a transformation group; see also [28,27,32]. In a series of recent collaborative papers,
starting with [24, 25], the first author has successfully reformulated the classical theory
in a completely general, algorithmic, equivariant framework that can be readily applied to
arbitrary finite-dimensional Lie group actions. Applications have included complete classi-
fications of differential invariants and their syzygies, equivalence and symmetry properties
of submanifolds, rigidity theorems, invariant signatures in computer vision, [3,7,9, 57],
joint invariants and joint differential invariants, [8,57], invariant numerical algorithms,
[57, 58], classical invariant theory, [4,56], Poisson geometry and solitons, [49], and the
calculus of variations, [37, 38]. New applications of these methods to computation of sym-
metry groups and classification of partial differential equations can be found in [48, 52].

In [24], the preliminary outlines of a comparable theory for infinite-dimensional
pseudo-groups was illustrated by a few selected examples. In this series of papers, we
shall realize the goal of a complete, rigorous moving frame theory for a wide class of
pseudo-group actions. The moving frame theory will allow us to systematically extend all
of the cited applications to Lie pseudo-groups, as well as providing new methods and new
insights into the foundations of the subject.

Throughout, M will be a smooth manifold, and G a Lie pseudo-group acting thereon.
The action of G on the submanifolds S C M becomes a tale of two (infinite) jet bundles.
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On the one hand, the space of jets of pseudo-group transformations forms a subbundle
G D) of the bundle D) = D) (M) c J*°(M, M) of infinite jets (Taylor series)
of local diffeomorphisms ¢: M — M. On the other hand, the action of the pseudo-group
diffeomorphisms on p-dimensional submanifolds S C M induces the prolonged pseudo-
group action on the corresponding submanifold jet bundle J*° (M, p). The ultimate goal of
a classical moving frame theory is to analyze the geometry of the prolonged pseudo-group
action on J*° (M, p).

Our constructions will be based on an amalgamation of two powerful, general theories:
groupoids and the variational bicomplex. As first pointed out by Ehresmann, [21], the
diffeomorphism jet bundle D() carries the structure of a groupoid, [22,47], and G(=)
should be viewed as a sub-groupoid thereof. The groupoid category encodes the fact that
diffeomorphism jets can only be composed when the target of the first matches the source
of the second. Thus, we shall be required to adapt the Lie group based moving frame
constructions arising in the finite-dimensional theory into a groupoid version that applies
to more general pseudo-groups.

Following [37, 38], we shall develop the theory in the context of the variational bicom-
plex over each (infinite) jet bundle, [1,2, 38,73, 75]. The bicomplex construction’ relies
on a choice of local bundle structure on M. The interactions between the two bicomplexes
associated with J*°(M,p) and J>°(M, M) provide the key to understanding the moving
frame constructions. In particular, the invariant contact forms on D)  J (M, M) will
play the role of Maurer—Cartan forms for the diffeomorphism pseudo-group. This identi-
fication enables us to formulate explicitly the complete system of structure equations in
power series form. Restricting the diffeomorphism-invariant forms to the pseudo-group
subbundle G(*) ¢ D(*) yields a complete system of Maurer—Cartan forms for the pseudo-
group. The remarkable fact is that the Maurer—Cartan forms satisfy an “invariantized”
version of the linear infinitesimal determining equations for the pseudo-group, and, as a
result, we can immediately produce an explicit form of the pseudo-group structure equa-
tions. Our direct algorithm effectively bypasses the more intricate recursive prolongation
procedure of Cartan, [13,14, 34,45,46]. Application of these results to the design of a
practical algorithm for directly determining the structure of symmetry (pseudo-)groups of
partial differential equations can be found in [15].

The moving frame theory for pseudo-groups acting on submanifold jet bundles will
be developed in second paper in this series, [60], which will appear elsewhere. As in the
finite-dimensional theory, [25], a moving frame for a pseudo-group action relies on the
choice of a cross-section to the pseudo-group orbits. Once the moving frame is determined
via normalization of the pseudo-group parameters, the resulting invariantization process
leads to a complete system of differential invariants, invariant differential forms, and so
on. The all-important recurrence formulae, leading to the determination of a complete,

T An intrinsic formulation requires the more abstract language of spectral sequences, based
on the contact filtration of the cotangent bundle, [75]. However, since we shall always deal with
local coordinate formulae, we have chosen to keep our constructions within the more down-to-
earth bicomplex formulation. We refer the reader to Itskov’s thesis, [29, 30], for the more abstract
C—spectral sequence approach.



finite system of fundamental differential invariants and their syzygies or differential rela-
tions, will rely on the Maurer—Cartan form constructions developed here. The fact that we
must eventually deal with two distinct jet bundles and their associated bicomplexes com-
plicates the formalism, and establishing a consistent and self-explanatory notation and
terminology is half the battle. This is particularly important once we need to consider
differential forms, since there are two different systems of contact forms, horizontal forms,
total differentiations, etc.

More substantial applications of these results and algorithms are now beginning to
appear. In [15,16], our methods are used to analyze symmetry groups of integrable
partial differential equations, specifically the Korteweg—deVries (KdV) and Kadomtsev—
Petviashvili (KP) equations, while [5] develops applications to the symmetry groups of
partial differential equations arising in fluid mechanics and climatology, modeling shallow
water and semi-geostrophic flows. Complete theoretical justifications of our methods will
be deferred until the third paper, [61], which relies on new methods from the modern
theory of Grobner bases, [18]. In particular, a new, constructive version of the Tresse-
Kumpera finiteness theorem for differential invariants will be established therein.

2. Pseudo—Groups.

Let M be a smooth m-dimensional manifold, and let D = D(M) be the pseudo-group
of all localt diffeomorphisms ¢: M — M. For each n > 0, let D™ = D™ (M) c J*(M, M)
denote the bundle of their nt® order jets. In particular D) = M x M. The natural
projections are written 7 : D™ — DE) and we let D(°°) be the inverse limit — the bundle
of infinite jets or Taylor series of local diffeomorphisms. Each bundle D™, 0 < n < oo,
carries the structure of a groupoid, [21,22,47]. The source map J(")(jn<p|z) = z and

target map T (j,¢|, ) = ¢(z) = Z induce the double fibration

D)
0(77 N"(") (2.1)
M M
Following Cartan, [13,14], we will consistently use lower case letters, z,x,u,... for the

source coordinates and the corresponding upper case letter Z, X, U, ... for the target co-
ordinates of our diffeomorphisms Z = ¢(z).

The groupoid multiplication follows from the composition of local diffeomorphisms.
Thus, given g™ = j o|., K™ =j 1|, with Z = T(”)(jn4,0|z) = J(”)(jn¢|z), we set
A .g) =3 (Yoy)],. Let 1 denote the identity section of o™ : D™ — M, whose value
at a point z € M is the n-jet ﬂg") of the identity diffeomorphism. Local diffeomorphisms
¥ € D can act on D™ by either left or right multiplication:

Ly (nel.) = in (e @)l Ry (Gn¢l2) = in(0o9 ™ )y (2.2)

T Our notational conventions allow the domain of definition of a map ¢: M — N to be a
proper open subset: dom ¢ C M. Also, when we write ¢(z) we implicitly assume z € dom ¢.



Given z € M, let D™|, = (¢(™)~1{2} denote the source jet fiber. The isotropy
sub-group D, = { ¢ € D|p(z) = z} consists of all local diffeomorphisms that fix z. The
nth order frame bundle of M, [36], F(") = { g™ € D0 | g™ (g(™)) = (") (g(™)} can be
identified as the subbundle whose fibers ™| = D™ < D™ consist of jets g™ = j, |,
of isotropy maps ¢ € D,. For n < oo, F (") forms a principal bundle over M whose
structure group is a finite-dimensional Lie group, namely the ntt order prolonged linear
group

GL™ (m) = {i,¢lo | ¢ € DR™), (0) =0} (2.3)

prescribed by n-jets of local diffeomorphisms ¢: R™ — R™ that fix the origin, [36; p. 139],
[53, 59]. The group multiplication is induced by composition of diffeomorphisms.

Given local coordinates (z, Z) = (2%,...,2™,Z%,..., Z™) on an open subset of M x M,
the induced local Taylor coordinates of ¢(™) = inpl, € D) are denoted (z, Z(”)), where
the components Z9 of ZM for a = 1,...,m, #J < n, represent the partial deriva-
tives 07¢®/0z’ of the components ©%(z!,...,2™) of the map ¢ at the source point z =
o™ (g("). We adopt a symmetric multi-index notation for derivatives, so J = (j;, .., J,)
denotes an unordered k = #.J-tuple with entries 1 < j, <m = dim M. Note that

dim F ™) :m(m+”), dim D™ = m [1+ ("“F””. (2.4)
m m

Example 2.1. Consider the case M = R with coordinate x. Local coordinates of
g™ =j | € D™ (R) are denoted

(x7X7Xm7me7 7Xn>7

where X, corresponds to the kth derivative of the diffeomorphism X = ¢(z) at the source
point z. An infinite jet g(®) = (z, X () € D(*®) corresponds to the Taylor series

X[h]=X+X, h+ 35X, B>+ - (2.5)

of a diffeomorphism X = ¢(z + h) at the source point x. Multiplication of diffeomorphism
jets corresponds to composition (and, in the finite order case, truncation) of power series’,

(X, X, X, Xy oo ) (2, X, X, Xy o) = (2, X, X 0 X, X g X+ X X2, .00,
(2.6)
The higher-order terms can be expressed in terms of Bell polynomials via the general Faa—
di-Bruno formula, [59,65]. Note that the groupoid multiplication (2.6) only makes sense
when the source coordinate of the first jet matches the target coordinate of the second.

Roughly, a Lie pseudo-group G C D is a sub-pseudo-group defined by an involutive
system of partial differential equations, [21, 22,39, 62, 63, 64]. For each 0 < n < oo, we
let G c D™ denote the sub-groupoid consisting of all n-jets of pseudo-group diffeomor-
phisms. For n < oo, we can regard the subbundle G as representing a system of nth

T The reader may recoil at this XXX rated formula, but if we fail to take a consistent and
systematic stance on notation at the outset, we are doomed to complete confusion before the end.



order partial differential equations, known as the determining equations of order n for the
pseudo-group. Given z € M, let G, = G N D, denote the isotropy subgroup consisting of
those pseudo-group transformations that fix the point z € M, and Qg”) =¢Wnr (”)|Z
the subgroup of isotropy jets at z.

There is some disagreement over technical hypotheses in the definition of a Lie pseudo-
group in the literature. Our version is stated as follows:

Definition 2.2. A sub-pseudo-group G C D will be called a Lie pseudo-group if
there exists n* > 1 such that the following assumptions are satisfied for all finite n > n*:

(a) G c D™ forms a smooth, embedded subbundle,
b) 71 g *D 5 G is a bundle map,

(b)
(c) every smooth local solution Z = ¢(z) to the determining system G™ belongs to G,
(d) G = pr(n=n") (") i obtained by prolongation.

The conditions (a—d) codify the formal integrability and local solvability requirements
placed on the determining equations for the pseudo-group. In this paper, we shall not
require the more technical condition of involutivity, as based on Janet—Riquier theory,
[31, 66], Spencer cohomology, [62, 63], or involutive divisions, [10].

The minimal value of n* is called the order of the pseudo-group, as it specifies the
order of the determining system of partial differential equations that characterizes the
pseudo-group transformations. We note that hypothesis (a) implies that the isotropy jets
G c F™|_ form a finite-dimensional Lie group for each z € M.

Remark: The modern approach to pseudo-groups, [21, 22, 39,41, 42, 62, 70], has, by
and large, been founded upon the theory of G—structures, [71]. Pseudo-groups that arise
in this manner are necessarily of constant type, meaning that the isotropy jet groups Q;”)
are conjugate subgroups of GL(")(m). In his definition of a continuous pseudo-group,
Kuranishi, [41], makes the less restrictive requirement that dim Qg”) is constant on M.
However, the Cartan construction of essential invariants, [13, 72], demonstrates that such
an assumption is overly restrictive in the intransitive case. A key feature of our approach
is that this constant dimensionality condition is not required, and, in fact, appears to play
no significant role in the general theory!

Remark: In his thesis, [30], V. Itskov proves that, under suitable hypotheses, any
non-Lie pseudo-group has the same differential invariants as a certain larger Lie pseudo-
group, known as its completion; see also Johnson, [33; p. 317]|. Thus, we are not sacrificing
any significant generality by restricting our attention to Lie pseudo-groups in our study.

In local coordinates, the order n determining equations defining the pseudo-group
subbundle G™ take the form of a system of nonlinear partial differential equations

F™(z,zM) =0, (2.7)

whose local solutions Z = ¢(z) are, for any n > n*, the pseudo-group transformations.
The prolonged system pr(*) G™ is obtained by repeatedly applying the total differential
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0 - . O .
a=1 #J>0 J

The integrability condition (d) of the definition requires that, for all n > n*, the system
pr®) G obtained by k-fold differentiation is the same as G"*t*). We remark that the
system of partial differential equations (2.7) must satisfy the constraints that it be a
nonlinear Lie equation, [40], ensuring that the composition of any two solutions must,
where defined, also be a solution.

To illustrate our constructions, we will primarily focus on two elementary, but nev-
ertheless interesting examples of pseudo-groups. Our methods, of course, have far wider
applicability, and these examples have merely been chosen for their inherent simplicity.

Example 2.3. Let M = {(x,u)| u# 0} C R2. Consider the transitive Lie pseudo-
group G C D(M) consisting of (local) diffeomorphisms of the form

u
F(z) (2.9)
where f(z) € D(R) is an arbitrary local diffecomorphism. This example was introduced by
Lie, [43; p. 353], in his classification of infinite-dimensional pseudo-groups acting on the
plane. The pseudo-group jets are obtained by repeated differentiation; to second order,

U U 1
X =7, U=—, X, = [, X, =0, U, =—-—F%+, U,=—, (210
7, 72 7, 10
Xmm = fmm’ Xmu = qu =0, Umm - = f2 + f3 ’ Umu - F’ Uuu = 07
where x,u, X,U,X_,X,,U,,U,,X,.,... denote local coordinates on D (M). In the
transformation formulae, the derivatives f, f,, f,.,... represent the coefficients in the
Taylor series for the function f(x + h) at the source point, and should be viewed as
independent parameters; in particular, when not followed by (x), the symbol f = f,

represents the O-jet or constant term in the Taylor series. Thus, the nt? order jet groupoid
G c D™ forms a (n+4)-dimensional subbundle parametrized by the source coordinates
x,u and the Taylor parameters f, f,, f ... .-

The involutive system characterizing G™ is obtained by implicitization, and equals
the (n — 1)st prolongation of the involutive first order system

X,=0, U, =

u

(2.11)

Y

v
u

T The notation will serve to distinguish these total derivatives from those on the submanifold
jet bundle J" (M, p) to be used in [60]. A more intrinsic characterization appears in (3.3) below.



obtained by recursively applying the total derivatives

0 0 0 0 0 0 0

Ve = gp thegx Tegy e gy, e gx Ve gy, Ve,
0 0 0 0 0 0 0

Pu= gy T uax T lugo T ey, T Awgx, T Vn g, Vg, T

(2.12)
For instance, its first prolongation pr® G = G is the six-dimensional submanifold of
D@ defined implicitly by appending the second order conditions

Xxx = - U_le' ) Xxu = qu = 07 Uxu = % ’ Uuu = 0. (213)
U2 u

Example 2.4. Our second illustrative example is the Lie pseudo-group G consisting
of local diffeomorphisms of the form
1 /

X=j@,  Y=rEuree,  U-us T oy
acting on M ~ R3. Here f(z) € D(R) is an arbitrary local diffeomorphism of R, while
g(x) € C®(R) is an arbitrary smooth function of a single variable z. This example
generalizes one of Medolaghi’s pseudo-groups, [51], and illustrates some of the more subtle
features in our constructions. It also serves as a simplified version of the symmetry pseudo-
group of the KP equation, [15], and captures many of the features of the latter. The
prolonged transformations are determined by differentiating the defining equations (2.14)
with respect to z,y,u, keeping in mind that f, = f, = g, = g, = 0. Consequently,

the subbundle G™ < D™ is parametrized by the Taylor coordinates x,y,u, f, g, f., 9
Jowr 9ows - Jnior Gny1- However, at order n, the parameter f, , is redundant, since
only the particular combination f, .,y + g,,, appears in the formulae. Eliminating the
parametric coordinates, we find that for n > 1, the jet groupoid G is the (2n + 7)-
dimensional subbundle of D™ defined by prolonging the first order system
X,=X,=0, Y, =X, #0, Y, =0, Y, =U-u)X,, U,=1, (2.15)

€T

through successive application of the total derivatives D, D, ,D,,.

3. Maurer—Cartan Forms for the Diffeomorphism Groupoid.

As emphasized in [38], the moving frame calculus for finite-dimensional Lie groups
relies in an essential manner on the invariant Maurer—Cartan forms. Thus, the moving
frame theory for pseudo-groups requires a corresponding collection of invariant differential
forms on the jet groupoids. Our constructions are motivated by the original ideas of
Cartan, [13, 14, 34, 72]. However, in contrast to Cartan’s recursive algorithm based upon
successive prolongations of the underlying exterior differential system, we will give a direct,
explicit construction of the invariant forms on the infinite diffeomorphism jet bundle D(>).

Since we can identify D(>®) C J*°(M, M) as (an open subset of) a jet bundle over a
Cartesian product manifold, there is a natural splitting of the cotangent bundle T*D(>)
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into horizontal and vertical (contact) components, [1,55]. We usel
d=dy + dg (3.1)

to denote the consequent splitting of the differential on D(°*). The subscript on the vertical
differential d. refers to the groupoid structure of D) The following interpretation is
fundamental:

The vertical differential d on D) should be viewed as differentiation with respect
to the pseudo-group parameters, and hence plays the role of the group differential d. in
the finite-dimensional theory, [38]. Moreover, the Maurer—Cartan forms for the diffeomor-
phism pseudo-group will be concretely realized as the (right-)invariant contact one-forms
on D)

In terms of local coordinates g(>) = (z, Z(>)), the horizontal subbundle of T*D(>)
is spanned by the one-forms dz! = d,; 21,...,dz™ = d,, 2™, while the vertical subbundle
is spanned by the basic contact forms

G =dg25=d25->_ 25, d7, a=1,...,m, #J>0. (3.2

i=1

Given a differential function F: D(>®) — R, its horizontal and vertical differentials take the
form

dy F =Y D.F ds, ioF=Y% Y ggg T4, (3.3)

i=1 a=1 #J>0

where D; are the total differentiation operators (2.8). In particular,

dy 25 = 25, d7". (3.4)
1=1

Note that the higher-order contact forms (3.2) are obtained by iterated Lie differentiation:
¢ =D/T where D/ =D_;, ---D_;, denotes a kth order total derivative.

Definition 3.1. A differential form p on D("), 0 <n < oo, is right-invariant if it
satisfies (Rw)* 1 = p, where defined, for every local diffeomorphism ¢ € D.

Remark: Morally, right-invariance of differential forms should be with respect to the
right groupoid multiplication. This certainly is the case for functions. However, since
the domain of a groupoid element is not an open subset of D(°°), defining the pull-back
groupoid action on differential forms becomes problematic.

Note that the splitting of forms on D(°°) into horizontal and contact components is
also invariant under the action of D on D™, Hence, if u is any right-invariant differential

T We reserve the more traditional notation dg and dy for the splitting of the submanifold
jet bundle J°°(M, p) to be used in [60].



form, so are d,; p and d,pu. Now, the target coordinate functions Z%DO — R are
obviously right-invariant. Therefore, by the preceding remark, their differentials

dZ =dy Z*+ de Z° = o + p?, a=1,...,m, (3.5)
split into right-invariant horizontal and contact forms. Thus, the one-forms

ot =dy Z° =) Z¢d, a=1,...,m, (3.6)

=1

form an invariant horizontal coframe, while

,u”:dGZ“:T”:dZ“—f: Z&dz, a=1,...,m, (3.7)
i=1
are the zeroth order invariant contact forms. The total differential operators D,1,..., D,
dual to the horizontal forms oy, ..., 0, are defined by the formula
dy F = f: D,.Fo”. (3.8)
a=1
Therefore,
D,. = i w' D, where (wi(z,Z2M)) = (2¢ )_1 (3.9)

=1

denotes the inverse of the m x m Jacobian matrix VZ = ( Z{ ).

Invariance of the forms (3.6) implies that the Lie derivative of a right-invariant dif-
ferential form with respect to D,. will also be right-invariant. Therefore, the higher-order
invariant contact forms are

a=1,....m

J J J ) ) )
G =Dyu® =Dy T, where Dy =Dy, - Dy, k= 47> 0. (3.10)
The differential operators D,; mutually commute, and so the order of differentiation is
immaterial. We shall view the right-invariant contact forms () = (... pué ...) on

D(®) as the Maurer—Cartan forms for the diffeomorphism pseudo-group. They will play
exactly the same role that the ordinary Maurer—Cartan forms played in the construction
of the invariant variational bicomplex in the finite-dimensional Lie group theory, [38]. The
complete collection o, ;1(>) in (3.6), (3.10) forms a right-invariant coframe on D(>),

Example 3.2. Consider the one-dimensional case M = R. Using the coordinate
notation of Example 2.1, the first few contact forms on D) are

Y=d,X=dX -X,dv, T, =D, Y=dX, — X, dv, T  =D3T=dX,, —X,,, dr,

where 5 9 9 5
D =—+X —+X D, GRp——
+ + + X X
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The basic right-invariant horizontal form is

1

o=dyX=X,dz, with dual total differentiation Dy = vl D,. (3.12)
Our algorithm produces the basic right-invariant Maurer—Cartan forms

Remark: While the right-invariant forms underlie the moving frame calculus, a similar
construction applies to differential forms invariant under the left action of D on D(*°). The
source coordinates z* are left-invariant, and hence their differentials

m
dzi:wédZa—ZwéTa, i1=1,...,m,
a=1
where w! is defined in (3.9), split into left invariant one-forms. A full system of left-
invariant forms is obtained by further Lie differentiation:

Pt = dzt, N=>"wiYe,  and A, =DJN. (3.14)
a=1

In the one-dimensional situation of Example 3.2, the first few left-invariant one-forms are

T dX - X, dr
e RS (3.15)

4. The Diffeomorphism Structure Equations.

The next step in our program is to establish the structure equations for the right-
invariant Maurer-Cartan forms on the diffeomorphism groupoid D(>). Instead of following
Cartan’s iterative procedure based on successive prolongation of Pfaffian systems, [13], we
shall present a direct approach based on a power series analysis.

Given local coordinates z = (2%,...,2™) on M, we use Z[h] to denote the vector-
valued Taylor series, depending on h = (h',..., h™), of a diffeomorphism Z = ¢(z + h) at
the source point z € M, with components

a 1 Q
Z[h] = Z jZJh‘], a=1,...,m. (4.1)
#J>0

Similarly, the Taylor series Z[ H | of a diffeomorphism Z = ¢(Z + H) based at Z has
components

a 1 a
Z°[H] = Z fZJHJ’ a=1,...,m, (4.2)
#J>0

11



with H = (H',..., H™). The groupoid multiplication on D> is induced by composition
of power series, with Z[ Z[h] — Z[ 0] ] being the Taylor series of the composition 1) o .

Let Y[ h ] denote the column vector of contact form-valued power series with individual
components

a ]' a
T[h] = Z jTJhJ, a=1,...,m. (4.3)
#J>0

Similarly, u[ H ] will denote the right-invariant contact form-valued power series with
a 1 a
plH] = Z j,uJH‘], a=1,...,m. (4.4)
#J>0
Equations (3.10) imply that
ulH] =7T[h] when H=Z[h] - Z]0], (4.5)

which can be used to recover the Maurer—Cartan forms (3.10).
To obtain the structure equations for the diffeomorphism pseudo-group, we apply the

exterior derivative d (with respect to the source variables z) to p] H] while keeping h
fixed. First note that, from (3.2), (3.4),

dH = dZ[h] — dZ[0] = dy, Z[h] + dg Z[h] — dZ[0] =V, Z[ h] dz + Y[ h] — dZ]0].

(4.6)
V2101 = 5 101)

denotes the m x m Jacobian matrix power series obtained by differentiating Z[h] with
respect to h = (h!,..., h™), while dz = (dz!,...,dz™)T is viewed as a column vector of
one-forms. Using this notation, the standard structure equations

Here

ary =- Y 1%, nde (4.7)

i=1
for the contact forms on D(>), [55], can be written in power series form as
dY[h] = -V, Y[h] A d=. (4.8)
Therefore, differentiating (4.5) and using the chain rule, we find
du[H]) = VuplH]NdH =d(p[H]) =dY[h] = -V, Y[R] A d=. (4.9)

It is important to note that, in the first term du] H | in (4.9), the exterior derivative only
affects the invariant forms p, whereas in the middle term d( [ H]) it affects both y and
H. In view of (4.6), we obtain the structure equations in the form

du[H) =V upulH] A (V,Z[h]dz+ Y[ h] —dZ[0]) — V,Y[R] A dz

=Vl H A (l H] - dZ]0]), 0
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where the first and last terms canceled thanks to (4.5) and the chain rule. The constant
term in the final power series is

pl0] —dz[0] = —o,

whose components are the negatives of the invariant horizontal forms — o® defined in (3.6).
Therefore, their structure equations are obtained by setting H = 0 in (4.10):

do=—du[0] =Vgu[0] Ao (4.11)

Equations (4.10), (4.11) constitute the complete system of structure equations for the
diffeomorphism pseudo-group.

Example 4.1. When M = R, the Maurer-Cartan form series takes the form
prpx Htguxx H+ o =p[H] =Y[h] =T+ T, h+ 5T, kP + -, (412)

when

Our previous formulae (3.13) for the Maurer-Cartan forms y,, = D% on D) (R) result
from equating successive powers of h in the expansion (4.12). The diffeomorphism structure
equations (4.10), (4.11) are given in the form

do = py Ao, du[H] = Vyu[H] A ([ H] —dZ[0]), (4.13)
where
Vil H] = px +pxx H+ 5 pxxx H + -
is merely the derivative of the Maurer—Cartan form series u[ H | with respect to H, while
plH] —dZ[0] = —o+px H+ fpuxx H + - .

The individual components satisfy

do = p, Ao,
n—1 n
d“n:_lun—i—l/\o- + Z (Z) lui—‘,—l/\“n—i
i=0 (4.14)
e R N |
=0 Ny — Z a1 j [ RAY R
j=1

In this manner, we recover the general formulae established by Cartan, [13; eq. (48)], for
the structure equations for the one-dimensional diffeomorphism pseudo-group D(R).

Example 4.2. The Maurer—Cartan forms for the planar diffeomorphism pseudo-
group D(R?) are obtained as follows. Using the coordinates of Example 2.3, we begin with
the zerot! order right-invariant forms

o=dy X =X,dx+ X, du, T=dyU=U,dr+U,du, (4.15)
p="=d,X =dX — X, dv— X, du, v=0=d,U=dU—"U,dx—U,du.

13



The higher-order right-invariant contact forms are obtained by repeatedly applying the
right-invariant differential operators

Ux = X0, -X,0, T X0, X0, 10
to u,v. In particular, the first order Maurer-Cartan forms are
T, -U,7T, X, T, -X, T,
Fx = Xqu - Xqu , fto = Xqu - Xqu , 4.17
y _Uu\IJx_Ux\IJu U _Xx\IJu_Xu\Ijx ( )
X Xqu - Xqu ’ v Xqu - Xqu ’
where
Y, =dX, - X, de— X, du, T,=dX,— X, de— X, du,
v, =dU,-U,, dx—-U,,du, v, =dU,-0,,dx-U,, du,

are the first order contact forms on D(>)(R?). The structure equations are found via the
general power series formula (4.10), which can be written in the matrix form

<duuH,Ku>:<uHﬂH,Kﬂ uKﬂH,Ku> . <uﬂH,Kﬂ—dX>, (4.18)

dv[H, K] vylH, K] vi[H K] v[H,K] —dU
where
1
plHK]=Y" - k'uijJKk u[H, K] — :—a+z lu]kHJKk
j,k>0 ]+k>1
§,k>0
1 k k
v[H K]=> T Vik WK V[H K] —dU= -7+ ) 'k' v, H K
j,k>0 j+k>1
4,k>0

with ;. = ]D‘;(]D’f],u, Vi = ]D)&]D)’ij. In particular, the first order structure equations
reduce to

diux = —pixx NO = pxy AT+l Ay,

do=—dp=px No+puy AT, dvy = —VUxx NO—Uxyg AT+ VU Ay — V),

5. Infinitesimal Generators.

Let X = X (M) denote the space of locally defined vector fields on M, i.e., local
sections of the tangent bundle TM. Let J*TM = J"TM, 0 < n < oo, denote the tangent
n-jet bundle. Let A denote the Lie algebroid, [47], of the jet groupoid D™ which
is, by definition, the space of right-invariant vector fields that are tangent to the source
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fibers D(”)|z. Each Lie algebroid vector field is uniquely specified by its value on the
identity section ]l(”), and so we can identify A(™) as the space of sections of the vector
bundle R™ = Usenr T(D(”)|Z) |]1(n) — M. There is a natural Lie algebra isomorphism

A X(M) = A™ that maps the infinitesimal generator v of a local flow ®, acting on
M to the infinitesimal generator V(™) = X(®)(v) of the flow induced by the left action of
®, on D™, We will call V(") the nth order lift of the vector field v. The infinite order case
will be simply denoted by V = A(v), and the finite order cases are obtained by truncation.

In local coordinates, the lift of a vector field

=Y 6 (5.1

on M is the right-invariant vector field

V=Y ¥ D2 gn )

a=1 #J>0

on D) in which one replaces the source variables z by target variables Z in the vector
field coefficients, and then differentiates with respect to z via the chain rule using the
differential operators

D=y Z{Dy, i=1,...,m. (5.3)
a=1
Thus, lifting essentially coincides with prolongation of a vertical vector field on M x M to
the jet bundle J"(M, M), cf. [55].

Example 5.1. In the case M = R, the lift of a vector field v = {(z)0, is obtained
by prolonging the associated vertical vector field {(X )0y to D(®) and so

0 0 0

2
V=¢ X + X, Ex ox, + (X5 €xx + X éx ) X, +
P (5.4)
On the level of jets, we can view £, £y, &y x, ... as independent jet coordinates, and hence
(5.4) is a linear combination of the basis Lie algebroid generators
0 0 0 0
i X — 4+ X —— 44X L.
0x’ T o0X, T s 0X,, + Yz 0X 10 + ’
0 0 0
2 —_— “ .. 3 “ ..

and so on. The general formula can be explicitly written in terms of Bell polynomials,
[59,65]. The dual basis for the Lie algebroid A(™ relative to the basis Maurer—Cartan
forms constructed above is obtained by truncating the expansions at order n.
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Let Z™ denote the dual bundle to the vector field jet bundle J*"T'M, and Z (%) the
direct limit. (Warning: Z(™) is not the same as the space of jets of differential one-forms
on M.) We define the lift of a section ¢ of Z () £o be the right-invariant differential form
X(¢) on D) that vanishes on all total vector fields, and satisfies

g(oo) c D(OO),
Z =7 (¢(>)).

In local coordinates, each vector field jet coordinate function ( can be viewed as a section
of Z(>) and is easily shown to lift to the corresponding basic right-invariant contact form

py = A(C5)- (5.6)

More generally, any linear function of the vector field jets, L(z, ¢ (”)), can be viewed as a
section of Z(™ | whose lift

(A5 AMV) M geor = (C1iaaV )z whenever (5.5)

A[L(z,¢") ] = L(Z,u™) (5.7)

is formally obtained by replacing the source variables z® by their target counterparts Z¢
and the vector field jet coordinates (§ by the Maurer-Cartan forms 5.

Given a pseudo-group G, let g C X denote the local Lie algebra of infinitesimal
generators, i.e., the set of locally defined vector fields whose flows belong to the pseudo-
group. Let J® g C J*T'M denote their jets. In local coordinates, we can view the subbundle
J"g C J"T'M as defining a linear system of partial differential equations

LM (z,¢™) =0 (5.8)

for the vector field coefficients, called the linearized or infinitesimal determining equa-
tions for the pseudo-group. In practice, they are constructed by linearizing the nt® order
determining equations (2.7) at the identity:

L(”)(z, C(n)) —vm [F(”)(z, Z(”))] (5.9)

} (z,Z(m)=1{") *

The infinitesimal determining equations form a linear Lie equation, cf. [40], meaning that
the Lie bracket of any two solutions is again a solution.

Remark: If G is the symmetry group of a system of differential equations, then the
linearized determining equations (5.8) are the (involutive completion of) the usual deter-
mining equations for its infinitesimal generators obtained via Lie’s algorithm, [45, 46, 54].
Infinite-dimensional pseudo-groups arise as symmetry groups of a broad range of systems,
including solitons, [19], fluid mechanics, [54], oceanography and meteorology, [69], and
gauge theory, [6].

By the preceding remarks, for n > n*, the general solution to the linearized deter-
mining equations (5.8) is precisely the space of infinitesimal generators g. The system is
formally integrable by virtue of condition (b) of Definition 2.2. Under reasonable hypothe-
ses, involutivity should follow from the involutivity of the nonlinear determining equations
(2.7), although a precise statement seems tricky, [41, 42]. However, local solvability of the
infinitesimal determining equations does not seem to follow from our definitions so far, and
so we make the following additional mild restriction.
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First, the Lie algebroid £ of the jet groupoid G (") is the set of right-invariant vector
fields on G™ tangent to the source fibers. A Lie algebroid vector field is uniquely deter-
mined by its value at the identity section, and hence there is a one-to-one correspondence
between Lie algebroid elements and sections of W™ = Usenr T'( G|, ) |ngn), which, under

the hypotheses of Definition 2.2 is a vector subbundle W c RM for all n > n*.

Definition 5.2. A pseudo-group G C D is tame if for all z € M and all n > n*, each
w € W™ |_ is the lift of some v € g, that is, )\(”)(V)|1(n) =w.

Remark: All known (at least to us) examples satisfy the tameness condition, but we
do not know if it is valid for all pseudo-groups satisfying the hypotheses of Definition 2.2.
From now on, all pseudo-groups are assumed to be tame.

Example 5.3. The infinitesimal generators of the pseudo-group given in Example 2.3
are all vector fields of the form

0 0 0
veed ol ) Sy (5.10)

where a(z) is an arbitrary smooth function. The coefficients £ = a(z) and ¢ = —ua’(x)
form the general solution to the first order infinitesimal determining system

Sm:__v Su:O7 Spfu,:_7 (5'11)
which is obtained by linearizing the determining system (2.11) at the identity, i.e., where
XI{Z;’ UZU” Xx:Uu:17 Xu:Xxx:Xxu::Ux:Uxx:Uxu::O

The system (5.11) is involutive, and hence the higher-order infinitesimal determining sys-
tems are obtained by repeatedly applying the total derivative operators

8 0 8 8 8
D — 6 0 6 0 6 6 6

u %+§u6_§+gpu%+§mua—®+§uua§ +§0mua +¢uuagpu+

Example 5.4. Similarly, the infinitesimal generators of the pseudo-group (2.14) are

0 0 0 0 0 0
V:f%‘f'??a—y‘f‘@%:a(x)%‘i‘ [a'(z)y +b(z) ] 8_y+ [a"(z)y+ V' (2)] 9’

(5.12)
where a(x),b(x) are arbitrary smooth functions. These form the general solution to the
first order infinitesimal determining system

£:p = ny7 gy = gu = nfu, = (pfu, = 07 nm — ()07 (5.13)

which is obtained by linearizing the determining system (2.15) at the identity jet. Again,
the linearized determining equations are involutive at order 1.
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6. The Structure Equations for a Pseudo-Group.

A complete system of right-invariant one-forms on the infinite jet groupoid G c
D(>) is obtained by restricting (pulling back) the Maurer-Cartan forms (3.6), (3.10). For
simplicity, we continue to denote these forms by o = (... ¢® ... ), u(®) = (... u% ...).
The restricted Maurer—Cartan forms are, of course, no longer linearly independent, but are
subject to the constraints prescribed by the pseudo-group. Remarkably, these constraints
can be explicitly characterized by an invariant version of the linearized determining equa-
tions (5.8). The proof, though, is a simple unwinding of definitions.

Theorem 6.1. The linear system
LM™(Z, ™) =0, (6.1)

obtained by lifting the linear determining equations (5.8) as in (5.7) serves to define the

complete set of linear dependencies among the right-invariant Maurer-Cartan forms (™
on G (n)

Proof: At each point z € M, the linear determining equations are defined by a system
of linear functions on the vector field jet bundle J*T'M, which we can view locally as a
collection of sections of the dual bundle Z(™ . Their lift, as in (5.7), forms a system of right-
invariant forms on the diffeomorphism groupoid. Since the linear determining equations
annihilate the tangent spaces T'( G .) |]l<zn>, formula (5.5) immediately implies that the

tangent space to G (") is the annihilator of the lifted system of differential forms, and hence
(6.1) follows. Q.E.D.

Corollary 6.2. The structure equations for the pseudo-group are obtained by re-
striction of the diffeomorphism structure equations (4.10) to the kernel of the linearized
involutive system, as defined by (6.1).

An invariant coframe on the infinite pseudo-group jet bundle G can be identified
as a basis for the solution space to the infinite prolongation of the linear system (6.1).
Under appropriate hypotheses, truncating at the order of involutivity of the linearized
determining system (5.8) yields an involutive Pfaffian system that serves to characterize
the pseudo-group.

Example 6.3. We first illustrate the method by treating a standard finite-dim-
ensional Lie group action, also analyzed by Cartan, [14]. The linear fractional trans-
formations X = (ax + 8)/(yx + ) define an action of the projective group PGL(2, R)
on M = RP!. The determining equations are obtained by prolonging the well-known
Schwarzian equation

Xopo X, — 2X2, =0. (6.2)

The infinitesimal generators v = &(x) 0, = (a + bx + cx?) 9, solve the linear determining
equation

gxmx = 0
obtained by linearizing (6.2) at the identity X =z, X, =1,X, =X, =---=0.

rrxr
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The Maurer—Cartan forms on the jet groupoid G(>®) < D) are obtained by re-
striction of the right-invariant coframe o, p, iy, ftxy,... from Example 3.2 to the group
manifold, as defined by (6.2) and its prolongations. According to Theorem 6.1, they satisfy

O=pxxx =Mxxxx = """ s (6.3)

which can be verified by direct computation. Therefore, referring to (3.13), the one-forms

Y, dX,-X,, dz

o=X,dz, pw=dX — X, dz, ,uX:X—z X, , .
Pxx = X3 = X3 )

provide a right-invariant coframe on G ~ Q(OO), with local coordinates z, X, X, X .
The structure equations are found by truncating (4.14) and invoking (6.3):

do=—du=px Ao, dpx =0 Npxx, dpxx = —px Nixx, (6.5)

and so the one-forms o, iy, py x satisfy the structure equations of PGL(2,R). The addi-
tional one-form p arises from the fact that G can be identified as a principal PGL(2,R)
bundle over RP'. Indeed, by transitivity, each target fiber (7)) {c} = {X =¢} c G?
can be identified with PGL(2,R). Since o +p = dX = 0 on the target fibers, the restriction
of the invariant one-forms yields a complete system of (fiber-dependent linear combinations
of) the standard Maurer—Cartan coframe for PGL(2, R).

Example 6.4. The Maurer—Cartan forms for the pseudo-group (2.9) are obtained
by restricting the right-invariant forms (4.15), (4.17) to the subbundle defined by the
pseudo-group determining equations (2.11), (2.13). The basic invariant one-forms are

J:%dx:fxdx, T:dea:—f—%du:_ufmig-i_fxdu,
g (6.6)
p=dX — 2 de =3 v dU - U do— Z du = — 4%
U ’ x " 72
where
o = df — f, du, o =df, — f. dr, ®, =df, — f, . dx, (6.7)

are contact forms in the pseudo-group parameters. The higher-order Maurer—Cartan forms
are obtained by similarly restricting the higher-order diffeomorphism Maurer—Cartan forms
(o, u(oo)), or, alternatively, by successively differentiating p, v using the dual total differ-
ential operators

U 1 U

U
Dy=—D -UD =-—D — I D,==D =fD
X u Z T U fm T + fa% u’ U U v fm u’
where, on the pseudo-group bundle,
0 0 0
D, =+— = D, =—.
v or ;} Jita of;’ ‘o Ou
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Thus, the first order Maurer—Cartan forms are

_du dU-U,dz @, V__d_u_i_dU—Umda:__g

S v e o vk (6.8)
Udu,-U,,dx)—U,(dU-U,dzx) wuf,, ®, —uf,®,. '

/’LU:O7 VX: U = f4 .

Note that, when written in terms of the parameters f, f,, f,., the Maurer-Cartan forms
are certain linear combinations

po  v==Upyx, px, k=0, vx=-Upxy, vy=-px, (6.9)

of the Maurer—Cartan forms (3.13) for the diffeomorphism group D(R). In Cartan’s termi-
nology, the pseudo-group is a “holohedric prolongation” of D(R), and this correspondence
is maintained on the level of their Maurer-Cartan forms.

In accordance with Theorem 6.1, the Maurer—Cartan forms (6.6), (6.8) are constrained
by the invariantized version

14 14
/JX:_E, MUZO, VU:U, (6.10)

of the linear determining equations (5.11). The higher-order constraints are obtained by
(invariant) prolongation — i.e., differentiation of (6.10) with respect to X,U. Thus, at
second order

Vx
Pxx = 7Vxu =~ 77> bxy = pyy = Vyy = 0. (6.11)
The remaining independent one-forms o, 7, u, v, vy, Vx x, Vx x x> - - - form a right-invariant

coframe on G(*). The structure equations (at order 1)

VAo Ux No
U )

do=—dp=—

VAT vy N(T+20)

are obtained by restriction of the structure equations (4.19). Higher order structure equa-
tions can be obtained from the general power series expansion. Indeed, the solution to the
invariant determining equations (6.10) can be written in terms of the D(R) Maurer—Cartan
form power series (4.12):

dr = —dv =vx No +

plH, K] = plH], V[H, K] =—-(U+K)pg[H]. (6.12)

Substituting (6.12) reduces the structure equations (4.18) to the structure equations (4.14)
for D(R), in accordance with the holohedric equivalence of the two pseudo-groups.

Example 6.5. The Maurer—Cartan forms for the pseudo-group (2.14) are obtained
as follows. To simplify the final expressions, we use f(z) and

e(z,y) = f'(x)y+ g(x) (6.13)
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to denote the arbitrary functions, which are subject to the constraints e, = f,, f, = 0. For
all n > 1, a complete system of local coordinates on G\ is given by (x,y,u, foe, fry€ps -,
Frt1s n+1) where

fr =051, e, = Ohe =yt f+ 0y, k > 0.
The basic invariant horizontal forms are
o=dy X =f,dx, =dyY = f,dy+e,dx,
d 6.14
r=dy U = du+ e J; ©) T | Jasdy (6.14)
f fa
The order zero invariant contact forms are
_ Y, —e, @,
p=dsX =92, p=doY =19, v=d,oU = 72 ) (6.15)
where ®, ®_ are given in (6.7), while
V=de—e,dr— f,dy, V. =de, —e,, dr—f,. dy,
z fody Joz Ay (6.16)
v, =de, —e, dv—f, ., dy.
The invariant differential operators dual to (6.14) are given by
1 x Qfmmem — J2Caz 1 f
]D)X:f—]D) —FD + f3 Du? ]D)Y:f—]D) —F w? DU:D’LH
(6.17)
where, when written in terms of the pseudo-group parameters,
0 0 = 0 0
1‘ +Z<n+18f +en+lan), Dy:a_y+rgofn+1£, Du:%.

Applying the differential operators (6.17) repeatedly to the order zero forms (6.15) produces
the higher-order Maurer—Cartan forms

q)m ~ fm\:[jm B emq)m
7 by = ——F
f. . f2

fa?\:[jmm — fmfmmqjm — 2fmemq)mm + (3emfmm B emmfm>q)m fm(pmm B fmmq)m
X = f4 ) VY = f3 ?

€T

and so on. In accordance with Theorem 6.1, the contact Maurer—Cartan forms satisfy the
invariant linearized determining equations for the pseudo-group G; to first order,

fx = My, py = py = piy = vy =0, fx =V,
By repeated differentiation, setting u; ;. , = ]D&]D’{,DZU;L, etc., we find that
NJ 1,0 — Mj+1,0,00 V0,0~ N;+1 0,07 Vi1,0 = Hj+2,0,00 Jr k. 1=>0, (6.18)
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and all others are zero. As a result, the one-forms

o, g, T, P, = Hin0.00 P, = Fo0.0 for n=0,1,2,...,
form a G—invariant coframe on Q(OO).
The structure equations are obtained by substituting the expansions

oo

~ 1 n G 1 n
/J’HH7K]]:Z E/’LnH +KZ E/J’n—l—lH 9
0 ’ n=0 )

oo

1 n

n=0

n

v[H,K]

M

n:

0o
~ 1
—'Mn+1Hn+K E ﬁﬂn-l—QHn?
0 n=0 )

n

into (4.10). Those involving p, reduce to the structure equations (4.14) for D(R) while

n—1

~ ~ ~ n n ~

d:un :UA/’Ln+1+UA/’Ln+1+ E |:<]) - <]+1) :| /“l’j—l—l /\lu’n—j‘ (619)
=0

Moreover,
do=—dp=—0Apuy,

Example 6.6. The following relatively trivial, but nevertheless interesting finite-
dimensional abelian transformation group

X =u, Y =y, U=u+ax+by, where (a,b) € R?, (6.21)

appears in Cartan, [14; p. 1357], as an illustration of his theory of essential invariants; see
also [72; p. 407]. The first order determining equations are

X=z Y=y, U=u+2U,+yU, X, =Y =U,=1 X =X, =Y =Y, =0

The jet coordinates U, = a,U, = b, coincide with the group parameters, while all higher-
order derivatives are 0. The invariant horizontal forms are

o=dy X =dz, oc=d,Y =dy, T=dyU=du+U,dx+U,dy,
while the non-zero invariant contact forms are
v=dgU=2dU, +ydU,, vy = dU,, vy =dU,.
They clearly satisfy the infinitesimal determining equation

v=Xvy+Yuy, (6.22)

while all higher-order Maurer—Cartan forms vanish when restricted to G(>). The structure
equations reduce to

do=do=dvy =dv, =0, dr = —dv=vyx Ao+ vy Ao (6.23)
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However, owing to (6.22), only 5 of the Maurer—Cartan forms are independent, and, on
the submanifold where Y = y # 0, we have

dr = —dv =

o X
—|—VX/\<O'—?5), (6.24)

reproducing the structure equations found by Cartan. The function I = X/Y = x/y
that appears in the last structure equation (6.24) is known as an essential invariant.
Essential invariants depend upon the fibration of the jet bundle, and are preserved under
equivalence maps on the base manifold. Indeed, the alternative coframe o,0, 7, vy, vy
does not introduce any essential invariant in the structure equations, because the prolonged
action on the five-dimensional subbundle G ¢ DM is equivalent, under a non-projectable
change of variables, to the trivial translation action of R? on R®.

Remark: Interestingly, the “enhanced” action U = u + ax + by + ¢ has no essential
invariants; the structure equations are the same, but there is no linear dependence among
the Maurer-Cartan forms v, vy, vy that gives rise to the essential invariant.

The existence of essential invariants does not affect the moving frame algorithm to be
presented in [60]. The reader may wish to use Cartan’s simple example as a test case.
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