
Differential Invariant Algebras of Lie Pseudo–Groups

Peter J. Olver†

School of Mathematics
University of Minnesota
Minneapolis, MN 55455
olver@math.umn.edu

http://www.math.umn.edu/∼olver

Juha Pohjanpelto‡

Department of Mathematics
Oregon State University
Corvallis, OR 97331
juha@math.oregonstate.edu

http://oregonstate.edu/∼pohjanpp

Abstract. The aim of this paper is to describe, in as much detail as possible and
constructively, the structure of the algebra of differential invariants of a Lie pseudo-group
acting on the submanifolds of an analytic manifold. Under the assumption of local freeness
of a suitably high order prolongation of the pseudo-group action, we develop computational
algorithms for locating a finite generating set of differential invariants, a complete system
of recurrence relations for the differentiated invariants, and a finite system of generat-
ing differential syzygies among the generating differential invariants. In particular, if the
pseudo-group acts transitively on the base manifold, then the algebra of differential invari-
ants is shown to form a rational differential algebra with non-commuting derivations.

The essential features of the differential invariant algebra are prescribed by a pair of
commutative algebraic modules: the usual symbol module associated with the infinites-
imal determining system of the pseudo-group, and a new “prolonged symbol module”
constructed from the symbols of the annihilators of the prolonged pseudo-group genera-
tors. Modulo low order complications, the generating differential invariants and differential
syzygies are in one-to-one correspondence with the algebraic generators and syzygies of an
invariantized version of the prolonged symbol module. Our algorithms and proofs are all
constructive, and rely on combining the moving frame approach developed in earlier papers
with Gröbner basis algorithms from commutative algebra.
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1. Introduction.

In this, the third paper in our series, [44, 45], developing the method of moving frames
for pseudo-groups, our aim is to establish the basic theoretical results underlying our earlier
constructions and algorithms. Applications of these results and techniques can be found
in [9, 10, 38, 54]. The reader is advised to consult these papers before delving deeply into
the detailed constructions and proofs presented here.

Consider an analytic Lie pseudo-group G acting on a manifoldM . The induced action
of G on submanifolds S ⊂ M of a fixed dimension p has natural prolongations to the
submanifold jet spaces Jn(M, p), 0 ≤ n ≤ ∞, [41, 45]. By a differential invariant , we
mean a locally defined† invariant function I: Jn(M, p)→ R. Our principal object of study
is the algebra of differential invariants, denoted by I(G). Thus, in the geometric language
of differential equations, we are dealing with pseudo-groups of point transformations . Our
methods extend, with minimal effort, to pseudo-groups of contact transformations, [41].

Remark : Since differential invariants are, in general, only locally defined, a more tech-
nically precise development would recast everything in the language of sheaves, [56, 32].
However, since the experts can readily translate our constructions into sheaf-theoretic lan-
guage, we will refrain from employing this additional level of abstraction, and, instead,
work locally on suitable open subsets of the indicated manifolds and bundles.

A theorem first formulated by Lie in the finite-dimensional Lie group case, [33; The-
orem 42, p. 760], and then extended by Tresse to infinite-dimensional pseudo-groups, [55],
states that, under suitable hypotheses, the differential invariant algebra I(G) is finitely
generated. This means that there exists a finite system of differential invariants I1, . . . , Iℓ,
and exactly p invariant differential operatorsD1, . . . ,Dp that preserve I(G), such that every
differential invariant can be locally expressed as a function of the generating invariants and
their invariant derivatives, namely DJIκ = Dj1

Dj2
· · ·Djk

Iκ for k = #J ≥ 0. In general,
the invariant differential operators need not commute, and so the order of differentiation
is important. Moreover, except in the case of curves, p = 1, the differentiated invariants
are typically not functionally independent, but are subject to certain functional relations
or syzygies H( . . . DJIκ . . . ) ≡ 0.

A rigorous version of the Lie–Tresse Theorem, based on the machinery of Spencer co-
homology, was established by Kumpera, [32]; see also [31] for a generalization to pseudo-
group actions on differential equations (submanifolds of jet space), and [39] for an ap-
proach based on Weil algebras. None of these references provide constructive algorithms
for pinpointing a system of generating differential invariants, nor methods for classifying
the recurrence and commutator formulae, nor do they investigate the finiteness of the gen-
erating differential syzygies. All of these are, in fact, direct consequences of our moving
frame algorithms. In the present paper, we establish a constructive algorithm for produc-
ing a (non-minimal) generating set of differential invariants for any eventually locally free

† Our notational conventions for functions, maps, etc., allows the domain of I to be a proper
open subset of its indicated source space: dom I ⊂ Jn(M,p).
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pseudo-group action, cf. [45], and, in addition, establish, constructively, the existence of
a finite number of generating differential syzygies.

As in the finite-dimensional theory, [19], (local) freeness of the prolonged pseudo-
group action, as formalized by Definition 5.1, underlies the construction of a moving frame,
and hence the construction of differential invariants and invariant differential forms. (Ex-
tending our methods to the non-free case remains a challenge.) Freeness serves to bound
the possible dimensions of the pseudo-group jet bundles, and thus can be regarded as a
more transparent geometric version of the Spencer cohomological growth requirements
in Kumpera’s approach, [32]. Indeed, many “large” pseudo-groups, such as volume–
preserving diffeomorphisms, or canonical diffeomorphisms on a symplectic manifold, do
not possess any local differential invariants. Since freeness is the essential ingredient for
our constructions, the first order of business is to establish its persistence under prolon-
gation. Specifically, we use algebraic techniques to prove that a pseudo-group that acts
locally freely on a jet space of order n ≥ 1 necessarily acts locally freely on all higher order
jet spaces.

Many of the structural properties of systems of differential equations, both linear and
nonlinear, are based on the algebraic structure of their symbols, [5, 23, 52]. At each point,
the symbols of an involutive system generate a submodule of the module of vector-valued
polynomials, and hence can be analyzed by modern computational algebra — in particular
the method of Gröbner bases, [1, 6, 12, 15]. For linear systems, the symbol polynomials are
intrinsically realized as elements of the dual space to the space spanned by the jets of their
solutions, and we will exploit this duality throughout. By definition, the Lie pseudo-group
transformations are the solutions to a formally integrable system of nonlinear partial dif-
ferential equations on the diffeomorphism jet bundle, known as the determining equations

of the pseudo-group. Our methods rely on its infinitesimal generators, which are subject to
a linear, involutive system of partial differential equations, known as the linear determin-

ing equations . These can be obtained by linearizing the nonlinear determining equations
at the identity pseudo-group element. In particular, Lie’s algorithm for determining the
symmetry (pseudo-)group of a system of differential equations, [40], leads directly to the
symmetry group’s linear determining equations. In this manner, the basic properties of the
pseudo-group G are prescribed by the symbol module of its linear determining equations.

Remark : For the historically inclined reader, it is worth noting that the modern theory
of Gröbner bases has its foundations in early research on the integrability of systems of
partial differential equations. Intimations can be found in [14, 49, 50], culminating in the
mostly unrecognized work of Gjunter, cf. [22] (which summarizes his earlier papers from
1910–1913), in which he anticipates Gröbner basis methods and the Buchberger algorithm,
[6]. Gjunter’s work was rediscovered by Renschuch and his students and collaborators,
and an English summary has recently appeared, [48]. Vice versa, recent developments
in the method of involutive bases for algebraic modules, [21, 23, 52], have been directly
inspired by the older computational approaches to involutive partial differential equations.

The space of annihilators L of the prolonged pseudo-group generators plays a key role
in our constructions. We realize L as a subspace of a certain polynomial module. The
symbols of the annihilators serve to define the prolonged symbol submodule associated with
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the pseudo-group action on submanifolds; it is related to the usual symbol module by a
simple, explicit, linear map.. Specifying a complementary subspace to the annihilator at a
point serves to fix a moving frame through the process of normalization, [45]. The moving
frame engenders an invariantization process that maps differential functions to differential
invariants, differential forms to invariant differential forms, and so on. The fundamental
differential invariants are obtained by invariantizing the basic submanifold jet coordinates,
while the associated invariant differential operators are dual to the invariantized horizontal
coordinate one-forms.

The key consequence of the moving frame construction is the all-important recurrence
formulae, [19, 45], that relate the fundamental differential invariants to their invariant
derivatives. The recurrence formuale serve to completely specify the entire structure of
the associated differential invariant algebra. Remarkably, both the structure equations for
the pseudo-group and the recurrence formulae can be explicitly generated, using only linear
differentiable algebra, from solely the formulae for the prolonged infinitesimal generators
of the pseudo-group and the choice of moving frame cross-section — the formulas for
the differential invariants, the invariant differential operators, the Maurer–Cartan forms,
and even the pseudo-group transformations themselves are not required! In particular,
if the pseudo-group acts transitively on the base manifold, then the recurrence formulae,
differential invariant syzygies, and commutation relations for the invariant derivations
can all be expressed as rational combinations of the generating invariants. This, perhaps
surprisingly, proves that the algebra of differential invariants of any eventually locally freely
acting, transitive pseudo-group has the structure of a rational differential algebra with non-
commuting derivations, [24, 26, 58]; see Theorem 8.4 for a more general formulation of this
result. Modulo low order embellishments, which can arise when G does not act freely on
lower order jet spaces, the commutative algebraic structure of the invariantized prolonged
symbol module encodes the basic structural features of the differential invariant algebra
I(G). Specifically, the finite generating system of (higher order) differential invariants is
in one-to-one correspondence with the Gröbner basis generators of the prolonged symbol
module. Moreover, the algebraic syzygies of the prolonged symbol module correspond to
the (higher order) differential syzygies of I(G), which thereby produces a finite collection
of generating differential syzygies that are quasilinear in the highest order differential
invariants. In this manner, standard methods from computational commutative algebra,
e.g., Gröbner bases, [1, 12], yield constructive algorithms for extracting the full differential
algebraic structure of the differential invariant algebra I(G).

2. Algebraic Preliminaries.

Let R[ t, T ] denote the algebra of real polynomials in the variables t = (t1, . . . , tm),
T = (T 1, . . . , Tm). The subspace

T =

{
η(t, T ) =

m∑

a=1

ηa(t)T
a

}
≃ R[ t ] ⊗Rm ⊂ R[ t, T ] (2.1)

of homogeneous linear polynomials in the T ’s forms a free module over the polynomial
algebra R[ t ], isomorphic to the module of vector-valued polynomials η:Rm → Rm. We
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grade T =
⊕

n≥0 T
n, where T n consists of the homogeneous polynomials of degree n in

t. We set T ≤n =
⊕n

k=0 T
k to be the space of polynomials of degree ≤ n, and shall also

use the notation T ≥n =
⊕∞

k=n T
k. In order to unambiguously specify Gröbner bases

of submodules, we shall fix a convenient degree compatible term ordering, e.g., degree
lexicographic, [1, 12], on the monomials in T from the outset.

Given a subspace I ⊂ T , we set I n = I ∩ T n, I≤n = I ∩ T ≤n, and I≥n = I ∩ T ≥n.
The subspace is graded if I =

⊕
n≥0 I

n is the sum of its homogeneous constituents. A
subspace I ⊂ T is a submodule if the product λ(t) η(t, T ) ∈ I whenever η(t, T ) ∈ I and
λ(t)∈R[ t ]. In this paper, all submodules (but not all subspaces) are graded. A subspace
I ⊂ T spanned by monomials

tAT
b = ta1

· · · tan
T b, where 1 ≤ a1, . . . , an, b ≤ m,

is called a monomial subspace, and is automatically graded. In particular, a monomial

submodule is a submodule that is spanned by monomials.

A polynomial 0 6= η ∈ T ≤n has degree n = deg η and highest order terms H(η) ∈ T n

provided η = H(η)+λ, where H(η) 6= 0 and λ ∈ T ≤n−1 is of lower degree. By convention,
only the zero polynomial has zero highest order term. Observe that the map H: T → T is
not, in general, linear. Indeed, H(η + λ) = H(η) if deg η > deg λ, while if deg η = deg λ
then H(η + λ) = H(η) +H(λ) if and only if either H(η) +H(λ) 6= 0 or η + λ = 0.

3. The Symbol Module.

We will review the construction of the symbol module associated with a linear system
of partial differential equations. Although the constructions work for arbitrary numbers of
independent and dependent variables, in our applications the system in question consists of
(the involutive completion of) the linear determining equations for infinitesimal generators
of a Lie pseudo-group acting on anm-dimensional manifoldM , and so we only deal with the
case when there are the same number, namely m, of independent and dependent variables.

For simplicity, we work in the analytic category throughout, although, modulo the
usual technical complications, e.g., existence theorems for systems of partial differential
equations, all our constructions retain their validity in the smooth (C∞) category, [5, 41].
We will use z = (z1, . . . , zm) to denote local coordinates on the m-dimensional analytic
manifold M . Let X (M) denote the space of locally defined analytic vector fields

v =

m∑

b=1

ζb(z)
∂

∂zb
, (3.1)

i.e., analytic local sections of the tangent bundle TM . For 0 ≤ n ≤ ∞, let JnTM denote
the associated nth order jet bundle, whose fiber coordinates

ζbA =
∂#Aζb

∂zA
=

∂kζb

∂za1 · · ·∂zak
,

b = 1, . . . , m, A = (a1, . . . , ak),

1 ≤ aν ≤ m, 0 ≤ k = #A ≤ n,
(3.2)

represent partial derivatives of the vector field coefficients with respect to the base coor-
dinates on M . For n < ∞, let (JnTM)∗ denote the dual bundle; further, (J∞TM)∗ =
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limn→∞ (JnTM)∗ is the direct limit under the dual projections (πn+1
n )∗: (JnTM)∗ →

(Jn+1TM)∗. In local coordinates, a section of (J∞TM)∗ represents a linear differential
polynomial, and thus defines a homogeneous, linear partial differential equation on the
space of vector fields

L
(
jnv|z

)
= L(z, ζ(n)) =

m∑

b=1

∑

#A≤n

hAb (z) ζ
b
A = 0. (3.3)

By indicating the (necessarily finite) order n <∞ in (3.3), we assume, by convention, that
when L 6≡ 0, at least one of the highest order coefficients is not identically zero: hAb (z) 6≡ 0
for some A, b with #A = n.

Recalling (2.1), we can locally identify

(J∞TM)∗ ≃M × T via the pairing 〈 j∞v|z ; tAT
b 〉 = ζbA. (3.4)

A linear differential polynomial (3.3) is thereby identified with the analytically parametri-
zed polynomial

η(z; t, T ) =

m∑

b=1

∑

#A≤n

hAb (z) tAT
b, (3.5)

whereby

L(z, ζ(n)) =
〈
j∞v|z ; η(z; t, T )

〉
. (3.6)

Definition 3.1. The symbol Σ(L) of a non-zero order n linear differential polynomial
(3.3) consists of the highest order terms of its defining polynomial (3.5):

Σ[L(z, ζ(n)) ] = H[η(z; t, T )] =

m∑

b=1

∑

#A=n

hAb (z) tAT
b. (3.7)

Suppose G is a Lie pseudo-group acting analytically on M . The blanket technical hy-
potheses of regularity and tameness will be assumed throughout, and we refer the reader
to [44] for complete details. For 0 ≤ n ≤ ∞, let G(n) ⊂ Jn(M,M) denote the subbundle
(or, more precisely, subgroupoid, [34, 44]) consisting of all n-jets of pseudo-group diffeo-
morphisms. Let g ⊂ X (M) be the space spanned by the infinitesimal generators of G. Let
Jng ⊂ JnTM denote the subbundle spanned by their nth order jets. In view of our reg-
ularity assumptions, the inverse limit bundle J∞g is prescribed by the linear determining

system

L(∞)(z, ζ(∞)) = L(∞)( . . . za . . . ζbA . . . ) = 0, (3.8)

which is a formally integrable and locally solvable system of homogeneous linear partial dif-
ferential equations, [44]. Formal integrability requires that the linear determining system
be closed under application of the usual total derivative operators

Dza =
∂

∂za
+

m∑

c=1

∑

#B≥0

ζcB,a

∂

∂ζcB
, a = 1, . . . , m. (3.9)

6



For computational reasons, one often replaces formal integrability, which cannot in general
be verified algorithmically, by the slightly more restrictive assumption of involutivity; see
[23, 52] for details. In applications to symmetry groups of differential equations, (3.8)
represents the formally integrable (or involutive) completion, under total differentiation,
of the usual determining equations obtained by Lie’s infinitesimal algorithm, [40].

Let

L = (J∞g)⊥ ⊂ (J∞TM)∗ (3.10)

denote the annihilator subbundle† of the infinitesimal generator jet bundle. Observe that
each equation in the determining system (3.8) can be represented by a parametrized poly-
nomial, as in (3.6), which cumulatively span L. Let

I = H(L) ⊂ (J∞TM)∗ (3.11)

be spanned by the highest order terms of the annihilating polynomials at each z ∈M . We
will make the further regularity assumption that I forms a subbundle, known as the symbol

subbundle for the linear determining system (3.8), which means that, when truncated at
any sufficiently large, finite order, I≤n forms a subbundle of (JnTM)∗. Note that

I =
⊕

n≥0 I
n, where I n ≃ (Jng)⊥/(Jn−1TM)∗

are its homogeneous components.

Remark : Points at which I fails to be a subbundle are singular points for the linear
determining system, and are not well understood. Even for linear ordinary differential
equations, the distinction between regular and irregular singular points, [29], highlights
the inherent complications.

On the symbol level, total differentiation, (3.9), corresponds to multiplication:

H(DzaL) = ta H(L), a = 1, . . . , m. (3.12)

Thus, formal integrability implies that, at each point z ∈ M , the fiber I|z ⊂ T forms a
graded submodule, known as the symbol module of the pseudo-group at the point z. On
the other hand, the annihilator L|z ⊂ T is typically not a submodule. A notable exception
is when the linear determining system consists of partial differential equations that have
constant coefficients in some coordinate system.

LetM|z ⊂ T denote the monomial module generated by the leading (with respect to
the specified term ordering) monomials of the polynomials in the symbol module I|z. We
can assume, possibly by restricting to an open subset and employing δ–regular coordinates,
[23, 52], thatM|z =M does not depend upon z. Let

C = Span{ tBT
c 6∈ M} ⊂ T (3.13)

† Our regularity assumptions ensure that, for n sufficiently large, Jng ⊂ JnTM forms a sub-

bundle, and, consequently, so does its annihilator (Jng)⊥ ⊂ (JnTM)∗.
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be the complementary monomial subspace spanned by all monomials not in the monomial
module M. Applying standard Gaussian Elimination, we are able to construct a linear
basis for the space of symbol polynomials I|z of the form

tAT
b +

∑

tBT c∈Cn

hBc (z) tBT
c for all tAT

b ∈Mn, n ≥ 0,

with analytic coefficients hBc (z). A similar statement holds for the subspace L|z, where
the sum now runs over all monomials in C≤n. Therefore, C forms a fixed complement to
the symbol module I|z as well as the annihilating subspace L|z:

T = C ⊕M = C ⊕ I|z = C ⊕ L|z at each z ∈M . (3.14)

Reinterpreting this decomposition in terms of the linear determining system, we conclude
that, locally, the differential equations can be rewritten in solved triangular form, [47]:

ζbA = −
∑

tBT c∈C≤n

hBc (z) ζ
c
B for all tAT

b ∈Mn, n ≥ 0. (3.15)

The parametric derivatives ζcB, indexed by the complementary monomials tBT
c ∈ C, thus

serve to uniquely parametrize the infinitesimal generator jets of the pseudo-group G. In
view of (3.10), we can identify the complementary subspace

C ≃ T / (J∞g|z)
⊥ ≃ (J∞g|z)

∗ (3.16)

as the corresponding dual vector space. In particular,

dim C≤n = dimJng|z = dimG(n)|z = rn (3.17)

is the same as the fiber dimension of the nth order pseudo-group jet bundle, i.e., the
minimal number of independent parameters required to locally represent the nth order
pseudo-group jets.

Let
H̃(n) = codim I≤n|z = codim M≤n = dim C≤n = rn

denote the (affine) Hilbert function of the symbol module. According to [12; p. 453] (as
adapted to modules) when n is sufficiently large, the Hilbert function coincides with a
polynomial:

H̃(n) = H(n) for all n ≥ n0. (3.18)

The Hilbert polynomial of the symbol module is necessarily the form

H(n) =
d∑

i=0

bi

(
n

d− i

)
= b

nd

d!
+ O(nd−1), (3.19)

for certain integer coefficients b = b0, b1, . . . , bd ∈ Z. The integer 0 ≤ d ≤ m is the

dimension of the symbol module. Unless I = T , in which case H̃(n) ≡ 0 and the pseudo-
group is discrete, the leading coefficient is positive, b = b0 > 0, and is known as the
submodule’s degree, [12; p. 465].
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In the pseudo-group context, the dimension d and degree b of the symbol module are
interpreted as follows. Informally, the general solution to the determining equations —
that is, the general pseudo-group generator, and hence the general pseudo-group trans-
formation — can be written in terms of b arbitrary functions f1, . . . , fb, each depending
on d variables†. In particular, the system is of finite type — and hence G is, in fact, a
b-dimensional Lie group action — if and only if the symbol module has dimension d = 0.
This interpretation can be made precise if we assume that the system satisfies the hypothe-
ses of the Cartan–Kähler Existence Theorem, [5, 41]. Since this result will not be used,
the proof is omitted. See Seiler, [51, 52], for additional details.

Theorem 3.2. If the linear determining equations for the pseudo-group form a

regular system in the sense of the Cartan–Kähler Theorem, then the last nonzero Cartan

character is cd = b.

The smallest integer n0 for which (3.18) holds is called the index of regularity of
the symbol module, [12; p. 449]. It appears to be related to the maximal order of the
integrability constraints for the pseudo-group, but this remains to be completely clarified.

4. Prolongation Symbols.

Our primary object of study is the induced action of the pseudo-group G on the
submanifolds of M of a fixed dimension. Let Jn(M, p), for 0 ≤ n ≤ ∞, denote the bundle
of n-jets of p-dimensional submanifolds S ⊂M , [41, 45]. We use π̃k

n: J
k(M, p)→ Jn(M, p)

for k ≥ n to indicate the standard projections. Splitting the coordinates on M into
independent and dependent variables:

(z1, . . . , zm) = (x1, . . . , xp, u1, . . . , uq), where p+ q = m = dimM, (4.1)

fixes a system of local coordinates on the submanifold jet bundle Jn(M, p), written

z(n) = (x, u(n)) = ( . . . xi . . . uαJ . . .), i = 1, . . . , p, α = 1, . . . , q, 0 ≤ #J ≤ n. (4.2)

The induced fiber coordinates

uαJ =
∂#Juα

∂xJ
=

∂kuα

∂xj1 · · ·∂xjk
,

α = 1, . . . , q, J = (j1, . . . , jk),

1 ≤ jν ≤ p, 0 ≤ k = #J ≤ n,
(4.3)

ranging over all unordered multi-indices J of order #J ≤ n, represent partial derivatives
of the dependent variables with respect to the independent variables.

A real-valued function‡ F : Jn(M, p)→ R is known as a differential function. We will
not distinguish between F and its compositions F ◦ π̃k

n: J
k(M, p)→ R for n ≤ k ≤ ∞. The

† The precise meaning of this remark was the principal subject of the famous Cartan–Einstein
correspondence, [8].

‡ As noted above, our notational conventions allow the domain of F to be an open subset of
the jet bundle.
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order of F is the lowest order jet space on which it is well defined, or, equivalently, the
highest order jet coordinate(s) uαJ that it explicitly depends on.

Given a pseudo-group G acting onM , its action on p-dimensional submanifolds S ⊂M
induces an action on the submanifold jet bundle Jn(M, p), known as the nth prolonged

action, and denoted by G(n). In many applications, G represents the symmetry pseudo-
group of a system of differential equations

S∆ = {∆(x, u(n)) = 0} ⊂ Jn(M, p)

defined by the vanishing of one or more differential functions ∆: Jn(M, p) → Rl, and the
submanifolds S = {u = f(x)} ⊂ M of interest are the graphs of candidate solutions. A
differential invariant is a differential function I: Jn(M, p)→ R that is invariant under the
prolonged pseudo-group action: I(g(n) · z(n)) = I(z(n)) for all submanifold jets z(n) and all
prolonged pseudo-group transformations g(n) close to the identity such that both z(n) and
g(n) · z(n) lie in the domain of I.

Given an analytic vector field

v =

m∑

a=1

ζa(z)
∂

∂za
=

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
∈ X (M), (4.4)

let

v(∞) =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

∑

k=#J ≥ 0

ϕ̂ α
J (x, u

(k))
∂

∂uαJ
∈ X (J∞(M, p)) (4.5)

denote its infinite prolongation. The hats on the prolonged vector field coefficients ϕ̂ α
J

serve to distinguish them from the partial derivatives ϕα
B of the vector field coefficients

with respect to the independent and dependent variables, as in (3.2). They are explicitly
prescribed by the well-known prolongation formula, [40; eq. (2.39)], which we review. For
each i = 1, . . . , p, let

Dxi =
∂

∂xi
+

q∑

α=1

∑

#J ≥ 0

uαJ,i
∂

∂uαJ
(4.6)

denote the total derivative on the submanifold jet bundle with respect to the independent
variable xi. Then,

ϕ̂ α
J = DJ Q

α +

p∑

i=1

uαJ,i ξ
i, α = 1, . . . , q, 0 ≤ #J, (4.7)

where

Qα(x, u(1)) = ϕα(x, u)−

p∑

i=1

uαi ξ
i(x, u), α = 1, . . . , q, (4.8)

are the components of the characteristic of the vector field v, and

DJ = Dxj1 · · · Dxjk , J = (j1, . . . , jk), 1 ≤ jν ≤ p,
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denotes the corresponding iterated total derivative. Expanding the prolongation formula
(4.7) in full, we conclude that each prolonged vector field coefficient

ϕ̂ α
J = Φα

J (u
(k); ζ(k)) = Φα

J ( . . . u
β
K . . . ; . . . ξiA . . . ϕβ

A . . . ), #K,#A ≤ k = #J,
(4.9)

is a particular linear combination of the vector field jet coordinates, i.e., the partial deriva-
tives ( . . . ζbA . . . ) = ( . . . ξiA . . . ϕβ

A . . . ) of the vector field coefficients with respect to
both the independent and dependent variables, of orders 1 ≤ #A ≤ k = #J , of the jet
coordinates uβK for 1 ≤ #K ≤ k. Therefore, the nth order prolongation of vector fields
factors through the nth order vector field jet bundle. Explicitly, given z(n) ∈ Jn(M, p)|z,
we let

p(n) = p
(n)

z(n) : J
nTM |z −→ TJn|z(n) , p(n)

(
jnv|z

)
= v(n)|z(n) , (4.10)

denote the associated prolongation map that takes the n–jet of a vector field at the base
point z = π̃n

0 (z
(n)) ∈ M to the tangent vector v(n) ∈ TJn|z(n) prescribed by the pro-

longation formula (4.5). We will usually abbreviate the infinite order prolongation map
as

p = p(∞): J∞TM |z −→ TJ∞|z(∞) . (4.11)

Remark : To extend these results to pseudo-groups of contact transformations —
which, by Bäcklund’s Theorem, [3], only generalize point transformations in the case
of codimension 1 submanifolds, i.e., for q = m − p = 1 dependent variable — the only
significant difference (modulo some minor low order technicalities) in the formalism is that
the characteristics of the infinitesimal generators can be more general functions of the first
order jet coordinates, cf. [41; (4.60)].

We will now develop a symbol algebra for the prolonged infinitesimal generators of a
pseudo-group action. We introduce variables s = (s1, . . . , sp), S = (S1, . . . , Sq), and let

Ŝ =

{
σ̂(s, S) =

q∑

α=1

σ̂α(s)S
α

}
≃ R[s] ⊗Rq ⊂ R[s, S], (4.12)

be the R[s] module consisting of polynomials that are linear in S. Further, define

S = Rp
⊕ Ŝ =

∞⊕

n=−1

S n, (4.13)

whose non-negative summands S n = Ŝ n, for n ≥ 0, contain all polynomials σ̂(s, S) ∈ Ŝ
that are homogeneous of degree n in s, while, by convention,

S−1 =
{
c1s̃1 + · · ·+ cps̃p

∣∣ ci ∈ R
}
≃ Rp,

where s̃ = (s̃1, . . . , s̃p) ∈ Rp are extra variables, not to be confused with the polynomial
variables s = (s1, . . . , sp). Thus, an element σ ∈ S takes the form

σ(s̃, s, S) = c · s̃+ σ̂(s, S) =

p∑

i=1

cis̃i +

q∑

α=1

σ̂α(s)S
α, (4.14)
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where c = (c1, . . . , cp) ∈ Rp and σ̂(s, S) ∈ Ŝ . We endow S with the structure of an R[s]

module by taking the usual module structure of Ŝ and then setting

τ(s)s̃i = τ(0)s̃i for any polynomial τ(s) ∈ R[s].

We define the highest order term map H:S → Ŝ so that

H[σ(s̃, s, S)] = H
[
σ̂(s, S)

]
, where σ(s̃, s, S) = c · s̃+ σ̂(s, S). (4.15)

Thus, our convention is that all elements of S−1 have zero highest order term.

For each n <∞, consider the cotangent bundle T∗Jn(M, p) of the nth order subman-
ifold jet bundle. In local coordinates, we can identify their direct limit

T∗J∞(M, p) = lim
n→∞

T∗Jn(M, p) ≃ J∞(M, p)× S

by adopting the explicit pairing

〈V ; s̃i 〉 = ξi, 〈V ;Sα 〉 = Qα = ϕα −

p∑

i=1

uαi ξ
i,

〈V ; sJS
α 〉 = ϕ̂ α

J , for n = #J ≥ 1,

(4.16)

whenever

V =

p∑

i=1

ξi
∂

∂xi
+

q∑

α=1

∑

k=#J ≥ 0

ϕ̂ α
J

∂

∂uαJ
∈ TJ∞|z(∞)

is any tangent vector (not necessarily a prolonged vector field) at a point z(∞) = (x, u(∞)).
(The reason for the appearance of the characteristic Qα, cf. (4.8), at order 0 in (4.16)
will become evident in formula (4.25) below.) Every one-form on J∞(M, p), i.e., analytic
section of T∗J∞(M, p), is thereby represented, locally, by a parametrized polynomial

σ(x, u(k); s̃, s, S) =

p∑

i=1

hi(x, u
(k)) s̃i +

q∑

α=1

∑

#J ≤n

hJα(x, u
(k))sJS

α, (4.17)

depending linearly on the variables (s̃, S) ∈ Rm, polynomially on the variables s ∈ Rp,
and analytically on the jet coordinates (x, u(k)) of some finite order k < ∞. (And note
that the first set of summands does not depend on s.)

In what follows, let us fix a submanifold jet z(∞) ∈ J∞(M, p) at the point π̃∞
0 (z(∞)) =

z ∈M . Keeping in mind our identification of the dual spaces to those appearing in (4.10),
we let

p∗ = (p(∞))∗: S −→ T (4.18)

be the dual prolongation map, which is defined so that

〈 j∞v ;p∗(σ) 〉 = 〈p(j∞v) ; σ 〉 = 〈v(∞) ; σ 〉 for all j∞v ∈ J∞TM |z, σ ∈ S. (4.19)

In general, p∗ is not a module morphism. However, on the symbol level it essentially is,
as we now demonstrate.
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Consider the particular linear polynomials

βi(t) = ti +

q∑

α=1

uαi tp+α, i = 1, . . . , p,

Bα(T ) = T p+α −

p∑

i=1

uαi T
i, α = 1, . . . , q,

(4.20)

where uαi = ∂uα/∂xi are the first order jet coordinates of our point z(∞). Note that
Bα(T ) is the symbol of Qα, the αth component of the characteristic of v. Furthermore,
βi(t) represents the symbol† of the ith total derivative operator (4.6), meaning that

Σ(DxiL) = βi(t)Σ(L), (4.21)

for any linear differential polynomial

L(x, u(n); ζ(n)) =

m∑

b=1

∑

#A≤n

hAb (x, u
(n)) ζbA.

Keep in mind that total differentiation in (4.21) acts on both the submanifold jet variables
(x, u(n)) and the vector field jets ζbA.

For fixed first order jet coordinates uαi , the functions (4.20) serve to define a linear
map

β :R2m −→ Rm, given by si = βi(t), Sα = Bα(T ). (4.22)

Since β has maximal rank, the pull-back map

β∗
[
σ̂(s1, . . . , sp, S

1, . . . , Sq)
]
= σ̂

(
β1(t), . . . , βp(t), B

1(T ), . . . , Bq(T )
)

(4.23)

defines an injection β∗: Ŝ → T . The key lemma is a direct consequence of the prolongation
formula (4.7) combined with (4.21).

Lemma 4.1. The symbols of the prolonged vector field coefficients are

Σ(ξi) = T i,

Σ(ϕα) = Tα+p,

Σ(Qα) = β∗(Sα) = Bα(T ),

Σ(ϕ̂ α
J ) = β∗(sJS

α) = β∗(sj1 · · · sjkS
α) = βj1(t) · · · βjk(t)B

α(T ),

i = 1, . . . , p,

α = 1, . . . , q,

k = #J ≥ 1.

(4.24)

In general, given a polynomial σ̂(s, S) ∈ Ŝ ⊂ S, the highest order terms of its pull-back

under the prolongation map can be found by pulling back its highest order terms under

the linear map (4.22):
H
[
p∗(σ̂)

]
= β∗

[
H(σ̂)

]
. (4.25)

† We extend the Definition 3.1 of the symbol map to linear differential polynomials whose
coefficients also depend on submanifold jet coordinates in the obvious manner.
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Remark : The reason for our original definition of the pairing (4.16) was to ensure the
general validity of (4.25), including at order 0.

Now given a Lie pseudo-group G acting on M , let

g
(∞)|z(∞) = p(J∞g|z) ⊂ TJ

∞|z(∞)

denote the subspace spanned by its prolonged infinitesimal generators at z(∞) ∈ J∞(M, p).
Pulling back the annihilator (3.10) by the dual prolongation map produces the prolonged

annihilator subbundle

Z = (g(∞))⊥ = (p∗)−1L ⊂ S, (4.26)

containing those polynomials (4.14) that annihilate all prolonged infinitesimal generators
v(∞) ∈ g

(∞). In other words, the prolonged vector field coefficients are subject to the
linear constraints

〈v(∞) ; σ 〉 = 0 for all v ∈ g if and only if σ ∈ Z (4.27)

is a section of the prolonged annihilator subbundle. In particular, a prolonged pseudo-group
acts locally transitively near z(∞) ∈ J∞(M, p), and hence has no differential invariants, if
and only if Z = {0} is trivial, and so there are no constraints.

Further, define the subspace

U = H(Z) ⊂ S (4.28)

to be spanned by the highest order terms (symbols) of the prolonged annihilators. In gen-
eral (and, perhaps, surprisingly), U is not a submodule, although it inherits considerable
algebraic structure that we intend to exploit.

Definition 4.2. The prolonged symbol submodule is defined† as the inverse image of
the symbol module (3.11) under the polynomial pull-back morphism (4.23):

J = (β∗)−1(I) =
{
σ̂(s, S)

∣∣ β∗(σ̂)(t, T ) = σ̂(β(t), B(T )) ∈ I
}
⊂ Ŝ . (4.29)

In view of (4.25) and (4.26),
U ⊂ J . (4.30)

However, these two subspaces are not necessarily equal, as can be seen in the following
example.

Example 4.3. Consider the Lie pseudo-group G acting on M = R3 consisting of all
local diffeomorphisms of the form

X = a(x), Y = a′(x) y + b(x), U = u+
a′′(x) y + b′(x)

a′(x)
, (4.31)

† To streamline the notation, we have suppressed the dependence of J on the first order jets

z(1) ∈ J1(M,p).
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where a(x) ∈ D(R) is an arbitrary local analytic diffeomorphism of R, while b(x) is an
arbitrary analytic function. Its infinitesimal generators consist of all vector fields of the
form

v = ξ ∂x + η ∂y + ϕ∂u = f(x) ∂x + [f ′(x) y + g(x)] ∂y + [f ′′(x) y + g′(x) ] ∂u, (4.32)

where f(x), g(x) are arbitrary analytic functions of a single variable. The linearized de-
termining equations characterizing the infinitesimal generators are obtained by prolonging
the first order system

ξy = ξu = 0, ηx = ϕ, ηy = ξx, ηu = 0, ϕu = 0. (4.33)

In particular, the additional second order determining equations are

ξxx = ϕy, ξxy = ξyy = ξxu = ξyu = ξuu = 0, ηxx = ϕx, ηxy = ϕy,

ηyy = ηxu = ηyu = ηuu = 0, ϕyy = ϕxu = ϕyu = ϕuu = 0.
(4.34)

Let t1, t2, t3, T
1, T 2, T 3 be the polynomial variables corresponding to x, y, u, ξ, η, ϕ,

respectively. To second order, then, the annihilator L|z at any z = (x, y, u) ∈ M is
spanned by

t2T
1, t3T

1, t1T
2 − T 3, t2T

2 − t1T
1, t3T

2, t3T
3,

t21T
1 − t2T

3, t1 t2T
1, t22T

1, t1 t3T
1, t2 t3T

1, t23T
1, t21T

2 − t1T
3,

t1 t2T
2 − t2T

3, t22T
2, t1 t3T

2, t2 t3T
2, t23T

2, t22T
3, t1 t3T

3, t2 t3T
3, t23T

3.

Adopting the term orderings t1 < t2 < t3, T
1 < T 2 < T 3, the symbol module I|z is

generated by the Gröbner basis elements

t2T
1, t3T

1, t21T
1, t1T

2, t2T
2 − t1T

1, t3T
2, t3T

3, t22T
3. (4.35)

The complementary monomials

T 1, T 2, T 3, t1T
1, t1T

3, t2T
3, t21T

3, t1 t2T
3, t31T

3, t21 t2T
3, . . . ,

serve to index the free derivatives

ξ, η, ϕ, ξx, ϕx, ϕy, ϕxx, ϕxy, ϕxxx, ϕxxy, . . . ,

in the infinitesimal determining equations (4.33–34).

We are interested in the action of this pseudo-group on functions u = f(x, y), and
hence work on the surface jet bundles Jn(M, 2). The prolonged infinitesimal generators
are, up to order 3,

v(3) = ξ ∂x + η ∂y + ϕ∂u +
(
ϕx − ux ξx − uy ϕ

)
∂ux

+
(
ϕy − uy ξx

)
∂uy

+
(
ϕxx − ux ϕy − uy ϕx − 2 uxx ξx − 2 uxy ϕ

)
∂uxx

+
(
ϕxy − uy ϕy − 2 uxy ξx − uyy ϕ

)
∂uxy

− 2 uyy ξx∂uyy
(4.36)

+
(
ϕxxx − ux ϕxy − uy ϕxx − 3 uxx ϕy − 3 uxy ϕx − 3 uxxx ξx − 3 uxxy ϕ

)
∂uxxx

+
(
ϕxxy − uy ϕxy − 3 uxy ϕy − uyy ϕx − 3 uxxy ξx − 2 uxyy ϕ

)
∂uxxy

+
(
− 2 uyy ϕy − 3 uxyy ξx − uyyy ϕ

)
∂uxyy

− 3 uyyy ξx∂uyyy
,
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where we have used the linearized determining equations (4.33–34) to condense the ex-
pressions.

We employ s1, s2, S to designate the polynomial variables in Ŝ representing x, y, ϕ,
respectively, so that, for any prolonged infinitesimal generator v(∞),

〈v(∞) ; sj1s
k
2S 〉 =

{
ϕ̂ jk = Dj

xD
k
y (ϕ− ξ ux − η uy) + ξ uj+1,k + η uj,k+1, j + k > 0,

ϕ− ξ ux − η uy, j + k = 0,

with ujk = ∂j+ku/∂xj∂yk. Continuing to prolong the infinitesimal generators (4.36), we

discover that, at each surface jet z(∞) = (x, u(∞)) ∈ J∞(M, 2), the prolonged annihilator
Z is spanned by the polynomials

(
uyys

3
2 −

3
2uyyys

2
2

)
S,

(
uyys1s

2
2 −

(
3
2uxyy + uyuyy

)
s22 + 2u2yys2 + uyyuyyy

)
S, . . . .

The subspace U is spanned by their highest order terms and so, provided uyy 6= 0, is the

submodule generated by s32S and s1s
2
2S.

On the other hand, the linear polynomial map (4.22) is defined by

s1 = β1(t1, t2, t3) = t1 + ux t3, s2 = β2(t1, t2, t3) = t2 + uy t3,

S = B(T 1, T 2, T 3) = T 3 − ux T
1 − uy T

2.

Thus, according to (4.29), the prolonged symbol submodule J = (β∗)−1(I) contains all
polynomials σ(s1, s2, S) = σ1(s1, s2)S such that

β∗
[
σ1(s1, s2)S

]
= σ1(t1 + ux t3, t2 + uy t3) (T

3 − ux T
1 − uy T

2) ∈ I|z.

It is not hard to see that J is generated by the single monomial s22S, which does not

appear in U , and hence the subspace U ( J is a strict subset of the prolonged symbol
submodule.

5. Freeness of Prolonged Pseudo-group Actions.

We are now in a position to study the local freeness of the prolonged pseudo-group
action. Let us begin with the infinitesimal version of the basic definition, which is inspired
by the well-accepted concept of freeness for a finite-dimensional group action. Details can
be found in [45].

Definition 5.1. A pseudo-group acts locally freely at a submanifold jet z(n) ∈
Jn(M, p)|z whenever the prolongation map p(n): Jng|z −→̃ g

(n)|z(n) is a linear isomor-
phism.

In the analytic category, local freeness at z(n) implies local freeness in a dense open
subset of Jn(M, p). Definition 5.1 implies that all pseudo-group actions are locally free at
order 0, and so the condition has nontrivial implications only at the jet level.
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Warning : According to the standard definition, [19], any locally free action of a
finite-dimensional Lie group satisfies the local freeness condition of Definition 5.1, but
not necessarily conversely. For instance, the four-dimensional group with infinitesimal
generators ∂x, ∂u, x∂u, x

2∂u acting on M = R2 has locally free action on Jn(M, p) for all
n ≥ 0 according to Definition 5.1; whereas, in the usual Lie group terminology, the action
is only locally free when n ≥ 2. In this paper, even when dealing with finite-dimensional
Lie group actions, we will consistently employ the more general notion of freeness adopted
in Definition 5.1.

Freeness imposes a requirement that the bundle of pseudo-group jets G(n) (or, equiv-
alently, the infinitesimal generator jet bundle Jng) not be too large. Specifically, local
freeness at a point of z(n) ∈ Jn(M, p)|z requires the fiber dimensions be bounded by

rn = dimG(n)|z = dimJng|z ≤ dimJn(M, p)|z = q

(
p+ n

p

)
. (5.1)

According to Section 3, for sufficiently large n≫ 0,

rn = dimJng|z = dim C≤n = H(n)

is characterized by the symbol module’s Hilbert polynomial. Thus, by comparing (3.19)
and (5.1), we deduce:

Proposition 5.2. If the symbol module I has either dimension d > p, or else d = p
and degree b > q, then the pseudo-group cannot act locally freely on Jn(M, p) for n ≫ 0
sufficiently large.

Remark : Theorem 5.4 below will allow us to replace n≫ 0 by simply n > 0.

In other words, if the pseudo-group is to act locally freely, as required for our moving
frame constructions to be valid, the rate of growth of the dimensions of its jet subgroups
cannot be too rapid. Intuitively, Proposition 5.2 says that, since we are acting on p-
dimensional submanifolds of an m = p+ q dimensional space, which are thus parametrized
by q functions of p variables, a locally freely acting pseudo-group can itself depend upon
arbitrary functions of at most p variables, and at most q functions of exactly p variables.
In Kumpera’s approach, [32, 31], assumptions on the dimensions of G(n) are encoded in
terms of Spencer cohomology groups. Here, the required growth rate assumptions are
simply stated in constructive algebraic terms — specifically the dimension and degree of
the symbol module. Further details on the interconnections between the algebraic and
cohomological approaches can be found in Seiler’s forthcoming monograph, [52].

Proposition 5.2 merely provides a preliminary dimension bound required for local
freeness. In order to fully characterize a locally free action, we must understand the
structure of its prolonged infinitesimal generators (4.5) in more detail.

Lemma 5.3. The pseudo-group G acts locally freely at z(n) ∈ Jn(M, p) if and only

if

p∗(S ≤n) + L≤n|z = T ≤n. (5.2)
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Proof : Note first that (p(n))∗ = p∗ | S ≤n. In view of (3.10), the condition required
for local freeness in Definition 5.1 can be restated as

{0} = kerp(n) ∩ Jng|z =
(
rng (p(n))∗

)⊥
∩
(
L≤n|z

)⊥
=
(
p∗(S ≤n) + L≤n|z

)⊥
,

from which (5.2) immediately follows. Q.E.D.

We are now in a position to prove a key result that guarantees local freeness of higher
order prolonged pseudo-group actions.

Theorem 5.4. If the pseudo-group G acts locally freely at z(n) ∈ Jn(M, p) for some

n > 0, then, for all k ≥ n, it also acts locally freely at any jet z(k) ∈ Jk(M, p) such that

π̃k
n(z

(k)) = z(n).

Proof : The proof is by induction on the order k ≥ n ≥ 1. According to Lemma 5.3,
local freeness at order k implies that

p∗(S ≤k) + L≤k|z = T ≤k. (5.3)

Taking highest order terms of both sides and using (4.25), we find that

β∗(Sk) + I k|z = T k. (5.4)

We claim that, to prove freeness at order k + 1, we only need to show that

β∗(Sk+1) + I k+1|z = T k+1. (5.5)

Indeed, if the latter equality holds, then any P ∈ T k+1 can be written as

P = β∗(Q) + Y for Q ∈ Sk+1, Y ∈ I k+1|z. (5.6)

But then there exists L ∈ L≤k+1|z with highest order term H(L) = Y , and so

L = Y + V for some V ∈ T ≤k.

Further,

p∗(Q) = β∗(Q) + U for some U ∈ T ≤k.

We use the induction hypothesis (5.3) to write

U + V = p∗(W ) + Z for W ∈ S ≤k, Z ∈ L≤k|z.

Thus, comparing with (5.6),

P = p∗(Q) + L− (U + V ) = p∗(Q−W ) + (L− Z) ∈ p∗(S ≤k+1) + L≤k+1|z.

This completes the induction step.

To prove the claimed equality (5.5), first observe that (5.4) implies that any polynomial
P ∈ T k can be written in the form

P (t, T ) = β∗(Q(s, S)) + Y (t, T ), where Q ∈ Sk, Y ∈ I k|z. (5.7)
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Since k ≥ 1, we can (non-uniquely) write

Q(s, S) =

p∑

i=1

siQi(s, S) for some Qi ∈ S
k−1,

and hence, substituting back into (5.7),

P (t, T ) =

p∑

i=1

βi(t)Ri(t, T ) + Y (t, T ), where Ri = β∗(Qi) ∈ T
k−1, Y ∈ I k|z. (5.8)

Every polynomial P̂ ∈ T k+1 can be written as

P̂ (t, T ) =

p+q∑

j=1

tjPj(t, T ), for some P1, . . . , Pp+q ∈ T
k.

Applying (5.8) to each summand Pj(t, T ), and using the fact that I|z is a submodule, we
obtain

P̂ (t, T ) =

p∑

i=1

βi(t) R̂i(t, T ) + Ŷ (t, T ), where R̂i ∈ T
k, Ŷ ∈ I k+1|z. (5.9)

On the other hand, by (5.7), we can write each

R̂i(t, T ) = β∗(X̂i(s, S)) + Ẑi(t, T ), where X̂i ∈ S
k, Ẑi ∈ I

k|z.

Then, substituting back into (5.9), we find

P̂ (t, T ) = β∗

(
p∑

i=1

si X̂i(s, S)

)
+

(
p∑

i=1

βi(t) Ẑi(t, T ) + Ŷ (t, T )

)
∈ β∗(Sk+1) + I k+1|z.

This validates (5.5), and hence justifies the induction step. Q.E.D.

Remark : We are able to prove a strengthened form of Theorem 5.4, that freeness of a
pseudo-group action persists under prolongations, [46]. However, we will omit the proof
as the result plays no role in the present paper.

Now comes the crucial fact: local freeness allows us to replace (4.30) by an equality,
thereby bringing some remarkable algebraic structure into the picture.

Lemma 5.5. Suppose G acts locally freely at z(n) ∈ Jn(M, p). Then

Uk|z(k) = J k|z(k) (5.10)

for all† k > n and all z(k) ∈ Jk(M, p) with π̃k
n(z

(k)) = z(n).

† The result does not hold when k = n; see Example 4.3.
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Proof : Clearly, by an induction argument, it suffices to prove (5.10) when k = n+ 1.
In view of (4.30), we need to show that if Q ∈ J n+1|z(n+1) , then there exists U ∈ S ≤n such
that Q+ U ∈ Z≤n+1|z(n+1) , and hence Q = H(Q+ U) ∈ Un+1|z(n+1) . Let P = p∗(Q). In
view of (4.25) and (4.29),

H(P ) = H(p∗(Q)) = β∗(H(Q)) = β∗(Q) ∈ I n+1|z,

and hence there exists Y ∈ T ≤n such that P + Y ∈ L≤n+1|z. Now, by Lemma 5.3, local
freeness implies that Y = p∗(U) + V , where U ∈ S ≤n and V ∈ L≤n|z. Thus,

p∗(Q+ U) = (P + Y )− V ∈ L≤n+1|z,

which, by (4.26), implies that Q+ U ∈ Z≤n+1|z(n+1) , as desired. Q.E.D.

Thus, while the prolonged symbol fiber U|z(∞) is not, in general, a submodule, once
the order is high enough — specifically strictly higher than the minimal order n⋆ of freeness
— it does inherit a submodule structure. We will sometimes refer to U|z(∞) as an eventual

submodule, meaning that U≥k|z(k) is a submodule for k sufficiently large, in this case
k > n⋆. We will subsequently exploit this “eventual” algebraic structure in our analysis of
the algebra of differential invariants.

6. Algebraic Cross–Sections.

In general, the construction of a moving frame relies on the choice of a cross-section
to the pseudo-group orbits, [19, 45]. For our purposes, a cross-section is defined to be
submanifold Kn ⊂ Jn(M, p) that satisfies the transversality condition

TKn|z(n) ⊕ g
(n)|z(n) = TJn(M, p)|z(n), for all z(n) ∈ Kn. (6.1)

If the pseudo-group acts locally freely, each cross-section will define a locally equivariant
moving frame, which is fully equivariant if the action is also free and the cross-section
intersects each pseudo-group orbit in at most one point. Since we only deal with lo-
cal equivariance here, we will ignore the latter, global constraint on the cross-section.
Transversality is equivalent to the dual condition

(TKn|z(n))⊥ ⊕ Z≤n|z(n) = S ≤n, for all z(n) ∈ Kn, (6.2)

meaning that the annihilator of the tangent space to the cross-section forms a complemen-
tary subspace to the prolonged pseudo-group annihilator (4.26).

In keeping with most applications†, we will only consider coordinate cross-sections ,
which are prescribed by setting an appropriate number of the jet coordinates (x, u(n)) to
assigned constant values. We will identify their differentials with monomials in S, so that

dxi ←→ s̃i, duαJ ←→ sJS
α. (6.3)

† The work of Mansfield, [35], is a notable exception. See also the cases of equi-affine, confor-
mal and projective surfaces treated in [27, 43]. The present methods can be straightforwardly
adapted to more general cross-sections.
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Thus, in view of (6.2), the coordinate cross-sections passing through a submanifold jet

z
(n)
0 ∈ Jn(M, p) are in one-to-one correspondence with monomial complements K≤n to the
prolonged pseudo-group annihilator:

K≤n
⊕ Z≤n|

z
(n)
0

= S ≤n. (6.4)

Indeed, if K≤n is spanned by the monomials s̃j , sKS
β, then the corresponding coordinate

cross-section is

xj = cj , uβK = cβK , for all s̃j , sKS
β ∈ K≤n, (6.5)

where the constants cj = xj0, c
β
K = uβK,0, are merely the values of the coordinate functions

at the point z
(n)
0 .

From here on, we fix a regular submanifold jet z
(∞)
0 ∈ J∞(M, p), and use z

(n)
0 =

π̃∞
n (z

(∞)
0 ) to denote its nth order truncation. Theorem 5.4 guarantees that, for every

n > n⋆, where n⋆ denotes the order of freeness of G, the pseudo-group G acts locally freely

at z
(n)
0 ∈ Jn(M, p). Our intention is to construct a cross-section and associated moving

frame in a suitable neighborhood of each z
(n)
0 .

We will algorithmically construct a monomial complement K ⊂ S to the prolonged
annihilator Z|

z
(∞)
0

as follows. The first step is to fix a degree compatible term ordering†

on the polynomial module Ŝ , which we extend to S by making the extra monomials s̃i
appear before all the others. Let N be the monomial subspace generated by the leading
monomials of the polynomials in Z|

z
(∞)
0

, or, equivalently, the prolonged symbol polynomials

in U|
z
(∞)
0

, cf. (4.28). Then K will be the complementary monomial subspace spanned by all

monomials in S that are not in N . To construct K by a finite algorithm, we use Lemma 5.5
to identify the higher order prolonged symbol spaces Uk|

z
(k)
0

with the submodule J k|
z
(k)
0

for

k > n⋆. Therefore, the leading monomials in the Gröbner basis for the submodule J |
z
(∞)
0

will completely prescribe the monomial subspaces N k — and hence their complements
Kk — for all k > n⋆. The lower order monomials in N≤n⋆

are the leading monomials of
a basis for the finite-dimensional space Z≤n⋆

|z(n⋆) (or, equivalently, U≤n⋆

|z(n⋆)). Finally,
K≤n⋆

is the monomial complement to N≤n⋆

in S ≤n⋆

. If G does not act transitively on M ,
then K≤n⋆

may include some of the order −1 monomials s̃j required to form a coordinate
cross-section to the pseudo-group orbits on M .

For each n⋆ ≤ n < ∞, we let Kn ⊂ Jn(M, p) denote the coordinate cross-section

passing through z
(n)
0 determined by the monomials in K≤n, under the identification (6.3).

Note that these cross-sections are compatible in the sense that π̃k
n(K

k) = Kn for any
k ≥ n ≥ n⋆. We will call the resulting direct limit, denoted by K ⊂ J∞(M, p), an
algebraic cross-section to the prolonged pseudo-group orbits. In the next section, we will

† In practical implementations of the algorithm, there are, presumably, advantages to choosing
the term ordering on ̂S to be appropriately “compatible” with the original term ordering on T

under the linear pull-back map β∗. However, this aspect remains to be fully explored.
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use the algebraic cross-section K to construct an “algebraic moving frame” through the
normalization process. We note that algebraic cross-sections satisfy the pseudo-group
version of the minimal order cross-sections used in [42] to prove a corrected version of the
theorem in [19] on generating differential invariants for finite-dimensional group actions.

Remark : It is worth mentioning that there are now two different identifications of
one-forms on J∞(M, p) with polynomials in Ŝ . The first, coming from the pairing (4.16),
is used to construct Z, N , and hence K. However, the resulting monomials in K are
identified with a cross-section K via the more straightforward formulae (6.3). The choice
of identification should be clear from the context.

Example 6.1. Consider the pseudo-group treated in Example 4.3. For the prolonged
action on the surface jet bundles Jn(R3, 2), the order of freeness is n⋆ = 2. As noted above,
the prolonged symbol submodule J is generated by s22S. Thus, for k > n⋆ = 2, the leading
monomial subspace N k is spanned by sk−i

1 si2 S for i ≥ 2, and so its monomial complement
Kk is spanned by sk1S, s

k−1
1 s2 S. To complete the algebraic cross-section K, since the low

degree component of the annihilator is trivial, Z≤2 = {0}, the low degree part of the
complement, K≤2, is spanned by s̃1, s̃2, S, s1 S, s2 S, s

2
1S, s1 s2 S, s

2
2S. Choosing the regular

jet z
(∞)
0 ∈ J∞(R3, 2) with coordinates x = y = u = ux = uy = uxx = uxy = 0, uyy = 1,

uxkyl = 0, k + l ≥ 3, the monomial complement K corresponds to the coordinate cross-
section

x = y = u = ux = uy = 0, uxx = uxy = 0, uyy = 1, uxk = uxk−1y = 0, for k ≥ 3, (6.6)

that was used in [45; Example 11].

7. Moving Frames and Invariantization.

We next recall our definition, [44, 45], of a moving frame for the prolonged pseudo-
group action on submanifolds. For each n ≥ 0, let D(n) = D(n)(M) ⊂ Jn(M,M) denote the
bundle or, more specifically, groupoid consisting of nth order jets of local diffeomorphisms
ϕ:M → M , with source map σ(n)

(
jnϕ|z

)
= z and target map τ (n)

(
jnϕ|z

)
= ϕ(z) = Z.

As above, let G(n) ⊂ D(n) denote the subbundle (sub-groupoid) consisting of all n-jets
jnϕ of pseudo-group diffeomorphisms ϕ ∈ G. Let H(n) ⊂ E (n) → Jn(M, p) denote the

bundles obtained by pulling back G(n) ⊂ D(n) →M via the projection π̃n
0 : J

n(M, p)→M .
Points (z(n), g(n)) ∈ E (n) consist of a submanifold jet z(n) ∈ Jn(M, p)|z along with a

diffeomorphism jet g(n) ∈ D(n)|z based at the same point z = π̃n
0 (z

(n)) = σ(n)(g(n)).
The bundle E (n) inherits a groupoid structure, and H(n) is a sub-groupoid: The source
map σ̃(n): E (n) → Jn(M, p) is projection, σ̃(n)(z(n), g(n)) = z(n), while the target map
τ̃ (n): E (n) → Jn(M, p) can be identified with the prolonged action of diffeomorphisms on
submanifold jets: τ̃ (n)(z(n), g(n)) = g(n) · z(n).

Definition 7.1. A moving frame ρ(n) of order n is a G(n)–equivariant local section
of the bundle H(n) → Jn(M, p), meaning that

ρ(n)(g(n) · z(n)) = ρ(n)(z(n)) · (g(n))−1, (7.1)

for all g(n) ∈ G(n)|z with z = π̃n
0 (z

(n)), such that both z(n) and g(n) · z(n) lie in the domain
of definition of ρ(n).
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Once we have fixed an algebraic cross-section, at each order n, the induced moving
frame maps are constructed by the method of normalization of pseudo-group parameters,
and hence are mutually compatible under the projections π̃k

n: J
k(M, p) → Jn(M, p), as

described in detail in [10, 45]. Briefly, let

Ûα
J = F̂ α

J (x, u(k), g(k)), α = 1, . . . , q, 0 ≤ k = #J ≤ n, (7.2)

be the explicit formulas for the prolonged action of G(n) on the fiber coordinates of Jn(M, p),
where g(k) represent pseudo-group parameters of order≤ k, that is, the kth order truncation
of the local fiber coordinates g(∞) on the pseudo-group jet bundle G(∞). As in [45],
we place hats over the transformed submanifold jet coordinates to avoid confusion with
the diffeomorphism jet coordinates. The normalization equations corresponding to the
coordinate cross-section (6.5) are

F j(x, u, g(0)) = cj , F̂ β
K(x, u(k), g(k)) = cβK , for all s̃j , sKS

β ∈ K≤n. (7.3)

Since, when n ≥ n⋆, we are dealing with a bona fide cross-section, the Implicit Function
Theorem guarantees that, near the identity jet, we can uniquely solve the normalization
equations for the pseudo-group parameters

g(n) = ρ̃ (n)(x, u(n)). (7.4)

These formulas serve to prescribe the locally equivariant moving frame section

ρ(n)(z(n)) = (z(n), ρ̃ (n)(z(n))) ∈ H(n).

Additional details and explicit examples can be found in [10, 45].

Once constructed, the moving frame induces an invariantization process, mapping
differential functions to differential invariants, differential forms to invariant differential
forms, and so on. Invariantization is effected by replacing the pseudo-group parameters in a
transformed object by their moving frame normalizations (7.4). Thus, the invariantization
process

ι:F (x, u(n)) 7−→ I(x, u(n)) = F
(
ρ(n)(x, u(n)) · (x, u(n))

)
(7.5)

maps the differential function F to the differential invariant I = ι(F ). Geometrically,
invariantization amounts to restricting the function to the cross-section, and then imposing
invariance by requiring it to be constant along the pseudo-group orbits. As a result, ι
defines an algebra morphism that projects the algebra of differential functions onto the
algebra of differential invariants.

In particular,

ι(xi) = Hi, ι(uαJ ) = IαJ , i = 1, . . . , n, α = 1, . . . , q, 0 ≤ #J ≤ n, (7.6)

will denote the normalized differential invariants obtained by invariantizing the submani-
fold jet coordinates on Jn(M, p). We use

I(n) = (H, I(n)) = ( . . . Hi . . . IαJ . . . ) = ι(x, u(n)) = ι(z(n)) (7.7)
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to denote the complete collection of normalized differential invariants of order ≤ n. Thus,
invariantization of a differential function

F (z(n)) = F (x, u(n)) = F ( . . . xi . . . uαJ . . . )

amounts to replacing each submanifold jet variable by its associated normalized differential
invariant:

ι(F ) = F (I(n)) = F (H, I(n)) = F ( . . . Hi . . . IαJ . . . ). (7.8)

In particular, since differential invariants are not affected by the invariantization process,
they have precisely the same functional formula when written in terms of the normalized

differential invariants :

I(x, u(n)) = ι(I(x, u(n))) = I(H, I(n)) whenever I is a differential invariant. (7.9)

This trivial, but extremely useful fact, is known as the Replacement Theorem, [19].

Each normalized differential invariant is indexed by a monomial in S, so Hi corre-
sponds to s̃i, while I

α
J corresponds to sJS

α. The complementary monomials indexing the
cross-section coordinates (6.5) correspond to the constant phantom differential invariants ,
whose values equal the normalization constants:

Hj = cj , IβK = cβK , for all s̃j , sKS
β ∈ K. (7.10)

The remaining monomials index the basic differential invariants

Ibasic = ( . . . Hi . . . IαJ . . . ), for all s̃i, sJS
α ∈ N . (7.11)

Remark : If G acts transitively on Jk(M, p), then there are no non-constant differential
invariants of order ≤ k. In this case, every monomial in S of degree ≤ k belongs to K≤k

and thus, because we are using an algebraic moving frame, corresponds to a phantom
differential invariant.

Theorem 7.2. Any differential invariant I defined near the cross-section can be

locally uniquely written as a function I = F (Ibasic) of the functionally independent basic

differential invariants (7.11).

Definition 7.3. The degree of a basic differential invariant is defined to be deg IαJ =
#J for sJS

α ∈ N , while degHi = 0 for s̃i ∈ N . More generally, the degree of a differential
invariant I is defined as

deg I = max

(
{0} ∪

{
#J

∣∣∣∣
∂I

∂IαJ
6≡ 0 for sJS

α ∈ N

})
. (7.12)

Note that, for any n ≥ n⋆, the basic differential invariants I
(n)
basic of degree ≤ n form a

complete system of functionally independent differential invariants of order ≤ n.

A differential invariant will be said to have low degree if deg I ≤ n⋆ and high degree

if deg I ≥ n⋆ + 1, where, as always, n⋆ denotes the order of freeness. In general, the
order (meaning the highest order of jet coordinate uαJ that it depends on) of a differential
invariant equals its degree when it is of high degree; for the low degree invariants, the best
that can be said is that their order is at most the order of freeness.
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Lemma 7.4. If I is a high degree differential invariant, then deg I = ord I > n⋆. On

the other hand, if I is a low degree differential invariant, then all that can be said is that

both deg I and ord I ≤ n⋆.

Proof : Whenever n ≥ n⋆, the nth order moving frame map (7.1) has order n. Thus,
the order of any basic differential invariant IαJ of degree #J = n is ≤ max{n, n⋆}. There-
fore, to establish the result we only need check that in the high degree case #J = n > n⋆,
we have ord IαJ = n. But, when restricted to the cross-section, IαJ |K

n = uαJ equals the
corresponding non-constant jet coordinate, and hence must be of order exactly n. Q.E.D.

If G represents the action of a finite-dimensional Lie group, then, for n greater than the
classical order of freeness, N n = Ŝ n and Kn = {0}, since we are working with a minimal
order cross-section, and hence all group parameters have been normalized once we reach
the order of freeness. In this case, the functionally independent differential invariants
of sufficiently high order n ≫ 0 are in one-to-one correspondence with all monomials
in S n. On the other hand, for infinite-dimensional pseudo-groups, phantom differential
invariants occur at all orders, but, assuming we choose an algebraic moving frame, those
of order strictly greater than n⋆ are indexed by the leading monomials of polynomials in
the prolonged symbol module J .

To proceed further, let

ωi = πH
[
ι(dxi)

]
, i = 1, . . . , p, (7.13)

be the horizontal components of the invariantized one-forms dxi; see [10, 45] for details on
the construction. Bear in mind that, since we have discarded their contact components,
each ωi is only invariant modulo contact forms when the group acts non-projectably. Thus,
the collection (7.13) forms a contact-invariant coframe, cf. [41].

The horizontal (or total) differential of a differential function F (x, u(n)) is given by

dH F =

p∑

i=1

(DxiF ) dxi =

p∑

i=1

(DiF )ω
i, (7.14)

where the second expression serves to define the invariant total differential operators
D1, . . . ,Dp that are dual to the contact-invariant coframe. In view of (7.13),

Di =

p∑

i=1

P k
i Dxk , where the coefficients satisfy ordP k

i ≤ n
⋆. (7.15)

Consequently, for any differential function F (x, u(n)),

ordDiF ≤ max{n⋆, ordF + 1}. (7.16)

As in [45], we will extend the invariantization process (7.5) to include the derivatives
(jets) of vector field coefficients (3.2). Each vector field jet coordinate ζbA serves to define
a linear function on the space of vector fields X (M), and so could be regarded as a kind of
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covector or one-form. Its horizontal invariantization will be an invariant linear combination
of the invariant horizontal one-forms (7.13), viz.

γbA ≡ πH
[
ι(ζbA)

]
=

p∑

i=1

Rb
A,i ω

i, (7.17)

whose coefficients Rb
A,i are certain differential invariants. In [45], these one-forms were

identified as the horizontal components of the pull-backs, via the moving frame map,
of the Maurer–Cartan forms for the pseudo-group, and are thus called the (horizontal)
invariantized Maurer–Cartan forms . They are collectively denoted as

γ(n) = ( . . . γbA . . . ) = ι(jnv). (7.18)

In view of this identification, we will refer to the coefficients Rb
A,i in (7.17) as the Maurer–

Cartan invariants , [25, 27, 42, 43]. Fortunately, we need not dwell on their underlying
theoretical justification because, as we will establish in Lemma 8.3 below, the explicit

formulae (7.17) will be directly deduced from the recurrence formulae for the phantom

differential invariants.

Remark : As in (7.13), we will suppress the contact components of the invariantized
Maurer–Cartan one-forms here. These do play a role in applications in the invariant
calculus of variations, [30], but not in the structure of the differential invariant algebra,
which is the present object of study.

More generally, let

L(x, u(n), ζ(n)) =
m∑

b=1

∑

#A≤n

hAb (x, u
(n)) ζbA (7.19)

be the local coordinate expression for a section of the pull-back of the bundle (JnTM)∗

to Jn(M, p) via the standard projection π̃n
0 : J

n(M, p) → M . Its invariantization will be
defined as the corresponding invariant linear combination

ι
(
L(x, u(n), ζ(n))

)
= L(H, I(n), γ(n)) =

m∑

b=1

∑

#A≤n

hAb (H, I
(n)) γbA (7.20)

of invariantized Maurer–Cartan forms.

The Maurer–Cartan forms of a proper sub-pseudo-group G ( D are not linearly in-
dependent. Remarkably, [44; Theorem 6.1], their dependencies are entirely prescribed by
the pseudo-group’s linear determining equations. These dependencies carry over to their
invariantized counterparts (7.17). See [45] for a proof of this key result.

Theorem 7.5. The invariantized Maurer–Cartan forms (7.17) are subject to the

linear constraints

L(n)(H, I, γ(n)) = L(n)( . . . Hi . . . Iα . . . γbA . . . ) = 0, (7.21)

obtained by invariantizing the linear determining equations (3.8) for the pseudo-group.
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If G acts transitively on M , then the order zero differential invariants Hi, Iα are all
constant, and so the Maurer–Cartan constraints (7.21) form a system of constant coeffi-
cient linear equations for the invariantized Maurer–Cartan forms. Intransitive actions are
slightly more subtle, but still handled effectively by our approach.

8. Recurrence Formulae.

If I is any differential invariant, then so are its derivatives D1I, . . . ,DpI, with respect
to the invariant differential operators (7.15). In particular, the invariant derivatives of
all the normalized differential invariants (7.6) are also differential invariants, and hence,
by Theorem 7.2, can be locally re-expressed as functions of the normalized differential
invariants. The resulting expressions

DiH
j = F j

i ( . . . H
k . . . IβK . . . ), DiI

α
J = F α

J,i( . . . H
k . . . IβK . . . ), (8.1)

are known as recurrence formulae. The recurrence formulae are the master key that
unlocks the structure of the differential invariant algebra I(G). Strikingly, they can be
algorithmically determined using only linear algebra and differentiation, [45]. The only
required ingredients are the choice of cross-section and the expressions for the infinitesimal
determining equations for the pseudo-group. The construction does not require knowledge
of the explicit formulas for either the pseudo-group transformations, or the moving frame,
or even the differential invariants and invariant differential operators!

The recurrence formulae for the differentiated invariants are, in fact, particular con-
sequences of a universal recurrence formula for the (horizontal) differential of any invari-
antized differential function.

Theorem 8.1. If F (x, u(n)) is any differential function, then

dH ι(F ) = ι
(
dH F + v(∞)(F )

)
, (8.2)

where v(∞) denotes the infinite prolongation (4.5) of the vector field v in (4.4).

Remark : The recurrence formula (8.2) also applies as stated when F represents a
(horizontal) differential form; in this case the final term (8.5) represents its Lie derivative
with respect to the prolonged vector field. Full details, including a proof of this key
formula can be found in [45]. See also [19, 42] for slightly different formulations for
finite-dimensional group actions.

Let us interpret the three terms appearing in the recurrence formula (8.2). Using the
final expression in (7.14), the left hand side is

dH ι(F ) =

p∑

i=1

Di

[
ι(F )

]
ωi. (8.3)

Similarly, using the middle expression in (7.14), the first term on the right hand side is

ι( dH F ) =

p∑

i=1

ι(DxiF )ωi. (8.4)
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The final term is obtained by invariantizing the action of the prolonged infinitesimal
generator:

v(n)(F ) =

p∑

i=1

∂F

∂xj
ξj +

q∑

α=1

∑

#J ≤n

∂F

∂uαJ
ϕ̂ α

J . (8.5)

According to the prolongation formula (4.9), each prolonged vector field coefficient ξj, ϕ̂ α
J

is a well-prescribed linear combination of the vector field jet coordinates ξiA, ϕ
β
A. Thus,

in accordance with (7.20), its invariantization is the corresponding invariant linear com-
bination of the invariantized Maurer–Cartan forms (7.18). We denote these invariantized
combinations by

χj = ι(ξj), ψ̂ α
J = ι(ϕ̂ α

J ) = Φα
J (I

(n); γ(n)), (8.6)

where Φα
J is the coefficient function of the universal prolongation prescribed in (4.9). Ob-

serve that χj = ι(ξj) and ψα = ψ̂ α = ι(ϕ̂ α) are order zero invariantized Maurer–Cartan
forms, while, for n = #J ≥ 1, each ψ̂ α

J depends polynomially on the normalized differen-

tial invariants IβK , 1 ≤ #K ≤ n, and linearly on the basis invariantized Maurer–Cartan
forms γbA, 1 ≤ #A ≤ n.

In view of (4.10), the formulas (8.6) serve to define the invariantized prolongation

maps

p̃(n): γ(n) 7−→ ψ(n) = ( . . . χj . . . ψ̂ α
J . . . ) for #J ≤ n, (8.7)

of orders 0 ≤ n ≤ ∞, and, as above, we abbreviate p̃ = p̃(∞). Since the coefficients
appearing in p̃(n) agree with those of the ordinary prolongation map p(n) when restricted
to the cross-section, local freeness, as per Definition 5.1, and (7.21), immediately imply
the following.

Lemma 8.2. For any n ≥ n⋆, the order n invariantized prolongation map p̃(n) defines

a monomorphism on the space of invariantized Maurer–Cartan forms: ker p̃(n) = {0}.

As a result, the final term in the universal recurrence formula (8.2) is

ι
(
v(n)(F )

)
=

p∑

i=1

ι

(
∂F

∂xj

)
χj +

q∑

α=1

∑

#J ≤n

ι

(
∂F

∂uαJ

)
ψ̂ α

J , (8.8)

where each term is a linear combination of the invariantized Maurer–Cartan forms γbA.
Thus, after substituting (7.17), each of the one-forms (8.6) appearing in (8.8) is a linear
combination of the invariantized horizontal one-forms (7.13):

χj =

p∑

i=1

M j
i ω

i, ψ̂ α
J =

p∑

i=1

Mα
J,i ω

i. (8.9)

The coefficients M j
i ,M

α
J,i are differential invariants, and are certain invariant linear com-

binations of the as yet unknown Maurer–Cartan invariants Rb
A,i. Let us substitute the

formulae (8.3, 4, 8, 9) into (8.2). Equating the resulting coefficients of the individual in-
variant horizontal forms ωi produces the complete system of recurrence formulae

Di ι(F ) = ι(DxiF ) +Mi[F ], (8.10)
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in which the correction term is

Mi[F ] =

p∑

i=1

ι

(
∂F

∂xj

)
M j

i +

q∑

α=1

∑

#J ≤n

ι

(
∂F

∂uαJ

)
Mα

J,i. (8.11)

In particular, taking F in (8.2) to be each of the jet coordinate functions results in the
explicit recurrence formulae for the (horizontal) differentials of the normalized invariants:

dH Hj = ι
(
dxj + ξj

)
= ωj + χj = ωj +

p∑

i=1

M j
i ω

i,

dH IαJ = ι ( duαJ + ϕ̂ α
J ) =

p∑

i=1

IαJ,i ω
i + ψ̂ α

J =

p∑

i=1

(IαJ,i +Mα
J,i)ω

i.

(8.12)

The individual coefficients of the horizontal one-forms ω1, . . . , ωp in (8.12) implies that the
system of recurrence relations (8.1) takes the form

DiH
j = δji +M j

i , DiI
α
J = IαJ,i +Mα

J,i, (8.13)

where δji is the Kronecker delta, and the correction terms M j
i ,M

α
J,i are the as yet unknown

coefficients in (8.9).

Taking into account our choice of algebraic cross-section, the recurrence formulae
(8.12) (or, equivalently, (8.13)) naturally split into two genres. The phantom differential
invariants (7.10) are, by definition, constant, and so have zero differential. These yield the
phantom recurrence formulae

0 = ωj + χj , 0 =

p∑

i=1

IβK,i ω
i +Φβ

K(I(n); γ(n)), s̃j , sKS
β ∈ K. (8.14)

Let us show that, as a direct consequence of local freeness of the prolonged pseudo-group
action and the fact that we have a bona fide cross-section, the phantom recurrence formulae
can be uniquely solved for the invariantized Maurer–Cartan forms, keeping in mind that
the latter are subject to the invariantized determining equations (7.21).

Lemma 8.3. If n ≥ n⋆, the phantom recurrence formulae (8.14) of order ≤ n can be

uniquely solved for the invariantized Maurer–Cartan forms γ(n) of order ≤ n. Each such

one-form is a linear combination of the invariantized horizontal one-forms,

γbA =

p∑

i=1

Rb
A,i ω

i, (8.15)

whose coefficients Rb
A,i, the Maurer–Cartan invariants, are differential invariants of order

≤ 1 + max{n⋆,#A}.

Proof : Because the invariantized Maurer–Cartan forms (7.17) have been explicitly
constructed using the methods in [45], the existence of a solution to the phantom recur-
rence equations (8.14) is not an issue. Thus, we need only establish uniqueness of the
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solution. But this is an immediate consequence of Lemma 8.2. The last statement in the
theorem is a consequence of Lemma 7.4, which guarantees that, when #K ≥ n⋆, the order
of any non-phantom differential invariants IβK,i appearing in (8.14) equals #K+1. Q.E.D.

We substitute the resulting expressions (8.15) into the remaining recurrence formulae

dH Hi = ωi + χi, dH IαJ =

p∑

i=1

IαJ,i ω
i + Φα

J (I
(n); γ(n)), s̃i, sJS

α ∈ N , (8.16)

for the basic differential invariants. The individual coefficients of the ωi will produce
the recurrence formulae in the form (8.13) for the non-phantom differential invariants.
Illustrative examples of this process can be found in [10, 45, 54].

It is worth pointing out that, since the prolonged vector field coefficients are polyno-
mials in the jet coordinates uαJ of order #J ≥ 1, their invariantizations are polynomial
functions of the basic differential invariants IαJ of degree #J ≥ 1. Since the correction
terms are constructed by solving a linear system (8.14) for the invariantized Maurer–
Cartan forms (8.15), the resulting Maurer–Cartan invariants Rb

A,i are inevitably rational

functions of these differential invariants. Thus, in almost all cases arising in applications,
the resulting differential invariant algebra is endowed with an entirely rational algebraic
recurrence structure.

Theorem 8.4. If either G acts transitively on M , or its infinitesimal generators

depend polynomially on the coordinates z = (x, u) ∈ M , then the recurrence formulae

(8.13) depend rationally on the basic differential invariants.

The hypotheses are not mutually exclusive. Thus, only when confronted with an
intransitive pseudo-group that involves non-rational infinitesimal generator coefficients are
we required to go beyond the rational algebraic category when analyzing the differential
invariant algebra. And, even in this case, only the zeroth order basic differential invariants
will enter the recurrence formulae in a non-rational manner.

Because the basic differential invariants are functionally independent, their recurrence
formula provide a complete set of identities that fix the structure of the differential invari-
ant algebra I(G). Thus, to establish the Basis Theorems for the generating differential
invariants and for the differential syzygies, we need only analyze the structure of these
recurrence formulae.

However, at this stage a serious complication emerges: Because the invariantized
Maurer–Cartan forms of order n ≥ n⋆ are obtained by solving the linear system (8.14),
their coefficients may depend on (n + 1)st order differential invariants, and hence the
correction termMα

J,i in the resulting recurrence formula (8.13) for DiI
α
J may very well have

the same order as the leading term IαJ,i. This possibility — which does not arise in the
finite-dimensional Lie group situation, [19] — makes the determination of the differential
algebraic structure of I(G) more subtle. Fortunately, this complication can be successfully
circumvented by introducing an alternative collection of generating invariants that is better
adapted to the underlying algebraic structure of the prolonged symbol module.

To proceed, we will need to invariantize the algebraic constructions developed in the
first part of the paper. As in (7.8), the invariantization of any polynomial, map, etc.,
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is found by replacing the submanifold jet coordinates by their normalized counterparts
(7.6), and using (7.17) to invariantize vector field coefficients and their jets. As usual, the
invariantized object coincides with its progenitor when restricted to the cross-section used
to define the moving frame, and so enjoys the self-same algebraic properties.

Consider a parametrized polynomial

η(x, u; t, T ) =

m∑

b=1

∑

#A≤n

hAb (x, u) tAT
b

that forms a section of the annihilator bundle L. Its invariantization is the polynomial

η̃(H, I; t, T ) = ι
(
η(x, u; t, T )

)
=

m∑

b=1

∑

#A≤n

hAb (H, I) tAT
b, (8.17)

which is obtained by replacing the coordinates on M by their invariantizations Hi =
ι(xi), Iα = ι(uα), which are constant if the pseudo-group acts transitively on M . The

invariantized polynomial is a section of the invariantized annihilator bundle L̃≤n, which
can be identified as the pull-back of the restriction of L≤n to the cross-section via the map
τ̃ (n) ◦ρ(n): Jn(M, p) → Kn. Just as the original annihilators characterize the linearized
determining equations (3.8), these invariantized annihilators characterize the invariantized
determining equations (7.21), which require

〈 γ(n) ; η̃ 〉 = 0 for all sections η̃ of L̃≤n.

In particular, if G acts transitively onM , then the generators (8.17) are constant coefficient

polynomials, and so the fibers L̃≤n|z ⊂ T are all the same subspace, independent of the

base point z. We further let Ĩ n = ι(I n) denote the invariantized symbol submodule, which
is also independent of the base point z when G acts transitively on M .

Similarly, we let

σ̃(I(k); s, S) =

q∑

α=1

∑

#J ≤n

hJα(I
(k)) sJS

α ∈ Ŝ ≤n (8.18)

be the invariantization of a symbol polynomial† (4.17), whose coefficients depend on the
differential invariants of some (finite) order ≤ k. We associate to (8.18) the differential
invariant

Iσ̃ =

q∑

α=1

∑

#J ≤n

hJα(I
(k)) IαJ . (8.19)

Note that, in view of Lemma 7.4,

ord Iσ̃ ≤ max{k, n⋆, deg σ̃ }.

† We could, of course, include terms involving the extra variables s̃j here, but, since these will
not play a role in our subsequent development, it is simpler to omit them from the outset.
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In particular, if both k, n⋆ < deg σ̃, then ord Iσ̃ = deg σ̃ provided at least one coefficient
hJα(I

(k)) 6≡ 0 for some sJS
α ∈ N with #J = n = deg σ̃. Thanks to the recurrence formulae

(8.12),

dH Iσ̃ =

q∑

α=1

∑

#J ≥ 0

(
hJα dH IαJ + IαJ dH hJα

)

=

q∑

α=1

∑

#J ≥ 0

(
p∑

i=1

[
hJα I

α
J,i +Di(h

J
α) I

α
J

]
ωi + hJα ψ̂

α
J

)

=

p∑

i=1

(Isiσ̃ + IDiσ̃
)ωi + 〈ψ(∞) ; σ̃ 〉,

(8.20)

where the invariant differential operator Di acts coefficient-wise on the parametrized poly-
nomial (8.18):

Di σ̃(I
(k+1); s, S) =

q∑

α=1

∑

#J ≥ 0

Di

[
hJα(I

(k))
]
sJS

α. (8.21)

Next, let β̃ :R2m → Rm be the invariantized symbol map, which is obtained from β

in (4.22) by invariantization:

si = β̃i(t) = ti +

q∑

α=1

Iαi tp+α,

Sα = B̃α(T ) = T p+α −

p∑

i=1

Iαi T
i,

i = 1, . . . , p,

α = 1, . . . , q,
(8.22)

where Iαi = ι(uαi ) are the first order normalized differential invariants. In particular, if G
acts transitively on J1(M, p), then, by minimality of the algebraic moving frame, all the Iαi
are phantom differential invariants, and so in this case β̃ is a fixed linear map. Otherwise,
when G acts intransitively on J1(M, p), the map β̃ depends on the non-phantom differential
invariants Iαi , and so, by Lemma 7.4, on the submanifold jet coordinates of order at most

n⋆ — the order of freeness of the pseudo-group. As with its progenitor β, the map β̃

defines the “symbol” of the invariantized prolongation map (8.7).

Finally, we let Z̃ = (p̃∗)−1L̃, where p̃ = p̃(∞) is the invariantized prolongation map
(8.7), denote the invariantized prolonged annihilator subbundle, so that, as in (4.27),

〈ψ(∞) ; τ̃ 〉 = 0 if and only if τ̃ is a section of Z̃. (8.23)

We use the linear map (8.22) to define an invariantized version of the prolonged symbol
submodule (4.29) at each point.

Definition 8.5. The invariantized prolonged symbol submodule is defined as

J̃ = (β̃∗)−1(Ĩ) =
{
σ̃(s, S)

∣∣∣ σ̃(β̃(t), B̃(T )) ∈ Ĩ
}
. (8.24)
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Remark : Note that Ĩ|z depends on the degree 0 invariants (if any), while β̃ involves
the degree 1 differential invariants. Thus, if G acts transitively on J1(M, p), then the
invariantized prolonged symbol submodule does not vary from point to point. In the
intransitive case, we suppress the dependence of J̃ |z(∞) and the polynomials therein on
the non-constant differential invariants I(1)(z(∞)) of degree ≤ 1.

Since the invariantizations Z̃, J̃ , etc. agree with their progenitors on the algebraic
cross section K, by Lemma 5.5, the leading terms in any invariantized annihilating poly-
nomial belong to the invariantized prolonged symbol module. In other words, we can
decompose any non-zero 0 6= τ̃ ∈ Z̃≤n as

τ̃(s, S) = σ̃(s, S) + ν̃(s, S) ∈ Z̃≤n, where σ̃ = H(τ̃) ∈ J̃ n, ν̃ ∈ S ≤n−1. (8.25)

Moreover, the differential invariant Iσ̃ associated with its symbol, cf. (8.19), is of high
degree with

ord Iσ̃ = deg Iσ̃ = deg σ̃ = n ≥ n⋆ + 1 for σ̃ ∈ J̃ n. (8.26)

In view of (8.23), the recurrence formula (8.20) for such polynomials reduces to

dH Iσ̃ =

p∑

i=1

(Isiσ̃ + IDiσ̃
)ωi − 〈ψ(n) ; ν̃ 〉. (8.27)

In contrast to (8.13), the correction term in the algebraically adapted recurrence formula
(8.27), namely

∑
IDiσ̃

ωi − 〈ψ(∞) ; ν̃ 〉, is of lower order than the leading term
∑
Isiσ̃ ω

i,
i.e., it depends on differential invariants of order ≤ n = ord σ̃, whereas ord Isi σ̃ = n + 1.

Indeed, if G(1) acts transitively on J1(M, p), then IDiσ̃
= 0, while in the intransitive

case IDiσ̃
depends on the second order differentiated invariants DiI

α
j , which, by (7.16), are

differential functions of order ≤ max{2, n⋆+1} ≤ n, since we are assuming that n > n⋆ ≥ 1.
Furthermore, the final term 〈ψ(∞) ; ν̃ 〉 is a linear combination of invariantized Maurer–
Cartan forms of orders ≤ n − 1, which, according to Lemma 8.3, also depend on at most
nth order differential invariants provided n > n⋆. We conclude that, for such σ̃, the only

terms on the right hand side of the recurrence formula (8.27) that can be of order n+1 are

the leading coefficients, Isi σ̃. Equating the coefficients of the forms ωi in formula (8.27)
leads to individual recurrence formulae

Di Iσ̃ = Isi σ̃ +Mσ̃,i ≡ Fσ̃,i(H, I
(n+1)), (8.28)

in which, assuming (8.26), the leading term Isi σ̃ is a differential invariant of order n + 1,
while the correction term Mσ̃,i is of order ≤ n. Iteration of the first order recurrence
formulae (8.28) leads to the higher order recurrences

DJ Iσ̃ = IsJ σ̃ +Mσ̃,J ≡ Fσ̃,J (H, I
(n+k)), (8.29)

whenever J = (j1, . . . , jk) is an ordered multi-index of order k = #J ,

DJ = Dj1
Dj2

· · · Djk
, (8.30)
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and, assuming deg σ̃ = n > n⋆,

ordMσ̃,J < n+#J = deg
[
sJ σ̃(s, S)

]
.

The invariant differential operators D1, . . . ,Dp do not necessarily commute, and so
the order of the multi-index J in the recurrence formula (8.29) matters. In general, the
invariant differential operators are subject to linear commutation relations of the form

[
Di,Dj

]
=

p∑

k=1

Y k
ij Dk, i, j = 1, . . . , p, (8.31)

where the coefficients Y k
ij = −Y

k
ji are certain differential invariants, called the commutator

invariants . They are determined by the recurrence formulae for the invariant horizontal
forms, cf. [45]; explicitly, according to (8.2) (as generalized to one-forms, and using the
fact invariantization takes contact forms to contact forms, [45]),

dH ωi ≡ dι(dxi) = ι
[
d(dxi) + v( dxi)

]
= ι [ dξi ]

≡ ι




p∑

j=1

Djξ
i dxj


 = ι




p∑

j=1

(
∂ξi

∂xj
+

q∑

α=1

∂ξi

∂uα
uαj

)
dxj




≡

p∑

j=1

(
γij +

q∑

α=1

Iαj γ
i
α

)
∧ ωj ,

(8.32)

where ≡ indicates equality modulo contact forms, and γij, γ
i
α denote the first order in-

variantized Maurer–Cartan forms (7.17) obtained by invariantizing the first order partial
derivatives ξij = ∂ξi/∂xj, ξiα = ∂ξi/∂uα, of the independent variable vector field coeffi-
cients. Replacing the invariantized Maurer–Cartan forms by their explicit formulas (8.15),
as prescribed by our solution to the phantom recurrence relations (8.14), leads to the
formulas

dH ωk = −
∑

i<j

Y k
ij ω

i ∧ ωj, (8.33)

that serve to prescribe the commutator invariants in (8.31). As a consequence, each com-
mutator invariant has order bounded by

ordY k
ij ≤ n

⋆ + 1. (8.34)

Moreover, Y k
ij depends rationally on the basic differential invariants IαJ of degree #J ≥ 1,

and also rationally on Hi, Iα under the hypothesis of Theorem 8.4.

More generally, to each invariantized polynomial

q̃(s) = ι[q(s) ] =
∑

#J ≤ l

qJ (I
(j))sJ ∈ R[s] (8.35)

whose coefficients are differential invariants, we associate an invariant differential operator

q̃(D) =
∑

#J ≤ l

qJ (I
(j))DJ . (8.36)
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Since the multi-indices in (8.35) are unordered, the expression (8.36) is ambiguous. For
specificity, we adopt the normal ordering convention that the sums range over non-decrea-
sing multi-indices 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ p, where k = #J . Indeed, in view of (8.29),
we can write

q̃(D) Iσ̃ = Iq̃ σ̃ +Mσ̃,q̃, (8.37)

where Iq̃ σ̃ is the differential invariant corresponding to the product polynomial q̃(s) σ̃(s, S).
Moreover, provided deg σ̃ > n⋆ and k < deg q̃ + deg σ̃, then

ordMσ̃,q̃ < deg q̃ + deg σ̃ = ord q̃(D) Iσ̃ = ord Iq̃ σ̃, σ̃ ∈ J̃ ≥n⋆+1 = J̃ ∩ Ŝ ≥n⋆+1.
(8.38)

We are now in a position to rigorously formulate a Constructive Basis Theorem for
the differential invariant algebra of an eventually locally freely acting pseudo-group. The
key is to use the differential invariants Iσ̃ corresponding to σ̃ ∈ J̃ instead of the less
well-behaved high order basic differential invariants IαJ .

Theorem 8.6. Let G be a pseudo-group that acts locally freely on the submanifold

jet bundle at order n⋆. Then the following differential invariants form a finite generating

system for its differential invariant algebra I(G):

(a) Iν = Iσ̃ν
where σ̃1, . . . , σ̃l, form a Gröbner basis for the high degree prolonged

symbol module J̃ ≥n⋆+1 relative to our chosen term ordering, and,

(b) all basic differential invariants of low degree n ≤ n⋆.

Proof : Since we have included all the low degree differential invariants in our gener-
ating system, it suffices to show that every differential invariant Iσ̃ for σ̃ ∈ J̃ ≥n⋆+1 can
be expressed in terms of the listed generators. Since we can write†

σ̃(s, S) =

l∑

ν=1

q̃ν(s) σ̃ν(s, S)

as a linear combination of the Gröbner basis polynomials, the recurrence formula (8.37)
implies that we can write the corresponding differential invariant

Iσ̃ =

l∑

ν=1

[
q̃ν(D) Iν −Mσ̃,q̃ν

]

in terms of the differentiated Gröbner basis generators along with a correction term. More-
over, since deg Iν = deg σ̃ν > n⋆, (8.38) implies that the correction terms is of lower order
than Iσ̃. An evident induction on the degree of σ̃ serves to establish the result. Q.E.D.

Remark : Typically, many of the listed generating differential invariants are redun-
dant, as they can be written as combinations of invariant derivatives of other generating
invariants. The explicit recurrence formulae for the differentiated invariants will allow one

† As per the remark following Definition 8.5, all the polynomials in this formula may depend

on the basic invariants in I
(1), if any.
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to systematically eliminate redundant differential invariants, and so produce a minimal
generating system of differential invariants. However, establishing the minimality of a
generating set remains a challenging problem.

Example 8.7. For the pseudo-group treated in Examples 4.3 and 6.1, the algebraic
cross-section (6.6) leads to the normalization equations

X = 0, Y = 0, U = 0, ÛY = 0, ÛX = 0, ÛXX = 0,

ÛXY = 0, ÛY Y = 1, ÛXk = 0, ÛXk−1Y = 0, k ≥ 3.
(8.39)

The explicit formulas for the prolonged pseudo-group action and for the resulting moving
frame can be found in Example 11 of [45]. Recall that the order of freeness of this pseudo-
group action is n⋆ = 2. Since the high degree prolonged symbol submodule J≥3 is spanned
by the monomials si1s

j
2 S for i+ j ≥ 3, j ≥ 2, the non-phantom differential invariants are

obtained by invariantizing

Ii,j = ι(ui,j) = ι

(
∂i+ju

∂xi∂yj

)
, i+ j ≥ 3, j ≥ 2. (8.40)

In particular, by [45; eq. (3.24)],

I1,2 =
uxyy + uuyyy + 2uyuyy

u
3/2
yy

, I0,3 =
uyyy

u
3/2
yy

. (8.41)

The corresponding invariant total differential operators are, according to [45; eq. (3.26)],

D1 =
1√
uyy

(Dx + uDy), D2 =
1√
uyy

Dy. (8.42)

Since we normalized both I1,0 = ι(ux) = 0, I0,1 = ι(uy) = 0, cf. (8.39), the invariantized

linear maps (8.22) are trivial: s1 = β̃1(t) = t1, s2 = β̃2(t) = t2, S = B̃(T ) = T . Therefore,

the Gröbner basis for J̃ ≥3 consists of the monomials

σ̃1 = s1s
2
2 S, σ̃2 = s32 S, (8.43)

with corresponding differential invariants I1 = I1,2, I2 = I0,3 as in (8.41). Since there are
no low order differential invariants, Theorem 8.6 immediately implies that I1, I2 generate
the differential invariant algebra. This result can be confirmed by examination of the
explicit recurrence relations, which can be found in [45; Example 32].

9. Syzygies.

In this final section, we resolve the classification problem for differential syzygies of
the differential invariant algebra of an eventually freely acting pseudo-group. To this end,
let

Igen = (Ilow; Ihigh) = ( . . . Hj . . . IαJ . . . ; . . . Iν . . . ) (9.1)
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denote the generating differential invariants listed in Theorem 8.6, where Ilow refers to all
the low degree basic differential invariants, while Ihigh denotes the high degree generators,
consisting of all the Gröbner basis invariants Iν = Iσ̃ν

. We note that

ord I ≤ n⋆, I ∈ Ilow , ord I = deg I, I ∈ Ihigh.

Let

D∗Igen = (D∗Ilow;D
∗Ihigh) = ( . . . DKH

j . . . DKI
α
J . . . ; . . . DKIν . . . ) (9.2)

denote all the invariantly differentiated generating invariants, where K = (k1, . . . , kl)
ranges over all ordered multi-indices with l = #K ≥ 0.

To precisely define what is meant by a syzygy in the algebra of differential invariants,
we introduce new variables

w = (wlow;whigh) = ( . . . wj . . . wα
J . . . ; . . . wν . . . ),

w∗ = (w∗
low;w

∗
high) = ( . . . wj

L . . . wα
J,K . . . ; . . . wν,N . . . ),

(9.3)

representing, respectively, the generating invariants (9.1), and their invariant derivatives
(9.2), so that L,K,N represent ordered multi-indices of order ≥ 0. Note that the variables
in w also appear in w∗. We will refer to wj , wj

L, w
α
J , w

α
J,K , as low degree variables, and

wν , wν,N , as high degree variables.

Definition 9.1. A syzygy among the generating differential invariants Igen is repre-
sented by a nontrivial function

Z(w∗) = Z( . . . wj
L . . . wα

J,K . . . ; . . . wν,N . . . ) 6≡ 0, (9.4)

depending on the formal variables (9.3), with the property that

Z(D∗Igen) = Z( . . . DLH
j . . . DKI

α
J . . . ; . . . DNIν . . . ) ≡ 0. (9.5)

The degree of the syzygy (9.4) is the maximum of the degrees #L,#J+#K, deg σ̃ν+#N ,

of all the variables wj
L, w

α
J,K , wν,N that explicitly appear in it, that is, such that the partial

derivative of Z with respect to the variable is not identically zero.

More explicitly, as a consequence of the recurrence formulae (8.28–29), we can write
each differentiated generating invariant

DLH
j = F j

L(Ibasic), DKI
α
J = Fα

J,K(Ibasic), . . .

DNIν = Fν,N (Ibasic) = IsN σ̃ν
+Mν,N (Ibasic),

(9.6)

locally uniquely as a function of (finitely many of) the basic differential invariants. Since
the latter are functionally independent†, the syzygy (9.5) requires that

Z( . . . F j
L(Ibasic) . . . F

α
J,K(Ibasic) . . . ; . . . Fν,N (Ibasic) . . . ) ≡ 0.

† Thus, from an algebraic standpoint, one treats the basic differential invariants as independent
algebraic variables. With this in mind, it is not necessary to introduce yet more symbols for them
here.
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If Z(w∗) is any syzygy, so is the function obtained by formal invariant differentiation

Z,i(w
∗) =

∑

j,L

∂Z

∂wj
L

wj
L,i +

∑

α,J,K

∂Z

∂wα
J,K

wα
J,K,i +

∑

ν,N

∂Z

∂wν,N

wν,N,i. (9.7)

Indeed, in view of (9.5),

Z,i(D
∗Igen) = Di

[
Z(D∗Igen)

]
≡ 0.

Higher order differentiated syzygies are denoted by

Z,I(w
∗) = Z,i1,i2,...,ij

(w∗) = (Z,i2,...,ij
),i1(w

∗) = Di1

(
Z,i2,...,ij

(w∗)
)

(9.8)

where I = (i1, . . . , ij) is any ordered multi-index with 1 ≤ iκ ≤ p.

Syzygies can be grouped into two main classes. The first contains the commutator

syzygies , reflecting the non-commutativity of the invariant differential operators. In gen-
eral, if K = (k1, . . . , kl) is an ordered multi-index , then, as a consequence of (8.31),

Dπ(K) = DK +
∑

#J<#K

Y J
π,K DJ , (9.9)

for any permutation π of the entries of K. The right hand side of the commutator identity
(9.9) is a linear combination of lower order invariant differential operators, whose coeffi-
cients Y J

π,K are combinations of invariant derivatives, of order ≤ #K−2, of the commutator

invariants Y k
ij . For example,

DiDjDk = Di

(
DkDj +

p∑

l=1

Y l
jkDl

)

= DkDiDj +

p∑

l=1

[
Y l
ikDlDj + Y l

jkDiDl + (DiY
l
jk)Dl

]
.

(9.10)

The commutator formulae (9.9) produce an infinite number of commutator syzygies

Dπ(K) I = DK I +
∑

#J<#K

Y J
π,K DJ I, (9.11)

in which I is any one of our generating differential invariants, and J,K are assumed to be
non-decreasing multi-indices, so that all invariant differential operators on the right hand
side of the identity are in normal ordering. In view of (8.34), provided deg I > n⋆, the
degree of the summation terms on the right hand side of (9.11) is strictly less than

degDK I = degDπ(K) I = deg I +#K.

In terms of our formal variables w∗, let

V j
K,π(w

∗) = wj
π(K) − w

j
K −W

j
K,π(w

∗),

V α
J,K,π(w

∗) = wα
J,π(K) − w

α
J,K −W

α
J,K,π(w

∗),

Vν,K,π(w
∗) = wν,π(K) − wν,K −Wν,K,π(w

∗),

(9.12)
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represent the complete list of commutator syzygies (9.11) obtained by applying permuta-
tions of invariant differential operators to our generating differential invariants Hj , IαJ , Iν.

Warning : The higher order commutator syzygies cannot be generated by invariantly
differentiating a finite number of low order ones, which is why they must be treated on a
different footing. For example, the third order commutator syzygy

DiDjDkI = DjDiDkI +

p∑

l=1

Y l
ijDlDkI

cannot be obtained by invariant differentiation of second order commutator syzygies. How-
ever, the commutator relations (9.9) are finitely generated as a two-sided ideal in the non-
commutative algebra of invariant differential operators, and so in this extended sense, the
commutator syzygies can be regarded as finitely generated by those in (8.31).

Definition 9.2. A collection Z1, . . . , Zk of syzygies is said to form a generating

system if every syzygy can be written as a linear combination of them and finitely many
of their derivatives, modulo the commutator syzygies (9.12):

Z(w∗) =
∑

i,K

PK,i(w
∗)DKZi(w

∗) +
∑

π,K,j

Qj
K,π(w

∗)V j
K,π(w

∗)

+
∑

J,α,K,π

Qα
J,K,π(w

∗)V α
J,K,π(w

∗) +
∑

ν,K,π

Qν,K,π(w
∗)Vν,K,π(w

∗).
(9.13)

The second class, consisting of what we will call essential syzygies , is further subdi-
vided into those of low and high degree. Let us write the recurrence formulae (8.1) for the
first order derivatives of the low degree basic differential invariants Hj , IαJ ∈ Ibasic as

DiH
j = F j

i (Ibasic), DiI
α
J = F α

J,i(Ibasic), #J ≤ n⋆. (9.14)

Observe that, since we are only differentiating the invariant IαJ once, the right hand side
depends only on basic differential invariants of order ≤ n⋆ + 1. Those of order ≤ n⋆ are
just the low degree generating invariants, while those of order n⋆ + 1 can be expressed
in terms of the undifferentiated invariants Iν corresponding to Gröbner basis polynomials

σ̃ν ∈ J̃
n⋆+1 and the low degree generating invariants. The corresponding low degree syzygy

generators are

Zj
i (w

∗) = wj
i − F

j
i (w), Zα

J,i(w
∗) = wα

J,i − F
α
J,i(w), #J ≤ n⋆. (9.15)

Higher order invariant derivatives of low degree differential invariants are obtained by
differentiating the first order syzygies (9.14):

DKDiI
α
J = DK

[
Fα
J,i(Ilow , Ihigh)

]
. (9.16)

The right hand side can be written in terms of derivatives, of order ≤ #K, of the high
and low degree invariants. The latter can, by an obvious induction, be expressed in terms
of the low degree invariants, the high degree generating invariants, and the differentiated
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high degree generating invariants only, and so we can express any such derivative in the
form

DKI
α
J = F̂α

J,K(Ilow,D
∗Ihigh), IαJ ∈ Ilow . (9.17)

As a result, any syzygy Z(w∗) = Z(w∗
low, w

∗
high) can be replaced by a syzygy Z̃(wlow , w

∗
high)

that only involves the undifferentiated low degree generators.

The high degree syzygies are consequences of the algebraic syzygies among the high
degree prolonged symbol polynomials. In terms of our Gröbner basis σ̃1, . . . , σ̃ℓ for the

high degree prolonged symbol module J̃ ≥n⋆+1, an algebraic syzygy , [12], is a non-zero
ℓ-tuple of polynomials

0 6≡ q(s) = (q1(s), . . . , qℓ(s)) ∈ R[s]×ℓ such that

ℓ∑

ν=1

qν(s) σ̃ν(s, S) ≡ 0. (9.18)

(In general, the Gröbner basis polynomials and hence their syzygies will depend on the
basic invariants I(1) of degree ≤ 1, if any. For clarity, we will suppress this dependency in
our notation. As above, if G acts transitively on J1(M, p), there are no such invariants to
worry about.) In view of (8.37), each algebraic syzygy induces a corresponding differential
syzygy among the Gröbner basis generating differential invariants I = (I1, . . . , Iℓ) of the
form

q(D) · I =
ℓ∑

ν=1

qν(D) Iν =W
q
(D∗Igen), (9.19)

where ordW
q
< deg qν+ord Iν , and we use our normal ordering convention (8.36) to specify

the differential operators qν(D). HereWq(D
∗Igen) denotes a differential invariant of degree

strictly less than the terms on the left hand side, which can be explicitly determined by
repeated application of the recurrence formulae.

Further, any non-trivial linear combination of algebraic syzygies,

0 6≡ q(s) =

k∑

κ=1

rκ(s)qκ(s), where r(s) = (r1(s), . . . , rk(s)) 6≡ 0, (9.20)

defines another algebraic syzygy. But the induced differential syzygy (9.19) can, modulo
lower order terms, be obtained by invariantly differentiating the originating differential
syzygies (9.19) with q = qκ. Indeed, if p(s) = r(s) q(s), and I is any generating differential
invariant, then

p(D)I = r(D) q(D)I +K, (9.21)

where K is a linear combination of commutator syzygies (9.11) resulting from the normal
ordering of the product differential operator r(D) q(D). Thus, the algebraic syzygy (9.20)
produces a differential syzygy of the form

k∑

κ=1

rκ(D)
[
qκ(D) · I−Wqκ

(D∗Igen)
]
= W

r,q(D
∗Igen),

40



in which
ordW

r,q(D
∗Igen) < deg rκ + qκ + ord I.

Hilbert’s Syzygy Theorem, [17], states that there is a finite number of generating
algebraic syzygies, q1(s), . . . ,qk(s) such that any other algebraic syzygy can be written as
a linear combination (9.20) of the generators for some r(s) = (r1(s), . . . , rk(s)) ∈ R[s]×k.
Moreover, the generating syzygies can be systematically constructed by Gröbner basis al-
gorithms, [15]. The preceding argument shows that every high degree differential syzygy
is, modulo the commutator syzygies and low degree syzygies, a differential consequence of
the generating high degree differential syzygies. Thus, one can, by constructive algebra,
find a finite system of generators for the differential syzygies among the high degree dif-
ferential invariants. Our complete finite system of differential syzygies is then obtained by
combining these with the low degree syzygies listed above.

Remark : The “higher syzygies” (syzygies of syzygies, etc.) appearing in Hilbert’s
Theorem on the resolution of ideals and modules, [17], will also impact the algebraic
structure of the ring of invariant differential operators. However, we will not develop this
line of investigation here.

We now explain why the two indicated classes of syzygies form a finite generat-
ing system, i.e., that all other syzygies are differential consequences thereof. Suppose
Z(wlow , w

∗
high) defines a syzygy

Z(Ilow ;D
∗Ihigh) ≡ 0, (9.22)

which, without loss of generality, does not involve derivatives of the low degree generators.
Our goal is to write the syzygy as a combination of derivatives of the listed generating
differential syzygies and the commutator syzygies.

For this purpose, we invoke the following elementary lemma concerning linear algebraic
syzygies. It is a particular case of Proposition 2.10 of [40].

Lemma 9.3. Let Z(x, y, z) 6≡ 0 be a function that depends smoothly on the variables

x = (x1, . . . , xi), y = (y1, . . . , yj), z = (z1, . . . , zk). Suppose that, when subject to the

constraints

y = g(x), z = B(x)v + h(x), (9.23)

where v = (v1, . . . , vl), and B(x) is a given k× l matrix of constant rank for all x in some

open domain, Z defines a syzygy, in the sense that

Z(x, g(x), B(x)v+ h(x)) ≡ 0 for all x, v in some open domain.

Then, locally,

Z(x, y, z) =
s∑

ν=1

Wν(x, y, z)Zν(x, y, z) + Z0(x, y)

can be written as a combination of the generating syzygies

Zν(x, y, z) = rν(x)
(
z − h(x)

)
,

in which r1(x), . . . , rs(x) form a basis for cokerB(x), while Z0(x, y) defines a syzygy among

the first two sets of variables only, meaning that Z0(x, g(x)) ≡ 0.
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In our situation, suppose we have a syzygy Z of degree n > n⋆. We show that, modulo
lower degree syzygies, it can be written in terms of the claimed generating syzygies. A
straightforward induction will then complete the proof. To this end, we apply Lemma 9.3,
under the following identifications of variables:

• z represents the highest degree variables wν,N appearing in Z, corresponding to the
differentiated invariants DNIν of degree n = #N + deg σ̃ν ;

• y represents all the other variables wν,M consisting of lower order derivatives of the
high degree differential invariants: DMIν with #M + deg σ̃ν < n;

• v represents the variables wα
L corresponding to the basic differential invariants IαL of

degree #L = n;

• x represents the variables wα
J corresponding to the basic differential invariants IαJ of

all degrees (both low and high) #J < n.

• The constraints (9.23) represent the recurrence formulae (9.6) for the differentiated
invariants DKIν ; in particular, the second set refers to the formulae of highest
degree n = #N + deg σ̃ν .

To find the cokernel of the relevant matrix B(w), let us write out the Gröbner basis
polynomials explicitly:

σ̃ν(s, S) =

q∑

α=1

∑

#J ≤n

CJ
α,ν sJS

α, (9.24)

where the coefficients CJ
α,ν may depend on the basic invariants I(1) of degree ≤ 1 (if any).

The associated differential invariant is, by (8.19),

Iν = Iσ̃ν
=

q∑

α=1

∑

#J ≤n

CJ
α,ν I

α
J . (9.25)

Thus, the corresponding syzygy (9.6) has the form

DNIν = IsN σ̃ν
+Mν,N (Ibasic) =

q∑

α=1

∑

#J ≤n

CJ
α,ν I

α
JN +Mν,N (Ibasic), (9.26)

where the correction term Mν,N (Ibasic) is of lower order, and, from (9.24),

sN σ̃ν(s, S) =

q∑

α=1

∑

#J ≤n

CJ
α,ν sJNS

α. (9.27)

Each row of the matrixB represents a top order syzygy (9.26), where deg σ̃ν+#N = n.
Its columns are indexed by the basic differential invariants IαK of degree (or order) #K = n,
and hence the coefficient CJ

a,ν appears in the column corresponding to IαJN ; all other entries
of this row are 0. Consequently, a vector r = ( . . . rN,ν . . . ), for #N = l, belongs to the
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cokernel of B if and only if

0 =
ℓ∑

ν=1

∑

#N=l

rN,ν

q∑

α=1

∑

#J ≤n

CJ
α,ν sJNS

α

=
ℓ∑

ν=1

∑

#N=l

rN,νsN σ̃ν(s, S) =
ℓ∑

ν=1

qν(s) σ̃ν(s, S),

where
qν(s) =

∑

#N=l

rN,νsN .

Thus, the cokernel elements are in one-to-one correspondence with the algebraic syzygies
among the Gröbner basis polynomials specified by q(s) = (q1(s), . . . , ql(s)), cf. (9.18).
Since each algebraic syzygy corresponds to a combination of the essential differential syzy-
gies and commutator syzygies, Lemma 9.3 implies that every syzygy of degree n can be
written, modulo lower degree syzygies, in terms of the generating differential syzygies. An
evident induction on degree will then establish a general Syzygy Theorem for the differen-
tial invariant algebra I(G) of an eventually locally freely acting analytic pseudo-group:

Theorem 9.4. Let G be a Lie pseudo-group which acts locally freely on an open

subset of the submanifold jet bundles Jn(M, p) for all n ≥ n⋆. Then, every differential

syzygy is a differential consequence of the syzygies among the differential invariants of

order ≤ n⋆, the finite generating system of algebraic syzygies among the Gröbner basis

polynomials in J̃ ≥n⋆+1, and the commutator syzygies.

One final observation: In all cases, the generating syzygies depend rationally on all
variables with the possible exception of the undifferentiated differential invariants of degree
0. Thus, as in Theorem 8.4, if G acts transitively on M , or satisfies the hypothesis of that
theorem, then all generating syzygies are rational functions of the variables w∗.

Remark : For finite-dimensional Lie group actions, another approach to the classifica-
tion of syzygies in the differential invariant algebra appears in [26].

Example 9.5. For the pseudo-group in Examples 4.3, 6.1, and 8.7, the commutation
relation for the invariant differential operators

[D1,D2 ] = I2D1 − I1D2 (9.28)

can be deduced from the moving frame method, or simply by direct computation using
the explicit formulas (8.42). There is a single generating syzygy among the Gröbner basis
polynomials (8.43):

s2 σ̃1 − s1 σ̃2 = 0. (9.29)

Since there are no low degree differential invariants, Theorem 9.4 implies that the syzygies
among the differentiated invariants are all differential consequences of the commutation
relation (9.28), as discussed above, along with the basic syzygy

D1I2 −D2I1 = 2. (9.30)
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The latter is a consequence of the recurrence formulae, [45; Example 32], or, simply, of a
direct computation.

Lack of space prevents us from including any substantial new examples. Our previous
work, [10, 45], contains several worked examples, including that used by Kumpera, [32],
to illustrate his approach (see also [31]), as well as the symmetry pseudo-group of the KP
equation, which carries a Kac–Moody Lie algebra structure, [13]. Additional examples can
be found in geometry, e.g., characteristic classes of foliations, cf. [20], conformal geometry
and conformal field theory, [16, 18], symplectic and Poisson geometry, [36, 40], and the
geometry of real hypersurfaces, [11], as well as symmetry groups of a wide variety of partial
differential equations, [28, 40], gauge theories, [4], fluid mechanics, [2, 7], solitons and
integrable systems, [28], image processing, [53, 57], and geometric numerical integration,
[37]. These will be the subject of future research.
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Hubert, Vladimir Itskov, Irina Kogan, Niky Kamran, Anton Leykin, Liz Mansfield, Greg
Reid, Werner Seiler, and Francis Valiquette have been essential catalysts that led to its
final completion. We also thank the referee for helpful comments.
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