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Abstract.

We survey recent developments in the method of moving frames for infinite-dimen-
sional Lie pseudo-groups. These include a new, direct approach to the construction of
invariant Maurer–Cartan forms and the Cartan structure equations for pseudo-groups,
and new algorithms, based on constructive commutative algebra, for establishing the
structure of their differential invariant algebras.

1. Introduction.

Lie pseudo-groups are the infinite-dimensional counterparts of local
Lie groups of transformations. In Lie’s day, abstract Lie groups were as yet
unknown, and, as a result, no significant distinction was drawn between
finite-dimensional and infinite-dimensional theory. However, since then
the two subjects have traveled along radically different paths. The finite-
dimensional theory has been rigorously formalized, and is a well-established
and widely used mathematical tool. In contrast, the theory of infinite-
dimensional pseudo-groups remains surprisingly primitive in its current
overall state of development. Since there is still no generally accepted ab-
stract objects to play the role of infinite-dimensional Lie groups, Lie pseudo-
groups only arise through their concrete action on a space. This makes the
classification problems and analytical foundations of the subject thorny,
particularly in the intransitive situation. We refer the reader to the original
papers of Lie, Medolaghi, Tresse and Vessiot, [38, 49, 73, 75], for the classi-
cal theory of pseudo-groups, to Cartan, [13], for their reformulation in terms
of exterior differential systems, and [20, 30, 31, 36, 37, 40, 39, 65, 66, 70, 72]
for a variety of modern approaches. Various nonconstructive approaches to
the classification of differential invariants of Lie pseudo-groups are studied
in [34, 35, 52, 73].

Lie pseudo-groups appear in many fundamental physical and geomet-
rical contexts, including gauge symmetries, [5], Hamiltonian mechanics and
symplectic and Poisson geometry, [54], conformal geometry of surfaces and
conformal field theory, [19, 21], the geometry of real hypersurfaces, [16],
symmetry groups of both linear and nonlinear partial differential equa-
tions, such as the Navier-Stokes and Kadomtsev–Petviashvili (KP) equa-
tions appearing in fluid and plasma mechanics, [4, 18, 54], Vessiot’s group
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splitting method for producing explicit solutions to nonlinear partial differ-
ential equations, [46, 53, 64, 75], mathematical morphology and computer
vision, [69, 76], and geometric numerical integration, [47]. Pseudogroups
also appear as foliation-preserving groups of transformations, with the as-
sociated characteristic classes defined by certain invariant forms, cf. [24].
Also, keep in mind that all (sufficiently regular) local Lie group actions can
be regarded as Lie pseudo-groups.

In a series of collaborative papers, starting with [22, 23], the first au-
thor has successfully reformulated the classical theory of moving frames,
[11, 25], in a general, algorithmic, and equivariant framework that can
be readily applied to a wide range of finite-dimensional Lie group ac-
tions. Applications have included complete classifications of differential
invariants and their syzygies, [59], equivalence and symmetry properties of
submanifolds, rigidity theorems, invariant signatures in computer vision,
[2, 6, 8, 10, 26, 57], joint invariants and joint differential invariants, [7, 57],
rational and algebraic invariants of algebraic group actions, [28, 29], invari-
ant numerical algorithms, [32, 58, 76], classical invariant theory, [3, 56],
Poisson geometry and solitons, [43, 44, 45], Killing tensors arising in sepa-
ration of variables and general relativity, [48, 71], and the calculus of varia-
tions, [33]. New applications of these methods to computation of symmetry
groups and classification of partial differential equations can be found in
[42, 50, 51]. Maple software implementing the moving frame algorithms,
written by E. Hubert, can be found at [27]

Our main goal in this contribution is to survey the extension of the
moving frame theory to general Lie pseudo-groups recently put forth by the
authors in [60, 61, 62, 63], and in [14, 15] in collaboration with J. Cheh. Fol-
lowing [33], we develop the theory in the context of two different variational
bicomplexes — the first over the infinite jet bundle D(∞) ⊂ J∞(M,M) of
local diffeomorphisms of M , and the second over the infinite jet bundle
J∞(M,p) of p-dimensional submanifolds N ⊂M , [1, 33, 74]. The interplay
between these two bicomplexes underlies our moving frame constructions.
Importantly, the invariant contact forms on the diffeomorphism jet bun-
dle D(∞) will play the role of Maurer–Cartan forms for the diffeomorphism
pseudo-group. This identification enables us to explicitly formulate the dif-
feomorphism structure equations in the form of a simple formal power series
identity. Restricting the diffeomorphism-invariant forms to the pseudo-
group subbundle G(∞) ⊂ D(∞) yields a complete system of Maurer–Cartan
forms for the pseudo-group. The remarkable fact is that the Maurer–Cartan
forms satisfy an “invariantized” version of the linear infinitesimal determin-
ing equations for the pseudo-group, and, as a result, we can immediately
produce an explicit form of the pseudo-group structure equations. Applica-
tion of these results to the design of a practical computational algorithm for
directly determining the structure of symmetry (pseudo-)groups of partial
differential equations can be found in [4, 14, 15, 51].

Assuming freeness (as defined below) of the prolonged pseudo-group
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action at sufficiently high order, the explicit construction of the moving
frame is founded on the Cartan normalization procedure associated with a
choice of local cross-section to the pseudo-group orbits in J∞(M,p). The
moving frame induces an invariantization process that projects general dif-
ferential functions and differential forms on J∞(M,p) to invariant coun-
terparts. In particular, invariantization of the standard jet coordinates
results in a complete local system of normalized differential invariants,
while invariantization of the horizontal and contact one-forms yields an
invariant coframe. The corresponding dual invariant total derivative op-
erators will map invariants to invariants of higher order. The structure
of the algebra of differential invariants, including the specification of a fi-
nite generating set as well as a finite generating system for their syzygies
(differential relations), will then follow from the recurrence formulae that
relate the differentiated and normalized differential invariants. Remark-
ably, this final step requires only linear algebra and differentiation based
on the infinitesimal determining equations of the pseudo-group action, and
not the explicit formulae for either the differential invariants, the invariant
differential operators, or the moving frame. Except possibly for some low
order complications, the underlying structure of the differential invariant
algebra is then entirely governed by two commutative algebraic modules:
the symbol module of the infinitesimal determining system of the pseudo-
group and a new module, named the “prolonged symbol module”, built up
from the symbols of the prolonged infinitesimal generators.

The paper begins with a discussion of the most basic example — the
diffeomorphism pseudo-group of a manifold. The usual variational bicom-
plex structure on the diffeomorphism jets is employed to construct the
Maurer–Cartan forms as invariant contact forms, and write out the com-
plete system of structure equations. Section 3 shows how the structure
equations of a Lie pseudo-group are obtained by restricting the diffeo-
morphism structure equations to the solution space to the infinitesimal
determining equations. In section 4, we develop the moving frame con-
structions for the prolonged action on submanifold jets, and explain how
to determine a complete system of differential invariants. In section 5, we
explicitly derive the recurrence formulae for the differentiated invariants,
demonstrating, in particular,that the differential invariants of any tran-
sitive pseudo-group form a non-commutative rational differential algebra.
Finally, in section 6 we present a constructive version of the Basis Theo-
rem that provides a finite system of generating differential invariants for a
large class of pseudo-group actions and the generators of their differential
syzygies. Lack of space precludes us from including any serious examples,
and, for this, we refer the reader to [14, 15, 61, 62, 63].
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2. The Diffeomorphism Pseudo–Group.

Let M be a smooth m-dimensional manifold. Let D = D(M) de-
note the pseudo-group of all local diffeomorphisms1 ϕ : M →M . For each
0 ≤ n ≤ ∞, let D(n) = D(n)(M) ⊂ Jn(M,M) denote the nth order dif-
feomorphism jet groupoid, [41], with source map σ(n)

(
jnϕ|z

)
= z and

target map τ (n)
(
jnϕ|z

)
= ϕ(z) = Z. The groupoid multiplication is in-

duced by composition of diffeomorphisms. Following Cartan, [12, 13], we
will consistently use lower case letters, z, x, u, . . . for the source coordi-
nates and the corresponding upper case letters Z,X,U, . . . for the target
coordinates of our diffeomorphisms Z = ϕ(z). Given local coordinates
(z, Z) = (z1, . . . , zm, Z1, . . . , Zm) on an open subset of M × M , the in-
duced local coordinates of jnϕ|z ∈ D(n) are denoted g(n) = (z, Z(n)), where
the components ZaB of Z(n), for a = 1, . . . ,m, #B ≤ n, represent the
partial derivatives ∂Bϕa/∂zB of ϕ at the source point z = σ(n)(g(n)).

Since D(∞) ⊂ J∞(M,M), the inherited variational bicomplex struc-
ture, [1, 74], provides a natural splitting of the cotangent bundle T ∗D(∞)

into horizontal and vertical (contact) components, [1, 55], and we use
d = dM + dG to denote the induced splitting of the differential. In terms
of local coordinates g(∞) = (z, Z(∞)), the horizontal subbundle of T ∗D(∞)

is spanned by the one-forms dza = dM za, a = 1, . . . ,m, while the vertical
subbundle is spanned by the basic contact forms

Υa
B = dG Z

a
B = dZaB −

m∑

c=1

ZaB,c dz
c, a = 1, . . . ,m, #B ≥ 0. (2.1)

Composition of local diffeomorphisms induces an action of ψ ∈ D by
right multiplication on diffeomorphism jets: Rψ(jnϕ|z) = jn(ϕ ◦ψ−1)|ψ(z).

A differential form µ on D(n) is right-invariant if R∗
ψ µ = µ, where defined,

for every ψ ∈ D. Since the splitting of forms on D(∞) is invariant under
this action, if µ is any right-invariant differential form, so are dM µ and
dG µ. The target coordinate functions Za : D(0) → R are obviously right-
invariant, and hence their horizontal differentials

σa = dM Za =

m∑

b=1

Zab dz
b, a = 1, . . . ,m, (2.2)

form an invariant horizontal coframe, while their vertical differentials

µa = dG Z
a = Υa = dZa −

m∑

b=1

Zab dz
b, a = 1, . . . ,m, (2.3)

1Our notation for maps and functions allows the possibility that their domain be an
open subset of the source space, so in this case dom ϕ ⊂ M .
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are the zeroth order invariant contact forms. Let DZ1 , . . . ,DZm be the total
derivative operators dual to the horizontal forms (2.2), so that

dM F =

m∑

a=1

DzaF dza for any F : D(∞) → R. (2.4)

Then the higher-order invariant contact forms are obtained by successively
Lie differentiating the invariant contact forms (2.3):

µaB = D
B
Zµ

a = D
B
ZΥa, a = 1, . . . ,m, k = #B ≥ 0, (2.5)

where D
B
Z = DZb1 · · ·DZb

k
. As explained in [61], the right-invariant contact

forms µ(∞) = ( . . . µaB . . . ) are to be viewed as the Maurer–Cartan forms

for the diffeomorphism pseudo-group.
The next step in our program is to establish the structure equations

for the diffeomorphism groupoid D(∞). Let µ[[H ]] denote the column vec-
tor whose components are the invariant contact form-valued formal power
series

µa[[H ]] =
∑

#B≥ 0

1

B!
µaB H

B, a = 1, . . . ,m, (2.6)

depending on the formal parameters H = (H1, . . . , Hm). Further, let dZ =
µ[[ 0 ]] + σ denote column vectors of one-forms whose entries are dZa =
µa + σa for a = 1, . . . ,m.

Theorem 1. The complete structure equations for the diffeomorphism

pseudo-group are obtained by equating coefficients in the power series iden-

tities

dµ[[H ]] = ∇Hµ[[H ]] ∧
(
µ[[H ]] − dZ

)
,

d σ = − dµ[[ 0 ]] = ∇Hµ[[ 0 ]] ∧ σ.
(2.7)

Here ∇Hµ[[H ]] =

(
∂µa

∂Hb
[[H ]]

)
denotes the m × m formal power series

Jacobian matrix.

3. Lie Pseudo–Groups.

The literature contains several variants of the precise technical defini-
tion of a Lie pseudo-group. Ours is:

Definition 2. A sub-pseudo-group G ⊂ D will be called a Lie

pseudo-group if there exists n0 ≥ 1 such that for all finite n ≥ n0:

a) the corresponding sub-groupoid G(n) ⊂ D(n) forms a smooth, em-
bedded subbundle,

b) every smooth local solution Z = ϕ(z) to the determining system
G(n) belongs to G,
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c) G(n) = pr(n−n0) G(n0) is obtained by prolongation.
The minimal value of n0 is called the order of the pseudo-group.

Thus, on account of conditions (a) and (c), for n ≥ n0, the pseudo-

group jet subgroupoid G(n) ⊂ D(n) is defined in local coordinates by a
formally integrable system of nth order nonlinear partial differential equa-
tions

F (n)(z, Z(n)) = 0, (3.1)

known as the determining equations for the pseudo-group. Condition (b)
says that the set of local solutions Z = ϕ(z) to the determining equations
coincides with the set of pseudo-group transformations.

The key to analyzing pseudo-group actions is to work infinitesimally,
using the generating Lie algebra2 of vector fields. Let X = X (M) denote
the space of locally defined vector fields on M , which we write in local
coordinates as

v =

m∑

a=1

ζa(z)
∂

∂za
. (3.2)

Let JnTM , for 0 ≤ n ≤ ∞, denote the tangent n-jet bundle. Local co-
ordinates on JnTM are indicated by (z, ζ(n)) = ( . . . za . . . ζaB . . . ),
a = 1, . . . ,m,#B ≤ n, where the fiber coordinate ζaB represents the partial
derivative ∂Bζa/∂zB.

Let g ⊂ X denote the space of infinitesimal generators of the pseudo-
group, i.e., the set of locally defined vector fields (3.2) whose flows belong
to G. In local coordinates, we can view Jng ⊂ JnTM as defining a formally
integrable linear system of partial differential equations

L(n)(z, ζ(n)) = 0 (3.3)

for the vector field coefficients (3.2), called the linearized or infinitesimal

determining equations for the pseudo-group. They can be obtained by
linearizing the nth order determining equations (3.1) at the identity jet.
If G is the symmetry group of a system of differential equations, then the
linearized determining equations (3.3) are (the involutive completion of)
the usual determining equations for its infinitesimal generators obtained
via Lie’s algorithm, [54].

As with finite-dimensional Lie groups, the structure of a pseudo-group
can be described by its invariant Maurer–Cartan forms. A complete system
of right-invariant one-forms on G(∞) ⊂ D(∞) is obtained by restricting (or
pulling back) the Maurer–Cartan forms (2.2–2.5). For simplicity, we con-
tinue to denote these forms by σa, µaB. The restricted Maurer–Cartan forms

2Here, we are using the term “Lie algebra” loosely, since, technically, the vector
fields may only be locally defined, and so their Lie brackets only make sense on their
common domains of definition.
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are, of course, no longer linearly independent, but are subject to certain
constraints prescribed by the pseudo-group. Remarkably, these constraints
can be explicitly characterized by an invariant version of the linearized de-
termining equations (3.3), which is formally obtained by replacing source
coordinates za by the corresponding target coordinates Za and vector field
jet coordinates ζaB by the corresponding Maurer–Cartan form µaB .

Theorem 3. The linear system

L(n)(Z, µ(n)) = 0 (3.4)

serves to define the complete set of dependencies among the right-invariant

Maurer–Cartan forms µ(n) on G(n). Consequently, the structure equations

for G are obtained by restriction of the diffeomorphism structure equations

(2.7) to the kernel of the linearized involutive system (3.4).

In this way, we effectively and efficiently bypass Cartan’s more com-
plicated prolongation procedure, [9, 13], for accessing the pseudo-group
structure equations. Examples of this procedure can be found in [14, 61];
see also [51] for a comparison with other approaches.

Example 4. Let us consider the particular pseudo-group

X = f(x), Y = e(x, y) ≡ f ′(x) y + g(x),

U = u+
ex(x, y)

f ′(x)
= u+

f ′′(x) y + g′(x)

f ′(x)
,

(3.5)

acting on M = R3, with local coordaintes (x, y, u). Here f(x) ∈ D(R),
while g(x) ∈ C∞(R). The determining equations are the first order invo-
lutive system

Xy = Xu = 0, Yy = Xx 6= 0, Yu = 0, Yx = (U − u)Xx, Uu = 1.

(3.6)
The infinitesimal generators of the pseudo-group have the form

v = ξ
∂

∂x
+ η

∂

∂y
+ ϕ

∂

∂u

= a(x)
∂

∂x
+
[
a′(x) y + b(x)

] ∂
∂y

+
[
a′′(x) y + b′(x)

] ∂
∂u

,

(3.7)

where a(x), b(x) are arbitrary smooth functions. The infinitesimal genera-
tors (3.7) form the general solution to the first order involutive infinitesimal
determining system

ξx = ηy , ξy = ξu = ηu = ϕu = 0, ηx = ϕ, (3.8)

obtained by linearizing (3.6) at the identity.
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The Maurer–Cartan forms are obtained by repeatedly differentiating
µ = dGX , µ̃ = dG Y , ν = dG U , so that µj,k,l = D

j
XDk

YDl
Uµ, etc.

According to Theorem 3, they are subject to the linear relations

µX = µ̃Y , µY = µU = µ̃U = νU = 0, µ̃X = ν, (3.9)

along with all their “differential” consequences. Writing out (2.7), we are
led to the following structure equations

dµn = σ ∧ µn+1 −

[ (n+1)/2 ]∑

j=1

n− 2j + 1

n+ 1

(
n+ 1

j

)
µj ∧ µn+1−j ,

dµ̃n = σ ∧ µ̃n+1 + σ̃ ∧ µn+1 −

n−1∑

j=0

n− 2j − 1

n+ 1

(
n+ 1

j + 1

)
µ̃j+1 ∧ µn−j,

dσ = − dµ = − σ ∧ µX ,

dσ̃ = − dµ̃ = − σ ∧ µ̃X − σ̃ ∧ µX ,

dτ = − dν = − dµ̃X = − σ ∧ µ̃XX − σ̃ ∧ µXX ,
(3.10)

in which σ = dM X, σ̃ = dM Y, τ = dM U , and µn = µn,0,0, µ̃n = µ̃n,0,0, for
n = 0, 1, 2, . . . , form a basis for the Maurer–Cartan forms of the pseudo-
group. See [61] for full details.

4. Pseudo–Group Actions on Submainfolds.

Our primary focus is to study the induced action of pseudo-groups on
submanifolds. For 0 ≤ n ≤ ∞, let Jn = Jn(M,p) denote the nth order
(extended) jet bundle consisting of equivalence classes of p-dimensional
submanifolds S ⊂ M under the equivalence relation of nth order contact,
cf. [55]. We employ the standard local coordinates

z(n) = (x, u(n)) = ( . . . xi . . . uαJ . . . ) (4.1)

on Jn induced by a splitting of the local coordinates

z = (x, u) = (x1, . . . , xp, u1, . . . , uq)

on M into p independent and q = m − p dependent variables, [54, 55].
The choice of independent and dependent variables induces the variational
bicomplex structure on J∞, [1, 74]. The basis horizontal forms are the dif-
ferentials dx1, . . . , dxp of the independent variables, while the basis contact

forms are denoted by

θαJ = duαJ −

p∑

i=1

uαJ,i dx
i, α = 1, . . . , q, #J ≥ 0. (4.2)

This decomposition splits the differential d = dH + dV on J∞ into hori-
zontal and vertical (or contact) components, and endows the space of dif-
ferential forms with the structure of a variational bicomplex, [1, 33, 74].
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Local diffeomorphisms ϕ ∈ D preserve the contact equivalence relation
between submanifolds, and thus induce an action on the jet bundle Jn =
Jn(M,p), known as the nth prolonged action, which, by the chain rule,
factors through the diffeomorphism jet groupoid D(n). Let H(n) denote the
groupoid obtained by pulling back the pseudo-group jet groupoid G(n) →M
via the projection π̃n0 : Jn → M . Local coordinates on H(n) are written
(x, u(n), g(n)), where (x, u(n)) are the submanifold jet coordinates on Jn,
while the fiber coordinates g(n) serve to parametrize the pseudo-group jets.

Definition 5. A moving frame ρ(n) of order n is a G(n) equivariant
local section of the bundle H(n) → Jn.

Thus, in local coordinates, the moving frame section has the form

ρ(n)(x, u(n)) = (x, u(n), γ(n)(x, u(n))), where g(n) = γ(n)(x, u(n)) (4.3)

defines a right equivariant map to the pseudo-group jets. A moving frame
ρ(k) : Jk → H(k) of order k > n is compatible with ρ(n) provided π̂kn ◦ρ(k) =
ρ(n) ◦ π̃kn where defined, with π̂kn : H(k) → H(n) and π̃kn : Jk → Jn denoting
the evident projections. A complete moving frame is provided by a mutually
compatible collection of moving frames of all orders k ≥ n.

As in the finite-dimensional construction, [23], the (local) existence of
a moving frame requires that the prolonged pseudo-group action be free
and regular.

Definition 6. The pseudo-group G acts freely at z(n) ∈ Jn if its
isotropy subgroup is trivial,

G
(n)

z(n) =
{

g(n) ∈ G(n)
∣∣∣ g(n) · z(n) = z(n)

}
=
{

11(n)
z

}
, (4.4)

and locally freely if G
(n)

z(n) is a discrete subgroup.

Warning: According to the standard definition, [23], any (locally) free ac-
tion of a finite-dimensional Lie group satisfies the (local) freeness condition
of Definition 6, but not necessarily conversely.

The pseudo-group acts locally freely at z(n) if and only if the prolonged
pseudo-group orbit through z(n) has dimension rn = dimG(n)|z. Thus,
freeness of the pseudo-group at order n requires, at the very least, that

rn = dimG(n)|z ≤ dimJn = p+ (m− p)

(
p+ n

p

)
. (4.5)

Freeness thus provides an alternative and simpler means of quantifying the
Spencer cohomological growth conditions imposed on the pseudo-group in
[34, 35]. Pseudo-groups having too large a fiber dimension rn will, typically,
act transitively on (a dense open subset of) Jn, and thus possess no non-
constant differential invariants. A key result of [63], generalizing the finite-
dimensional case, is the persistence of local freeness.
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Theorem 7. Let G be a Lie pseudo-group acting on an m-dimensional

manifold M . If G acts locally freely at z(n) ∈ Jn for some n > 0, then it

acts locally freely at any z(k) ∈ Jk with π̃kn(z
(k)) = z(n), for k ≥ n.

As in the finite-dimensional version, [23], moving frames are con-
structed through a normalization procedure based on a choice of cross-

section to the pseudo-group orbits, i.e., a transverse submanifold of the
complementary dimension.

Theorem 8. Suppose G(n) acts freely on an open subset Vn ⊂ Jn, with

its orbits forming a regular foliation. Let Kn ⊂ Vn be a (local) cross-section

to the pseudo-group orbits. Given z(n) ∈ Vn, define ρ(n)(z(n)) ∈ H(n)

to be the unique pseudo-group jet such that σ̃(n)(ρ(n)(z(n))) = z(n) and

τ̃ (n)(ρ(n)(z(n))) ∈ Kn (when such exists). Then ρ(n) : Jn → H(n) is a

moving frame for G defined on an open subset of Vn containing Kn.

Usually — and, to simplify the development, from here on — we select
a coordinate cross-section of minimal order, defined by fixing the values of
rn of the individual submanifold jet coordinates (x, u(n)). We write out the
explicit formulae (X,U (n)) = F (n)(x, u(n), g(n)) for the prolonged pseudo-
group action in terms of a convenient system of pseudo-group parameters
g(n) = (g1, . . . , grn

). The rn components corresponding to our choice of
cross-section variables serve to define the normalization equations

F1(x, u
(n), g(n)) = c1, . . . Frn

(x, u(n), g(n)) = crn
, (4.6)

which, when solved for the pseudo-group parameters g(n) = γ(n)(x, u(n)),
produces the moving frame section (4.3).

With the moving frame in place, the general invariantization procedure
introduced in [33] in the finite-dimensional case adapts straightforwardly.
To compute the invariantization of a function, differential form, differential
operator, etc., one writes out how it explicitly transforms under the pseudo-
group, and then replaces the pseudo-group parameters by their moving
frame expressions (4.3). Invariantization defines a morphism that projects
the exterior algebra differential functions and forms onto the algebra of
invariant differential functions and forms. In particular, invariantizing the
coordinate functions on J∞ leads to the normalized differential invariants

Hi = ι(xi), i = 1, . . . , p, IαJ = ι(uαJ ), α = 1, . . . , q, #J ≥ 0, (4.7)

collectively denoted by (H, I(n)) = ι(x, u(n)). The normalized differen-
tial invariants naturally split into two subspecies: those appearing in the
normalization equations (4.6) will be constant, and are known as the phan-

tom differential invariants. The remaining sn = dim Jn − rn components,
called the basic differential invariants, form a complete system of func-
tionally independent differential invariants of order ≤ n for the prolonged
pseudo-group action on p-dimensional submanifolds.
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Secondly, invariantization of the basis horizontal one-forms leads to
the invariant one-forms

̟i = ι(dxi) = ωi + κi, i = 1, . . . , p, (4.8)

where ωi, κi denote, respectively, the horizontal and vertical (contact) com-
ponents. If the pseudo-group acts projectably, then the contact components
vanish: κi = 0. The horizontal forms ω1, . . . , ωp provide, in the language
of [55], a contact-invariant coframe on J∞. The dual invariant differential
operators D1, . . . ,Dp are uniquely defined by the formula

dF =

p∑

i=1

DiF ̟i + · · · , (4.9)

valid for any differential function F , where the dots indicate contact com-
ponents which are not needed here, but do play an important role in the
study of invariant variational problems, cf. [33]. The invariant differential
operators Di map differential invariants to differential invariants. In gen-
eral, they do not commute, but are subject to linear commutation relations
of the form

[
Di,Dj

]
=

p∑

k=1

Y kij Dk, i, j = 1, . . . , p, (4.10)

where the coefficients Y kij are certain differential invariants. Finally, invari-
antizing the basis contact one-forms

ϑαK = ι(θαK), α = 1, . . . , q, #K ≥ 0, (4.11)

provide a complete system of invariant contact one-forms. The invariant
coframe serves to define the invariant variational complex for the pseudo-
group, [33].

The Basis Theorem for differential invariants states that, assuming
freeness of the sufficiently high order prolonged pseudo-group action, then
locally, there exist a finite number of generating differential invariants

I1, . . . , Iℓ, with the property that every differential invariant can be locally
expressed as a function of the generating invariants and their invariant
derivatives:

DJIκ = Dj1Dj2 · · ·DjkIκ.

The differentiated invariants are not necessarily independent, but may be
subject to certain functional relations or differential syzygies of the form

H( . . . DJIκ . . . ) ≡ 0. (4.12)
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A consequence of our moving frame methods is a constructive algorithm
for producing a (not necessarily minimal) system of generating differen-
tial invariants, as well as a complete, finite system of generating syzygies,
meaning that any other syzygy is a differential consequence thereof.

Example 9. Consider the action of the pseudo-group (3.5) on sur-
faces u = h(x, y). Under the pseudo-group transformations, the basis hor-
izontal forms dx, dy are mapped to the one-forms

dH X = fx dx, dH Y = ex dx + fx dy. (4.13)

The prolonged pseudo-group transformations are found by applying the
dual implicit differentiations

DX =
1

fx
Dx −

ex
f2
x

Dy , DY =
1

fx
Dy ,

successively to U = u+ ex/fx, so that

UX =
ux
fx

+
exx − ex uy

f2
x

− 2
fxx ex
f3
x

, UY =
uy
fx

+
fxx
f2
x

,

UXX =
uxx
f2
x

+
exxx − exx uy − 2 ex uxy − fxx ux

f3
x

+

+
e2x uyy + 3 exfxx uy − 4 exx fxx − 3 ex fxxx

f4
x

+ 8
ex f

2
xx

f5
x

,

UXY =
uxy
f2
x

+
fxxx − fxx uy − ex uyy

f3
x

− 2
f2
xx

f4
x

, UY Y =
uyy
f2
x

,

(4.14)
and so on. In these formulae, the jet coordinates f, fx, fxx, . . . , e, ex, exx, . . .
are to be regarded as the independent pseudo-group parameters. The
pseudo-group cannot act freely on J1 since r1 = dimG(1)|z = 6 > dimJ1 =

5. On the other hand, r2 = dimG(2)|z = 8 = dimJ2, and the action on J2

is, in fact, locally free and transitive on the sets V2
+ = J2 ∩ {uyy > 0} and

V2
− = J2 ∩ {uyy < 0}. Moreover, as predicted by Theorem 7, G(n) acts

locally freely on the corresponding open subsets of Jn for any n ≥ 2.
To construct the moving frame, we successively solve the following

coordinate cross-section equations for the pseudo-group parameters:

X = 0, f = 0,

Y = 0, e = 0,

U = 0, ex = − u fx,

UY = 0, fxx = − uy fx,

UX = 0, exx = (u uy − ux) fx,

UY Y = 1, fx =
√
uyy ,
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UXY = 0, fxxx = −
√
uyy

(
uxy + uuyy − u2

y

)
,

UXX = 0, exxx = −
√
uyy

(
uxx − uuxy − 2 u2uyy − 2uxuy + uu2

y

)
.

At this stage, we can construct the first two fundamental differential in-
variants:

J1 = ι(uxyy) =
uxyy + uuyyy + 2 uyuyy

u
3/2
yy

, J2 = ι(uyyy) =
uyyy

u
3/2
yy

. (4.15)

Higher order differential invariants are found by continuing this procedure,
or by employing the more powerful Taylor series method developed in [62].
Further, substituting the pseudo-group normalizations into (4.13) fixes the
invariant horizontal coframe

ω1 = ι(dx) =
√
uyy dx, ω2 = ι(dy) =

√
uyy (dy − u dx). (4.16)

The dual invariant total derivative operators are

D1 =
1√
uyy

(Dx + uDy), D2 =
1√
uyy

Dy . (4.17)

The higher-order differential invariants can be generated by successively
applying these differential operators to the pair of basic differential invari-
ants (4.15). The commutation relation is

[D1,D2 ] = − 1
2 J2D1 + 1

2 J1D2. (4.18)

Finally, there is a single generating syzygy among the differentiated invari-
ants:

D1J2 −D2J1 = 2, (4.19)

from which all others can be deduced by invariant differentiation.

5. Recurrence Formulae.

Since the basic differential invariants arising from invariantization of
the jet coordinates form a complete system, any other differential invari-
ant, e.g., one obtained by application of the invariant differential opera-
tors, can be locally written as a function thereof. The recurrence formulae,
cf. [23, 33], connect the differentiated invariants and invariant differential
forms with their normalized counterparts. These formulae are fundamen-
tal, since they prescribe the structure of the algebra of (local) differential
invariants, underly a full classification of generating differential invariants
and their differential syzygies, as well as the structure of invariant varia-
tional problems and, indeed, the entire invariant variational bicomplex. As
in the finite-dimensional version, the recurrence formulae are established,
using only linear algebra and differentiation, using only the formulas for
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the prolonged infinitesimal generators and the cross-section. In particu-
lar, they do not require the explicit formulae for either the moving frame,
or the Maurer–Cartan forms, or the normalized differential invariants and
invariant forms, or even the invariant differential operators!

Let ν(∞) = (ρ(∞))∗ µ(∞) denote the one-forms on J∞ obtained by
pulling back the Maurer–Cartan forms on H(∞) via the complete moving
frame section ρ(∞) : J∞ → H(∞), with individual components

νbA = (ρ(∞))∗ (µbA) =

p∑

i=1

SbA,i ω
i +
∑

α,K

T b,KA,αϑ
α
K ,

b = 1, . . . ,m,

#A ≥ 0.
(5.1)

The coefficients SbA,i, T
b,K
A,α will be called the Maurer–Cartan invariants.

Their explicit formulas will be a direct consequence of the recurrence re-
lations for the phantom differential invariants. In view of Theorem 3, the
pulled-back Maurer–Cartan forms are subject to the linear relations

L(n)(H, I, ν(n)) = ι
[
L(n)(z, ζ(n))

]
= 0, n ≥ 0, (5.2)

obtained by invariantizing the original linear determining equations (3.3),
where we set ι(ζbA) = νbA, and where (H, I) = ι(x, u) = ι(z) are the zeroth

order differential invariants in (4.7). In particular, if G acts transitively
on M , then, since we are using a minimal order moving frame, (H, I) are
constant phantom invariants.

Given a locally defined vector field

v =

m∑

a=1

ζa(z)
∂

∂za
=

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
∈ X (M), (5.3)

let

v(∞) =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

∑

k=#J ≥ 0

ϕ̂ αJ (x, u(k))
∂

∂uαJ
∈ X (J∞(M,p))

(5.4)
denote its infinite prolongation. The coefficients are computed via the usual
prolongation formula,

ϕ̂ αJ = DJ Q
α +

p∑

i=1

uαJ,i ξ
i, (5.5)

where

Qα = ϕα −

p∑

i=1

uαi ξ
i, α = 1, . . . , q, (5.6)

are the components of the characteristic of v; cf. [54, 55]. Consequently,
each prolonged vector field coefficient

ϕ̂ α
J = ΦαJ (u(n), ζ(n)) (5.7)
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is a certain universal linear combination of the vector field jet coordinates,
whose coefficients are polynomials in the submanifold jet coordinates uβK
for 1 ≤ #K ≤ n. Let

ηi = ι(ξi) = νi, ψ̂αJ = ι(ϕ̂ α
J ) = ΦαJ (I(n), ν(n)), (5.8)

denote their invariantizations, which are certain linear combinations of the
pulled-back Maurer–Cartan forms νbA, whose coefficients are polynomials

in the normalized differential invariants IβK for 1 ≤ #K ≤ #J .
With all these in hand, we can formulate the universal recurrence

formula, from which all other recurrence formulae follow.

Theorem 10. If Ω is any differential form on J∞, then

d ι(Ω) = ι
[
d Ω + v(∞)(Ω)

]
, (5.9)

where v(∞)(Ω) denotes the Lie derivative of Ω with respect to the prolonged

vector field (5.4), and we use (5.8) and its analogs for the partial derivatives

of the prolonged vector field coefficients when invariantizing the result.

Specializing Ω in (5.9) to be one of the coordinate functions xi, uαJ
yields recurrence formulae for the normalized differential invariants (4.7),

dH i = ι
(
dxi + ξi

)
= ̟i + ηi,

dIαJ = ι
(
duαJ + ϕ̂ α

J

)
= ι

(
p∑

i=1

uαJ,i dx
i + θαJ + ϕ̂ αJ

)

=

p∑

i=1

IαJ,i̟
i + ϑαJ + ψ̂αJ ,

(5.10)

where, as in (5.8), each ψ̂αJ is written in terms of the pulled-back Maurer–
Cartan forms νbA, which are subject to the linear constraints (5.2). Each
phantom differential invariant is, by definition, normalized to a constant
value, and hence has zero differential. Consequently, the phantom recur-
rence formulae in (5.10) form a system of linear algebraic equations which
can, as a result of the transversality of the cross-section, be uniquely solved
for the pulled-back Maurer–Cartan forms.

Theorem 11. If the pseudo-group acts locally freely on Vn ⊂ Jn,
then the nth order phantom recurrence formulae can be uniquely solved

to express the pulled-back Maurer–Cartan forms νbA of order #A ≤ n as

invariant linear combinations of the invariant horizontal and contact one-

forms ̟i, ϑαJ .

Substituting the resulting expressions (5.1) into the remaining, non-
phantom recurrence formulae in (5.10) leads to a complete system of recur-
rence relations, for both the vertical and horizontal differentials of all the
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normalized differential invariants. In particular, equating the coefficients
of the forms ωi leads to individual recurrence formulae for the normalized
differential invariants:

DiH
j = δji +M j

i , DiI
α
J = IαJ,i +Mα

J,i, (5.11)

where δji is the Kronecker delta, and the correction terms M j
i ,M

α
J,i are

certain invariant linear combinations of the Maurer–Cartan invariants SbA,i.
One complication, to be dealt with in the following section, is that the
correction term Mα

J,i can have the same order as the initial differential
invariant IαJ,i.

It is worth pointing out that, since the prolonged vector field coef-
ficients ϕ̂ αJ are polynomials in the jet coordinates uβK of order #K ≥ 1,
their invariantizations are polynomial functions of the differential invariants
IβK for #K ≥ 1. Since the correction terms are constructed by solving a
linear system for the invariantized Maurer–Cartan forms (5.1), the Maurer–
Cartan invariants depend rationally on these differential invariants. Thus,
in most cases (including the majority of applications), the resulting dif-
ferential invariant algebra is endowed with an entirely rational algebraic
recurrence structure.

Theorem 12. If G acts transitively on M , or, more generally, its

infinitesimal generators depend rationally on the coordinates z = (x, u) ∈
M , then the correction terms M j

i ,M
α
J,i in the recurrence formulas (5.10)

are rational functions of the basic differential invariants.

6. The Symbol Modules.

While the devil is in the details, the most important properties (Cartan
characters, ellipticity, finite or infinite type, etc.) of a system of partial dif-
ferential equations are fixed by the algebraic properties of its symbol mod-
ule. For the action of a pseudo-group on submanifolds, there are, in fact,
two interrelated submodules that prescribe the key structural features of
the pseudo-group and its induced differential invariant algebra: the symbol
module of its infinitesimal determining equations and the related prolonged
symbol module governing its prolonged infinitesimal generators on the sub-
manifold jet space. In particular, except for some low order complications,
the generators of the differential invariant algebra and the associated differ-
ential syzygies can be identified with the algebraic generators and algebraic
syzygies of an invariantized version of the prolonged symbol module. In
this manner, constructive Gröbner basis techniques from commutative alge-
bra can be applied to pin down the non-commutative differential algebraic
structure of the pseudo-group’s differential invariants.

To avoid technical complications, we will work in the analytic category.
Let G be a pseudo-group, and let (3.3) be the formally integrable completion
of its linearized determining equations. At each z ∈ M , we let I|z denote
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the symbol module of the determining equations, which, by involutivity,
forms a submodule of the R[t ] module

T =

{
η(t, T ) =

m∑

a=1

ηa(t)T
a

}
≃ R[t ] ⊗Rm (6.1)

consisting of real polynomials in t = (t1, . . . , tm) and T = (T 1, . . . , Tm)
that are linear in the T ’s. Assuming regularity, the symbol module’s Hilbert

polynomial, [17],

H(n) =
d∑

i=0

bi

(
n

d− i

)
, (6.2)

where b0, b1, . . . , bd ∈ Z, does not depend on z ∈ M . The integer 0 ≤
d ≤ m is the dimension, while b = b0, its degree, is strictly positive unless

I|z = T , in which case H̃(n) ≡ 0 and the pseudo-group is purely discrete.
Assuming solvability by the Cartan–Kähler Theorem, [9, 55], the general
solution to the determining equations — that is, the general pseudo-group
transformation — can be written in terms of b arbitrary functions of d
variables. In particular, the system is of finite type — and hence G is, in
fact, a b-dimensional Lie group action — if and only if the symbol module
has dimension d = 0. See Seiler, [67, 68], for additional details.

The prolonged infinitesimal generators of the pseudo-group on the sub-
manifold jet bundle have an analogous prolonged symbol module. Let

Ŝ =

{
σ̂(s, S) =

q∑

α=1

σ̂α(s)Sα

}
≃ R[s] ⊗Rq (6.3)

be the R[s] module consisting of polynomials in s = (s1, . . . , sp), S =

(S1, . . . , Sq), which are linear in the S’s. At each submanifold 1-jet z(1) =
(x, u(1)) = (. . . xi . . . uα . . . uαi . . .) ∈ J1(M,p), we define a linear map

β|z(1) : Rm × Rm → Rm

by the formulas

si = βi(z
(1); t) = ti +

q∑

α=1

uαi tp+α, i = 1, . . . , p,

Sα = Bα(z(1);T ) = T p+α −

p∑

i=1

uαi T
i, α = 1, . . . , q.

(6.4)

The induced pull-back map

(β|z(1))
∗[ σ̂(s1, . . . , sp, S1, . . . , Sq)

]

= σ̂
(
β1(z

(1); t), . . . , βp(z
(1); t), B1(z(1);T ) . . . , Bq(z(1);T )

) (6.5)
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defines an injection (β|z(1))
∗ : Ŝ → T .

Definition 13. The prolonged symbol submodule at z(1) ∈ J1|z is
the inverse image of the symbol module under this pull-back map:

J |z(1) = ((β|z(1))
∗)−1(I|z) =

{
σ(s, S)

∣∣ (β|z(1))
∗(σ) ∈ I|z

}
⊂ Ŝ. (6.6)

It can be proved that, as long as n > n⋆, the module J |z(1) coin-
cides with the symbol module associated with the prolonged infinitesimal
generators (5.4); see [63] for precise details.

To relate this construction to the differential invariant algebra, we
need to invariantize the modules using our moving frame. In general, the
invariantization of a prolonged symbol polynomial

σ(x, u(1); s, S) =
∑

α,J

hJα(x, u(1)) sJS
α ∈ J |z(1) , where z(1) = (x, u(1)),

is given by

σ̃(H, I(1); s, S) = ι
[
σ(x, u(1); s, S)

]
=
∑

α,J

hJα(H, I(1)) sJS
α. (6.7)

Let J̃ |(H,I(1)) = ι(J |z(1)) denote the resulting invariantized prolonged sym-

bol submodule. We identify each parametrized symbol polynomial (6.7)
with the differential invariant

Iσ̃ =
∑

α,J

hJα(H, I(1)) IαJ . (6.8)

If G acts transitively on an open subset of J1, then J̃ = J̃ |(H,I(1)) is a
fixed module, independent of the submanifold jet coordinates, and (6.8)
is a linear, constant coefficient combination of the normalized differential
invariants.

The recurrence formulae for these differential invariants take the form

Di Iσ̃ = Isi σ̃
+Mσ̃,i, (6.9)

in which, as long as n = deg σ̃ > n⋆, the leading term Isi σ̃
is a differential

invariant of order = n+1, while, unlike in (5.11), the correction term Mσ̃,i

is of lower order ≤ n. Iteration leads to the higher order recurrences

DJ Iσ̃ = IsJ σ̃
+Mσ̃,J , (6.10)

where J = (j1, . . . , jk) is an ordered multi-index of order k, and, assuming
order Iσ̃ = deg σ̃ = n > n⋆, the correction term Mσ̃,J has order < k + n =

deg
[
sJ σ̃(s, S)

]
.

With this in hand, we are able to state a Constructive Basis Theorem
for the differential invariant algebra of an eventually locally freely acting
pseudo-group.
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Theorem 14. Let G be a Lie pseudo-group that acts locally freely on

an open subset of the submanifold jet bundle at order n⋆. Then the follow-

ing constitute a finite generating system for its algebra of local differential

invariants :
a) the differential invariants Iν = Iσν

, whose polynomials σ1, . . . , σl
form a Gröbner basis for the invariantized prolonged symbol sub-

module, and, possibly,

b) a finite number of additional differential invariants of order ≤ n⋆.

As noted above, the listed differential invariants do not typically form a
minimal generating system, and the characterization of minimal generators
remains a challenging open problem.

We are also able to exhibit a finite generating system of differential
invariant syzygies — again not necessarily minimal. First, owing to the
non-commutative nature of the the invariant differential operators, (4.10),
we have the commutator syzygies

DJ Iσ̃ −D eJ Iσ̃ = Mσ̃,J −Mσ̃, eJ ≡ NJ, eJ,σ̃, whenever J̃ = π(J) (6.11)

for some permutation π of the multi-index J . Provided deg σ̃ > n⋆, the
right hand side NJ, eJ,σ̃ is a differential invariant of lower order than those
on the left hand side.

In addition, any commutative algebraic syzygy satisfied by polyno-
mials in the prolonged symbol module J̃ |(H,I(1)) provides an additional
“essential” syzygy amongst the differentiated invariants. In detail, to each
invariantly parametrized polynomial

q(H, I(1); s) =
∑

J

qJ(H, I(1))sJ ∈ R[s] (6.12)

we associate an invariant differential operator

q(H, I(1);D) =
∑

J

qJ(H, I(1))DJ . (6.13)

Our convention is that the sums range over non-decreasing multi-indices
1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ p, for k = #J , and where, for specificity, we
adopt the normal ordering when writing DJ = Dj1Dj2 · · · Djk . In view of

(6.10), whenever σ̃(H, I(1); s, S) ∈ J̃ |(H,I(1)), we can write

q(H, I(1);D) Iσ̃(H,I(1);s,S) = Iq(H,I(1);s) σ̃(H,I(1);s,S) +Rq,σ̃, (6.14)

where Rq,σ̃ has order < deg q + deg σ̃. In particular, any algebraic syzygy

l∑

ν=1

qν(H, I
(1), s)σν(H, I

(1); s, S) = 0 (6.15)
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among the Gröbner basis polynomials of the invariantized prolonged sym-
bol module induces a syzygy among the generating differential invariants:

l∑

ν=1

qν(H, I
(1),D) Iσ̃ν

(H, I(1); s, S) = R, (6.16)

where orderR < max {deg qν + deg σ̃ν}.

Theorem 15. Every differential syzygy among the generating differ-

ential invariants is a combination of the following:

a) the syzygies among the differential invariants of order ≤ n⋆,
b) the commutator syzygies,

c) syzygies coming from an algebraic syzygy among the Gröbner basis

polynomials.

In this manner, we deduce a finite system of generating differential syzygies

for the differential invariant algebra of our pseudo-group.

Further details, and applications of these results can be found in our
papers listed in the references.
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