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This is a supplement to Example 3.3 of [3], correcting the original statement about
the computation of a higher order moving frame for plane curves C ⊂ R

2 under the action
of the special affine (or equi-affine) group SA(2) at an inflection point. Also note further
corrections to that Example in the updated version posted on the author’s website:

http://www.math.umn.edu/∼olver/mf /smf.pdf

The author thanks Zhangchi Chen for alerting him to this possibility and correspondence
on the subject.

As in [3; Example 3.3], the equi-affine geometry of curves in the plane is governed by
the standard action

g: (x, u) 7−→ (αx+ βu+ a, γ x+ δu+ b), αδ − βγ = 1, (1)

of the special affine group, g ∈ SA(2) = SL(2) ⋉ R
2, acting on M = R

2. To obtain
a left equivariant moving frame, we begin by inverting the group transformations. The
components of w = (y, v) = g−1 · (x, u) are

y = δ (x− a)− β (u− b), v = −γ (x− a) + α(u− b). (2)

Let

dy = σ dx where σ = δ − βux, (3)

so that the dual implicit differentiation operator is

Dy = (Dxy)
−1Dx = σ−1Dx. (4)
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The explicit formulae for the fifth prolongation are obtained by repeatedly applying Dy to
v, yielding

vy =
αux − γ

σ
, vyy =

uxx

σ3
, vyyy =

σuxxx + 3βu2
xx

σ5
,

vyyyy =
σ2uxxxx + 10βσuxxuxxx + 15β2u3

xx

σ7
,

vyyyyy =
σ3uxxxxx + βσ2

(

15uxxuxxxx + 10u2
xxx

)

+ 105β2σu2
xxuxxx + 105β3u4

xx

σ9
.

(5)

The standard moving frame, which has order 3, requires that the curve not have an in-
flection point, i.e., that uxx 6= 0. See the corrected version of [3; Example 3.3] for that
computation using the equivariant moving frame calculus, and [2] for the classical Cartan
approach.

To obtain a moving frame that allows inflection points, we note that the prolonged
action of SA(2) is free on V5 = J5 \ S5, where S5 = {uxx = uxxx = 0} is the singular
subvariety. We can thus use the cross-section†

y = 0, v = 0, vy = 0, vyyy = 1, vyyyyy = 0, (6)

to compute the (left) equivariant moving frame. Substituting the prolongation formulae
(2–5), the first two normalization equations produce the translation components: a = x,
b = u. The third implies

γ = αux. (7)

We then skip to the last equation: vyyyyy = 0. Since the numerator is a homogeneous

cubic polynomial in β, σ, we can solve for

β = Qσ, (8)

where Q is a complicated rational algebraic function of ux, . . . , uxxxxx, which can be ex-
plicitly written down using the Cardano formula for the roots of the cubic, [4].

Remark : When uxx = 0, the cubic degenerates into the product of σ2 and a homoge-
neous linear polynomial in β, σ; in other words, as uxx → 0, two of its three roots go off
to ∞ on the projective line. To keep the moving frame well-defined at such an inflection
point, one thus needs to choose the branch in the Cardano formula that remains finite.

Substituting (8) into the remaining normalization equation vyyy = 1 yields

σ5 =
(

uxxx + 3u2
xxQ

)

σ, and therefore σ = S = 4

√

uxxx + 3u2
xxQ . (9)

The resulting moving frame will be valid on the subset

V5
+ =

{

uxxx + 3u2
xxQ > 0

}

⊂ V5.

† Setting vyyyy = 0 requires uxx = 0, and so is not of use for this purpose.
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If uxxx + 3u2
xxQ < 0, one uses the alternative cross-section normalization vyyy = −1 with

analogous results. Also, as with almost all moving frame calculations in the literature, we
ignore the discrete ambiguity in the branch of the fourth root caused by the fact that the
prolonged action of SA(2) is locally but not globally free on V5, [1].

Finally, substituting formulas (3, 7, 8, 9) into the unimodularity constraint (1) will
produce the formulae for the fifth order left-equivariant moving frame ρ :V5

+ → SA(2)
corresponding to the cross-section (6):

(

α β
γ δ

)

=

(

1/S QS
ux/S S(1 + uxQ)

)

,

(

a
b

)

=

(

x
u

)

. (10)

The first two fundamental differential invariants are

vyy 7−→ I2 = ι(uxx) =
uxx

S3
,

vyyyy 7−→ I4 = ι(uxxxx) =
uxxxx + 10uxxuxxx Q+ 15u3

xx Q
2

S5
,

(11)

where ι denotes the invariantization map associated with the moving frame, [1]. Both
I2 and I4 are fifth order differential invariants, valid at nondegenerate inflection points.
(Their expressions in terms of the equi-affine curvature and its arc length derivatives can
be straightforwardly obtained using the recurrence formulae and the Replacement Rule,
[1].) The (contact-)invariant one-form ω = ι(dx) is obtained by normalizing dy = σ dx,
whence

ω = S dx with dual invariant differential operator D = (1/S)Dx, (12)

where S, as given in (9), has order 5, which is again valid at suitably nondegenerate
inflection points.

Since the moving frame has order 5, according to [1; Theorem 13.1], all higher order
differential invariants can be obtained by invariantly differentiating those of order ≤ 6,
namely I2, I4, and I6 = ι(uxxxxxx). Moreover, according to the first two recurrence formu-
lae†

DI2 =
9I32I6 − 45I22I

2
4 + 30I2I4 + 40

20(3I2I4 + 2)
, D I4 =

3I22 I4I6 − 8I2I6 − 15I2I
3
4 − 10I24

4(3I2I4 + 2)
, (13)

knowing I2 and I4 and differentiating either one of them produces I6, and hence all higher
order differential invariants.

At an inflection point, uxx = 0 with uxxx 6= 0, the formulas simplify dramatically:

Q = − 1

10
u−2
xxxuxxxxx, S = u1/4

xxx,

and hence the moving frame map at such points is given by

(

α β
γ δ

)

=

(

u
−1/4
xxx − 1

10
u
−7/4
xxx uxxxxx

uxu
−1/4
xxx u

1/4
xxx − 1

10
uxu

−7/4
xxx uxxxxx

)

,

(

a
b

)

=

(

x
u

)

. (14)

† See [1; Theorem 13.4] for the symbolic calculus used to determine them.
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The lowest order restricted differential invariants are

I2 = 0, I4 = u−5/4
xxx uxxxx. (15)

However, one cannot directly use invariant differentiation to generate the higher order re-
stricted differential invariants since setting uxx = 0 does not commute with differentiation.
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