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Abstract
This paper surveys the new, algorithmic theory of moving frames de-
veloped by the author and M. Fels. Applications in geometry, computer
vision, classical invariant theory, the calculus of variations, and numerical
analysis are indicated.

1 Introduction.

According to Akivis, [1], the idea of moving frames can be traced back to the
method of moving trihedrons introduced by the Estonian mathematician Mar-
tin Bartels (1769-1836), a teacher of both Gaufi and Lobachevsky. The modern
method of moving frames or reperes mobiles' was primarily developed by Elie
Cartan, [22, 23], who forged earlier contributions by Cotton, Darboux, Frenet
and Serret into a powerful tool for analyzing the geometric properties of sub-
manifolds and their invariants under the action of transformation groups.

In the 1970’s, several researchers, cf. [29, 42, 44, 53|, began the attempt to
place Cartan’s intuitive constructions on a firm theoretical foundation. I've been
fascinated by the power of the method since my student days, but, for many
years, could not see how to release it from its rather narrow geometrical confines,
e.g. Euclidean or equiaffine actions on submanifolds of Euclidean space. The
crucial conceptual leap is to decouple the moving frame theory from reliance
on any form of frame bundle or connection, and define a moving frame as an
equivariant map from the manifold or jet bundle back to the transformation
group. In other words,

Moving frames # Frames!

n French, the term “repére mobile” refers to a temporary mark made during building or
interior design, and so a more accurate English translation might be “movable landmarks”.



A careful study of Cartan’s analysis of the case of projective curves, [22], re-
veals that Cartan was well aware of this viewpoint; however, this important and
instructive example did not receive the attention it deserved. Once freed from
the confining fetters of frames, Mark Fels and I, [39, 40], were able to formulate
a new, powerful, constructive approach to the equivariant moving frame theory
that can be systematically applied to general transformation groups. All clas-
sical moving frames can be reinterpreted in this manner, but the equivariant
approach applies in far broader generality.

Cartan’s construction of the moving frame through the normalization process
is interpreted with the choice of a cross-section to the group orbits. Building on
these two simple ideas, one may algorithmically construct equivariant moving
frames and, as a result, complete systems of invariants for completely general
group actions. The existence of a moving frame requires freeness of the under-
lying group action. Classically, non-free actions are made free by prolonging to
jet space, leading to differential invariants and the solution to equivalence and
symmetry problems via the differential invariant signature. More recently, the
moving frame method was also applied to Cartesian product actions, leading to
classification of joint invariants and joint differential invariants, [86]. Recently, a
seamless amalgamation of jet and Cartesian product actions dubbed multi-space
was proposed in [88] to serve as the basis for the geometric analysis of numerical
approximations, and, via the application of the moving frame method, to the
systematic construction of invariant numerical algorithms.

New and significant applications of these results have been developed in a
wide variety of directions. In [84, 6, 58, 59], the theory was applied to produce
new algorithms for solving the basic symmetry and equivalence problems of
polynomials that form the foundation of classical invariant theory. The moving
frame method provides a direct route to the classification of joint invariants and
joint differential invariants, [40, 86, 10|, establishing a geometric counterpart
of what Weyl, [108], in the algebraic framework, calls the first main theorem
for the transformation group. In computer vision, joint differential invariants
have been proposed as noise-resistant alternatives to the standard differential
invariant signatures, [14, 21, 33, 79, 105, 106]. The approximation of higher
order differential invariants by joint differential invariants and, generally, ordi-
nary joint invariants leads to fully invariant finite difference numerical schemes,
[9, 18, 19, 88, 57]. In [19, 5, 9], the characterization of submanifolds via their
differential invariant signatures was applied to the problem of object recognition
and symmetry detection, [12, 13, 15, 92]. A complete solution to the calculus of
variations problem of directly constructing differential invariant Euler-Lagrange
equations from their differential invariant Lagrangians was given based on the
moving frame construction of the invariant variational bicomplex, [62].

As these methods become more widely disseminated, many additional ap-
plications are being pursued by a number of research groups, and include the
computation of symmetry groups and classification of partial differential equa-
tions [69, 80]; projective and conformal geometry of curves and surfaces, with
applications in Poisson geometry and integrable systems, [71, 72]; recognition
of polygons and point configurations, with applications in image processing,



[11, 54]; classification of projective curves in visual recognition, [48]; classifica-
tion of the invariants and covariants of Killing tensors arising in general relativity
and geometry, with applications to separation of variables and Hamiltonian sys-
tems, [32, 75]; and the development of noncommutative Grébner basis methods,
[50, 70]. Finally, in recent work with Pohjanpelto, [89, 90, 91], the theory has re-
cently been extended to the vastly more complicated case of infinite-dimensional
Lie pseudo-groups.

2 Moving Frames.

We begin by outlining the basic moving frame construction in [40]. Let G be
an r-dimensional Lie group acting smoothly on an m-dimensional manifold M.
Let Gg={ge€ G|g-S =25} denote the isotropy subgroup of a subset S C M,
and G = N,cg G, its global isotropy subgroup, which consists of those group
elements which fix all points in S. We always assume, without any significant
loss of generality, that G acts effectively on subsets, and so G, = {e} for any
open U C M, i.e., there are no group elements other than the identity which
act completely trivially on an open subset of M.

Definition 1 A mowving frame is a smooth, G-equivariant map p: M — G.

The group G acts on itself by left or right multiplication. If p(z) is any right-
equivariant moving frame then p(2) = p(2)~! is left-equivariant and conversely.
All classical moving frames are left equivariant, but, in many cases, the right
versions are easier to compute. In many geometrical situations, one can identify
our left moving frames with the usual frame-based versions, but these identifi-
cations break down for more general transformation groups.

Theorem 2 A moving frame exists in a neighborhood of a point z € M if and
only if G acts freely and regularly near z.

Recall that G acts freely if the isotropy subgroup of each point is trivial,
G, = {e} for all z € M. This implies that the orbits all have the same dimension
as G itself. Regularity requires that, in addition, each point z € M has a
system of arbitrarily small neighborhoods whose intersection with each orbit is
connected, cf. [82].

The practical construction of a moving frame is based on Cartan’s method
of normalization, [56, 22], which requires the choice of a (local) cross-section to
the group orbits.

Theorem 3 Let G act freely and reqularly on M, and let K C M be a cross-
section. Given z € M, let g = p(z) be the unique group element that maps z to
the cross-section: g-z = p(z)-z € K. Then p: M — G is a right moving frame
for the group action.



Given local coordinates z = (zq, ..., z,,,) on M, let w(g, z) = g- z be the explicit
formulae for the group transformations. The right? moving frame g = p(z)
associated with a coordinate cross-section K = {z;, = ¢|,...,%. = ¢, } is
obtained by solving the normalization equations

T

wy (g, 2) = ¢4, . w,.(g,2) = ¢,, (2.1)

for the group parameters g = (g;,...,9,) in terms of the coordinates z =
(215, %y,)- Substituting the moving frame formulae into the remaining trans-
formation rules leads to a complete system of invariants for the group action.

Theorem 4 If g = p(z) is the moving frame solution to the normalization
equations (2.1), then the functions

Il(z) = wr+1(p(z)a Z)a v Im—r(z) = wm(p('z)v Z)v (22)
form a complete system of functionally independent invariants.

Definition 5 The invariantization of a scalar function F': M — R with re-
spect to a right moving frame p is the the invariant function I = ¢(F') defined

by 1(2) = F(p(2) - 2).

Invariantization amounts to restricting F' to the cross-section, I | K = F'| K, and
then requiring that I be constant along the orbits. In particular, if I(z) is an
invariant, then «(I) = I, so invariantization defines a projection, depending on
the moving frame, from functions to invariants. Thus, a moving frame provides
a canonical method of associating an invariant with an arbitrary function.

Of course, most interesting group actions are not free, and therefore do not
admit moving frames in the sense of Definition 1. There are two basic methods
for converting a non-free (but effective) action into a free action. The first is
to look at the product action of G on several copies of M, leading to joint in-
variants. The second is to prolong the group action to jet space, which is the
natural setting for the traditional moving frame theory, and leads to differen-
tial invariants. Combining the two methods of prolongation and product will
lead to joint differential invariants. In applications of symmetry constructions
to numerical approximations of derivatives and differential invariants, one re-
quires a unification of these different actions into a common framework, called
multispace, [57, 88].

3 Prolongation and Differential Invariants.
Traditional moving frames are obtained by prolonging the group action to the n-

th order (extended) jet bundle J* = J®(M,p) consisting of equivalence classes
of p-dimensional submanifolds S C M modulo n-th order contact at a single

2The left version can be obtained directly by replacing g by g~! throughout the construc-
tion.



point; see [82, Chapter 3] for details. Since G preserves the contact equivalence
relation, it induces an action on the jet space J”, known as its n-th order
prolongation and denoted by G(™).

An n-th order moving frame p'™ : J* — G is an equivariant map defined on
an open subset of the jet space. In practical examples, for n sufficiently large,
the prolonged action G becomes regular and free on a dense open subset
V™ C J7, the set of regular jets. It has been rigorously proved that, for n > 0
sufficiently large, if G acts effectively on subsets, then G(™ acts locally freely
on an open subset V* C J”, [85].

Theorem 6 An n-th order moving frame exists in a neighborhood of a point
2 € J" if and only if 2™ € V" is a regular jet.

Our normalization construction will produce a moving frame and a complete
system of differential invariants in the neighborhood of any regular jet. Local co-
ordinates z = (x,u) on M — considering the first p components z = (z!,...,zP)
as independent variables, and the latter ¢ = m — p components u = (u?, ..., u9)
as dependent variables — induce local coordinates (™ = (z,u(™) on J" with
components u§ representing the partial derivatives of the dependent variables
with respect to the independent variables, [82, 83]. We compute the prolonged
transformation formulae

W (g, 2™M) = g2 or (y,0) = g (g, uM),

by implicit differentiation of the v’s with respect to the y’s. For simplicity, we
restrict to a coordinate cross-section by choosing r = dim G components of w(
to normalize to constants:

wy (g, z(")) = ¢, w,.(g, z(”)) =c (3.1)

e

Solving the normalization equations (3.1) for the group transformations leads to
the explicit formulae g = p(™ (2(™) for the right moving frame. As in Theorem
4, substituting the moving frame formulae into the unnormalized components
of w(™ leads to the fundamental n-th order differential invariants

7™ (z(")) — w™ (p(n) (z(")),z(”)) - p(n)(z(n)) . (M) (3.2)

Once the moving frame is established, the invariantization process will map
general differential functions F(z,u(™) to differential invariants I = ((F) =
FoI™ . As before, invariantization defines a projection, depending on the
moving frame, from the space of differential functions to the space of differ-
ential invariants. The fundamental differential invariants ") are obtained by
invariantization of the coordinate functions

Hi(a:, u(”)) = L(Jﬁz) = yi(p(") (z, u(”)), x,u),

3.3
Iloé(xf“(k)) = L(’U,?) = 'U?((p(n) (J), u(n))7x7u(k)). ( )

In particular, those corresponding to the normalization components (3.1) of w™
will be constant, and are known as the phantom differential invariants.



Theorem 7  Let p\™: J* — G be a moving frame of order < n. Every n-
th order differential invariant can be locally written as a function J = (I (”))
of the fundamental n-th order differential invariants (3.3). The function ® is
unique provided it does mot depend on the phantom invariants.

Example 8 Let us begin with a very simple, classical example: curves in
the Euclidean plane. The orientation-preserving Euclidean group SE(2) acts on
M = R?, mapping a point z = (z,u) to

y =xzcosf —usinb + a, v=2zsind +ucosf + b. (3.4)

For a general parametrized® curve z(t) = (x(t), u(t)), the prolonged group trans-
formations
dv  2sinf +cosd d*v LU — I

- = @@ = — = = 5 35
Yy dy  Zcosf —sinf’ Yy dy? (& cos — usin )3 (3:5)

and so on, are found by successively applying the implicit differentiation oper-

ator d 1 d
s T 5 (3.6)
dy tcosf —usinf dt
to v. The classical Euclidean moving frame for planar curves, [46], follows from
the cross-section normalizations

Yy = 07 v = 07 ’Uy =0. (37)

Solving for the group parameters g = (0, a,b) leads to the right-equivariant
moving frame

9——tan*12 g — xrtuw 22 b— xu—ul  zZANZ
@’ VEERZR E1 VEET R k2

(3.8)

The inverse group transformation g~ = (#,a,b) is the classical left moving

frame, [22, 46]: one identifies the translation component (a,b) = (z,u) = z as
the point on the curve, while the columns of the rotation matrix R(6) = (t,n)
are the unit tangent and unit normal vectors. Substituting the moving frame
normalizations (3.8) into the prolonged transformation formulae (3.5), results
in the fundamental differential invariants

Tl — Zu ENE
Uy, — K= 373 — T3
Yy (22 +a2)3/2 | ? (3.9)
dr d*k 3
Yy T g5 Yyyyy T g2 + 37,

3While the local coordinates (x,u,us,Uzz,...) on the jet space assume that the curve
is given as the graph of a function v = f(z), the moving frame computations also apply,
as indicated in this example, to general parametrized curves. Two parametrized curves are
equivalent if and only if one can be mapped to the other under a suitable reparametrization.



where d/ds = || ||~ d/dt is the arc length derivative — which is itself found
by substituting the moving frame formulae (3.8) into the implicit differentiation
operator (3.6). A complete system of differential invariants for the planar Eu-
clidean group is provided by the curvature and its successive derivatives with
respect to arc length: s, Kk, K g, ... .

The one caveat is that the first prolongation of SE(2) is only locally free
on J! since a 180° rotation has trivial first prolongation. The even derivatives
of k with respect to s change sign under a 180° rotation, and so only their
absolute values are fully invariant. The ambiguity can be removed by including
the second order constraint v,, > 0 in the derivation of the moving frame.
Extending the analysis to the full Euclidean group E(2) adds in a second sign
ambiguity which can only be resolved at third order. See [86] for complete
details.

Example 9 Let n # 0,1. In classical invariant theory, the planar actions

_ax+f3
V=

u=(yx+9) "u, (3.10)

of G = GL(2) play a key role in the equivalence and symmetry properties of
binary forms, when u = ¢(z) is a polynomial of degree < n, [49, 84, 6]. We
identify the graph of the function v = ¢(x) as a plane curve. The prolonged
action on such graphs is found by implicit differentiation:

_ou, —nyu ~ o?u,, —2(n— 1)you, + n(n — 1)7%u
Yy = TAgn-1 Vyy = A2gn—2 ’
~ dPu,,, —3(n—2)y0%u,, +3(n—1)(n—2)y%ou, —n(n —1)(n — 2)7%u
Yyyy = A3gn—3 ’

and so on, where 0 = yp+ 9, A = ad — B # 0. On the regular subdomain

n—1 ,

Uy

V2 = {uH # 0} C J?, where  H =uu,, — -

is the classical Hessian covariant of u, we can choose the cross-section defined
by the normalizations

y =0, v =1, v, =0, v, = L.

Solving for the group parameters gives the right moving frame formulae*

a=u"M/H, B=—zut~/"VH,

v = %u(k”)/"um, 6 =ul/m - %xu(lfn)/”ux.

(3.11)

Substituting the normalizations (3.11) into the higher order transformation rules
gives us the differential invariants, the first two of which are

v —  J T v »—>K:V

yyy = 32 yyyy oz’ (3.12)

4See [6] for a detailed discussion of how to resolve the square root ambiguities.



where

-2 -1 -2
T = U'Quzzz -3 = U’uxuzz + 2 u(zn) U’?m
n n
_ — 2 (n —
V= u?’umm —4 n-3 u2uxum +6 —(n )gn 3) uu, 2um —
n
(n—=1)(n—-2)(n—-3)
-3 3 ui,

and can be identified with classical covariants, which may be constructed using
the basic transvectant process of classical invariant theory, cf. [49, 84]. Using
J? = T?/H? as the fundamental differential invariant will remove the ambiguity
caused by the square root. As in the Euclidean case, higher order differential
invariants are found by successive application of the normalized implicit differ-
entiation operator D, = ul -1/ 2Dx to the fundamental invariant J.

4 Equivalence and Signatures.

The moving frame method was developed by Cartan expressly for the solution
to problems of equivalence and symmetry of submanifolds under group actions.
Two submanifolds S, S C M are said to be equivalent if S = ¢ - S for some
g € G. A symmetry of a submanifold is a group transformation that maps
S to itself, and so is an element g € G4. As emphasized by Cartan, [22], the
solution to the equivalence and symmetry problems for submanifolds is based on
the functional interrelationships among the fundamental differential invariants
restricted to the submanifold.

Suppose we have constructed an n-th order moving frame p(™:J" — G
defined on an open subset of jet space. A submanifold S is called regular if its
n-jet j,, S lies in the domain of definition of the moving frame. For any k > n,
we use JF) = [(B) | § = [(F) 0j,S to denote the k-th order restricted differential
invariants. The k-th order signature S*) = S*)(S) is the set parametrized by
the restricted differential invariants; S is called fully regular if J*) has constant
rank 0 < ¢, <p =dimS for all £ > n. In this case, S®) forms a submanifold
of dimension ¢, — perhaps with self-intersections. In the fully regular case,

by <t <tpio < - <ly=tl,=--=1<p,

where t is the differential invariant rank and s the differential invariant order

of S.

Theorem 10  Two fully reqular p-dimensional submanifolds S,S C M are
(locally) equivalent, S = g - S, if and only if they have the same differential
wvariant order s and their signature manifolds of order s + 1 are identical:
5(s+1)(§) = 3(s+1)(3),

Since symmetries are the same as self-equivalences, the signature also determines
the symmetry group of the submanifold.



Theorem 11 IfS C M is a fully regular p-dimensional submanifold of differ-
ential invariant rank t, then its symmetry group Gg is an (r — t)-dimensional
subgroup of G that acts locally freely on S.

A submanifold with maximal differential invariant rank ¢ = p, and hence only
a discrete symmetry group, is called nonsingular. The number of symmetries is
determined by the index of the submanifold, defined as the number of points in
S map to a single generic point of its signature:

ind S = min {# (JEF) ¢y ‘ ¢ eSSkt }

Theorem 12 If S is a nonsingular submanifold, then its symmetry group is
a discrete subgroup of cardinality # Gg =ind S.

At the other extreme, a rank 0 or maximally symmetric submanifold has all
constant differential invariants, and so its signature degenerates to a single point.

Theorem 13 A regular p-dimensional submanifold S has differential invari-

ant rank 0 if and only if its symmetry group is a p-dimensional subgroup H =
Gy C G and an H-orbit: S =H - z,.

Remark: “Totally singular” submanifolds may have even larger, non-free sym-
metry groups, but these are not covered by the preceding results. See [85] for
details and precise characterization of such submanifolds.

Example 14 The Fuclidean signature for a curve in the Euclidean plane is the
planar curve S(C) = {(k, k,) } parametrized by the curvature invariant £ and
its first derivative with respect to arc length. Two planar curves are equivalent
under oriented rigid motions if and only if they have the same signature curves.
The maximally symmetric curves have constant Euclidean curvature, and so
their signature curve degenerates to a single point. These are the circles and
straight lines, and, in accordance with Theorem 13, each is the orbit of its one-
parameter symmetry subgroup of SE(2). The number of Euclidean symmetries
of a curve is equal to its index — the number of times the Euclidean signature
is retraced as we go around the curve.

An example of a Euclidean signature curve is displayed in figure 1. The first
figure shows the curve, and the second its Euclidean signature; the axes are x and
kg4 in the signature plot. Note in particular the approximate three-fold symmetry
of the curve is reflected in the fact that its signature has winding number three.
If the symmetries were exact, the signature would be exactly retraced three
times on top of itself. The final figure gives a discrete approximation to the
signature which is based on the invariant numerical algorithms to be discussed
below.

In figure 2 we display some signature curves computed from an actual medi-
cal image — a 70 x 70, 8-bit gray-scale image of a cross section of a canine heart,
obtained from an MRI scan. We then display an enlargement of the left ventricle.



The Original Curve Euclidean Signature Curve
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Discrete Signature

Figure 1: The Curve x = cost + %cos2 t, y =sint + % sin®t
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The boundary of the ventricle has been automatically segmented through use
of the conformally Riemannian moving contour or snake flow that was proposed
in [55] and successfully applied to a wide variety of 2D and 3D medical imagery,
including MRI, ultrasound and CT data, [109]. Underneath these images, we
display the ventricle boundary curve along with two successive smoothed ver-
sions obtained application of the standard Euclidean-invariant curve shorten-
ing procedure. Below each curve is the associated spline-interpolated discrete
signature curves for the smoothed boundary, as computed using the invariant
numerical approximations to £ and & discussed below. As the evolving curves
approach circularity the signature curves exhibit less variation in curvature and
appear to be winding more and more tightly around a single point, which is the
signature of a circle of area equal to the area inside the evolving curve. Despite
the rather extensive smoothing involved, except for an overall shrinking as the
contour approaches circularity, the basic qualitative features of the different sig-
nature curves, and particularly their winding behavior, appear to be remarkably
robust.

Thus, the signature curve method has the potential to be of practical use
in the general problem of object recognition and symmetry classification. It
offer several advantages over more traditional approaches. First, it is purely
local, and therefore immediately applicable to occluded objects. Second, it
provides a mechanism for recognizing symmetries and approximate symmetries
of the object. The design of a suitably robust “signature metric” for practical
comparison of signatures is the subject of ongoing research. See the contribution
by Shakiban and Lloyd, [97], in these proceedings for recent developments in
this direction.

Example 15 Let us next consider the equivalence and symmetry problems for
binary forms. According to the general moving frame construction in Example
9, the signature curve § = S§(q) of a function (polynomial) u = ¢(z) is param-
etrized by the covariants J? and K, as given in (3.12). The following solution
to the equivalence problem for complex-valued binary forms, [6, 81, 84], is an
immediate consequence of the general equivalence Theorem 10.

Theorem 16  Two nondegenerate complex-valued forms q(x) and g(x) are
equivalent if and only if their signature curves are identical: S(q) = S(q).

All equivalence maps T = p(z) solve the two rational equations
J(x)? = J(T)?, K(z) = K(7). (4.1)

In particular, the theory guarantees ¢ is necessarily a linear fractional transfor-
mation!

Theorem 17 A nondegenerate binary form q(x) is maximally symmetric if
and only if it satisfies the following equivalent conditions:

a) q is complex-equivalent to a monomial =¥, with k # 0,n.

11



Figure 2: Signature of a Canine Heart Image
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b

) The covariant T? is a constant multiple of H3 # 0.
¢) The signature is just a single point.

d) q admits a one-parameter symmetry group.

e) The graph of q coincides with the orbit of a one-parameter subgroup of

GL(2).

A binary form q(x) is nonsingular if and only if it is not complez-equivalent to
a monomial if and only if it has a finite symmetry group.

The symmetries of a nonsingular form can be explicitly determined by solving
the rational equations (4.1) with J = J, K = K. See [6] for a MAPLE imple-
mentation of this method for computing discrete symmetries and classification
of univariate polynomials. In particular, we obtain the following useful bounds
on the number of symmetries.

Theorem 18  If q(z) is a binary form of degree n which is not complex-
equivalent to a monomial, then its projective symmetry group has cardinality

b < { 6n — 12 if V' = cH? for some constant c, or

4dn — 8 in all other cases.

In her thesis, Kogan, [58], extends these results to forms in several variables.
In particular, a complete signature for ternary forms, [59], leads to a practical
algorithm for computing discrete symmetries of, among other cases, elliptic
curves.

5 Joint Invariants and Joint Differential Invari-
ants.

One practical difficulty with the differential invariant signature is its dependence
upon high order derivatives, which makes it very sensitive to data noise. For
this reason, a new signature paradigm, based on joint invariants, was proposed
in [86]. We consider now the joint action

G- (2gy-32,) =(9" 20519 2p)s g€G, zy,...,2, € M. (5.1)

of the group G on the (n+1)-fold Cartesian product M*("+1) = M x...x M. An
invariant I(z,,..., z,) of (5.1) is an (n + 1)-point joint invariant of the original
transformation group. In most cases of interest, although not in general, if G
acts effectively on M, then, for n > 0 sufficiently large, the product action is
free and regular on an open subset of M *("+1)_ Consequently, the moving frame
method outlined in Section 1 can be applied to such joint actions, and thereby
establish complete classifications of joint invariants and, via prolongation to
Cartesian products of jet spaces, joint differential invariants. We will discuss
two particular examples — planar curves in Euclidean geometry and projective
geometry, referring to [86] for details.

13



Figure 3: First and Second Order Joint Euclidean Differential Invariants

Example 19  Fuclidean joint differential invariants. Consider the proper
Euclidean group SE(2) acting on oriented curves in the plane M = R2?. We
begin with the Cartesian product action on M*? ~ R*. Taking the simplest
cross-section x, = v, = £; = 0,u; > 0 leads to the normalization equations

Yo = Ty cost —uysind +a =0, Vg = T sinb + ugcosd + b =0, (5.2)
Y, =, cosf —uysinf +a=0. '
Solving, we obtain a right moving frame
0 =tan~! (u> , a = —x,c080 + uysinb, b= —xysinf — uycosb,
U — Ug

(5.3)

along with the fundamental interpoint distance invariant
vy =x;8inf0+u,cos0+b — T=|z —z]- (5.4)

Substituting (5.3) into the prolongation formulae (3.5) leads to the the normal-
ized first and second order joint differential invariants

dﬂ — Jk:—i(zl_z()).é‘k7
dy (21 = 20) A % (55)
d*v, __lm = alP G A g '
> Kk = 3
dy [(21_20)/\20}
for £ =0,1. Note that
Jy = —cot @y, J, = +cot ¢y, (5.6)

where ¢, = X(2z; — 7y, 2;,) denotes the angle between the chord connecting z,, 2,
and the tangent vector at z,, as illustrated in figure 3. The modified second
order joint differential invariant

Zy N\ Z

f(o:_H%_Zo”_BKo: 3
[(z1 — 29) A % ]

(5.7)

14



equals the ratio of the area of triangle whose sides are the first and second
derivative vectors Z,, %, at the point z, over the cube of the area of triangle
whose sides are the chord from z, to z; and the tangent vector at z; see figure 3.

On the other hand, we can construct the joint differential invariants by
invariant differentiation of the basic distance invariant (5.4). The normalized
invariant differential operators are

|21 — 2o |l
D — Dy =—-————0D, . 5.8
vk g (21 — 20) N %, e 58)
Proposition 20  Every two-point Euclidean joint differential invariant is a

function of the interpoint distance I = ||z, — z, || and its invariant derivatives
with respect to (5.8).

A generic product curve C = C, x C; C M*? has joint differential invariant
rank 2 = dimC, and its joint signature S?(C) will be a two-dimensional
submanifold parametrized by the joint differential invariants I, J,, J;, K, K; of
order < 2. There will exist a (local) syzygy ®(I, J,,J;) = 0 among the three
first order joint differential invariants.

Theorem 21 A curve C or, more generally, a pair of curves Cy,C; C R2,
1s uniquely determined up to a Fuclidean transformation by its reduced joint
signature, which is parametrized by the first order joint differential invariants
I,Jy,Jy. The curve(s) have a one-dimensional symmetry group if and only
if their signature is a one-dimensional curve if and only if they are orbits of
a common one-parameter subgroup (i.e., concentric circles or parallel straight
lines); otherwise the signature is a two-dimensional surface, and the curve(s)
have only discrete symmetries.

For n > 2 points, we can use the two-point moving frame (5.3) to construct the
additional joint invariants

Yo — Hyp= |2, — 2 || cosiy, v, > I, =z, — 20| siney,

where 1, = X(z, — 29, 21 — %p)- Therefore, a complete system of joint invariants
for SE(2) consists of the angles ,,, k > 2, and distances || 2, — z, ||, ¥ > 1. The
other interpoint distances can all be recovered from these angles; vice versa,
given the distances, and the sign of one angle, one can recover all other angles. In
this manner, we establish a “First Main Theorem” for joint Euclidean differential
invariants.

Theorem 22 Ifn > 2, then every n-point joint E(2) differential invariant is
a function of the interpoint distances || z; — z; || and their invariant derivatives
with respect to (5.8). For the proper Euclidean group SE(2), one must also
include the sign of one of the angles, say 1y = A(zq — 2y, 21 — 2y)-

Generic three-pointed Euclidean curves still require first order signature in-
variants. To create a Euclidean signature based entirely on joint invariants, we
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Figure 4: Four-Point Euclidean Curve Invariants

take four points z, 21, 29, 23 on our curve C C R2. As illustrated in figure 4,
there are six different interpoint distance invariants

a=|z -2l b= 12— 2 c=1z3— 2zl

(5.9)

d=lzz =z, e=lzm-zl  Ff=lzm-2]
which parametrize the joint signature S=38 (C) that uniquely characterizes the
curve C up to Euclidean motion. This signature has the advantage of requiring
no differentiation, and so is not sensitive to noisy image data. There are two
local syzygies

(I)l(aab7 C, da€7f) = Oa (I>2(a‘ab7 C, da€7f) = 07 (510)

among the the six interpoint distances. One of these is the universal Cayley—
Menger syzygy which is valid for all possible configurations of the four points,
and is a consequence of their coplanarity, cf. [8, 77]. The second syzygy in
(5.10) is curve-dependent and serves to effectively characterize the joint invariant
signature. Euclidean symmetries of the curve, both continuous and discrete,
are characterized by this joint signature. For example, the number of discrete
symmetries equals the signature index — the number of points in the original
curve that map to a single, generic point in S.

A wide variety of additional cases, including curves and surfaces in two and
three-dimensional space under the Euclidean, equi-affine, affine and projective
groups, are investigated in detail in [86].

6  Multi-Space for Curves.

In modern numerical analysis, the development of numerical schemes that in-
corporate additional structure enjoyed by the problem being approximated have
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become quite popular in recent years. The first instances of such schemes are
the symplectic integrators arising in Hamiltonian mechanics, and the related en-
ergy conserving methods, [27, 65, 104]. The design of symmetry-based numerical
approximation schemes for differential equations has been studied by various au-
thors, including Shokin, [98], Dorodnitsyn, [34, 35], Axford and Jaegers, [52],
and Budd and Collins, [16]. These methods are closely related to the active
area of geometric integration of differential equations, [17, 47, 73]. In practical
applications of invariant theory to computer vision, group-invariant numerical
schemes to approximate differential invariants have been applied to the problem
of symmetry-based object recognition, [9, 19, 18].

In this section, we outline the basic construction of multi-space that forms
the foundation for the study of the geometric properties of discrete approxima-
tions to derivatives and numerical solutions to differential equations; see [88]
for more details. We will only discuss the case of curves, which correspond to
functions of a single independent variable, and hence satisfy ordinary differ-
ential equations. The more difficult case of higher dimensional submanifolds,
corresponding to functions of several variables that satisfy partial differential
equations, relies on a new approach to multi-dimensional interpolation theory,
[87].

Numerical finite difference approximations to the derivatives of a function

u = f(z) rely on its values u, = f(z),...,u, = f(z,) at several distinct
points z; = (x;,u;) = (z;, f(z;)) on the curve. Thus, discrete approximations
to jet coordinates on J" are functions F'(z, ..., 2,) defined on the (n + 1)-fold

Cartesian product space M*("t1) = M x...x M. In order to seamlessly connect
the jet coordinates with their discrete approximations, then, we need to relate
the jet space for curves, J* = J*(M, 1), to the Cartesian product space M*(*+1)
Now, as the points 2, ..., 2, coalesce, the approximation F'(z,, ..., z,) will not
be well-defined unless we specify the “direction” of convergence. Thus, strictly
speaking, F' is not defined on all of M*™+1) but, rather, on the “off-diagonal”

part, by which we mean the subset
M) = {(z,...,2,) | 2 #z forallij}c M

consisting of all distinct (n 4+ 1)-tuples of points. As two or more points come
together, the limiting value of F(z,..., z,) will be governed by the derivatives
(or jet) of the appropriate order governing the direction of convergence. This
observation serves to motivate our construction of the n-th order multi-space
M ™) which shall contain both the jet space J* and the off-diagonal Cartesian
product space M°(™+1) in a consistent manner.

Definition 23  An (n + 1)-pointed curve C = (z,,...,%,;C) consists of a

’ Pn

smooth curve C' and n+1 not necessarily distinct points z, ..., 2z, € C thereon.
Given C, we let #i = #{j | z; = z; } Two (n+1)-pointed curves C = (2, ..., 2,;C),
C= (Zoy -5 2ms 5), have n-th order multi-contact if and only if

2, = % and  ju, 1Cl,, = j#i715|zi, for each i=0,...,n.

17



Definition 24 The n-th order multi-space, denoted M (™ is the set of equiv-
alence classes of (n + 1)-pointed curves in M under the equivalence relation of
n-th order multi-contact. The equivalence class of an (n + 1)-pointed curves C
is called its n-th order multi-jet, and denoted j, C € M),

In particular, if the points on C = (zg,. .., 2,;C) are all distinct, then j,,C =
Jné if and only if z, = Z, for all 4, which means that C and C have all n + 1
points in common. Therefore, we can identify the subset of multi-jets of multi-
pointed curves having distinct points with the off-diagonal Cartesian product
space M°("+t1) < J* On the other hand, if all n 4+ 1 points coincide, Zy =

- =z,, then j, C = Jné if and only if C and C have n-th order contact at
their common point z, = Z;. Therefore, the multi-space equivalence relation
reduces to the ordinary jet space equivalence relation on the set of coincident
multi-pointed curves, and in this way J* € M("). These two extremes do not
exhaust the possibilities, since one can have some but not all points coincide.

Intermediate cases correspond to “off-diagonal” Cartesian products of jet spaces

Joio. o gk = { (z(()kl), . ,szi)) e Jh o JR | (2R are distinct } ,
(6.1)
where Yk, = n and 7: J¥ — M is the usual jet space projection. These multi-
jet spaces appear in the work of Dhooghe, [33], on the theory of “semi-differential
invariants” in computer vision.

Theorem 25 If M is a smooth m-dimensional manifold, then its n-th order
multi-space M™ is a smooth manifold of dimension (n + 1)m, which contains
the off-diagonal part M) of the Cartesian product space as an open, dense
submanifold, and the n-th order jet space J™ as a smooth submanifold.

The proof of Theorem 25 requires the introduction of coordinate charts on
M) Just as the local coordinates on J” are provided by the coefficients of
Taylor polynomials, the local coordinates on M) are provided by the coeffi-
cients of interpolating polynomials, which are the classical divided differences
of numerical interpolation theory, [78, 93].

Definition 26 Given an (n+1)-pointed graph C = (2, ..., 2,,; C), its divided

differences are defined by [zj le = f(xj), and

. (20212 - - 2422 |0 — [20%120 - 2021 ]
2021+ 21 1% = lim .
[2021 k—12k o P T — 2

(6.2)
When taking the limit, the point z = (z, f(x)) must lie on the curve C, and
take limiting values  — z,, and f(z) — f(x,).

In the non-confluent case z, # z,_; we can replace z by z; directly in the
difference quotient (6.2) and so ignore the limit. On the other hand, when all
k + 1 points coincide, the k-th order confluent divided difference converges to

k) (5
[zo...zo]C:fT(!O). (6.3)
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Remark: Classically, one employs the simpler notation [uyu, ...uy | for the di-
vided difference [zyz; ... 2 ]o. However, the classical notation is ambiguous
since it assumes that the mesh z,...,z,, is fixed throughout. Because we are
regarding the independent and dependent variables on the same footing — and,
indeed, are allowing changes of variables that scramble the two — it is important
to adopt an unambiguous divided difference notation here.

Theorem 27 Two (n+ 1)-pointed graphs C, C have n-th order multi-contact
if and only if they have the same divided differences:

(2021 -2, lc = [2021 - - - 2k )& k=0,...,n.

The required local coordinates on multi-space M consist of the independent
variables along with all the divided differences

" " u® =uy = [z]c, u) = (22 ]c, (6.4)
o u® =2[z22,2, ] u™ =nl 22, ... 2, |0

prescribed by (n + 1)-pointed graphs C = (zg,...,2,;C). The n! factor is

<N
included so that u(™ agrees with the usual derivative coordinate when restricted

to J7, cf. (6.3).

7 Invariant Numerical Methods.
To implement a numerical solution to a system of differential equations
A (zu™) = = A (z,u™) = 0. (7.1)

by finite difference methods, one relies on suitable discrete approximations to
each of its defining differential functions A, and this requires extending the
differential functions from the jet space to the associated multi-space, in accor-
dance with the following definition.

Definition 28 An (n + 1)-point numerical approzimation of order k to a dif-
ferential function A: J* — R is an function F': M (") — R that, when restricted
to the jet space, agrees with A to order k.

The simplest illustration of Definition 28 is provided by the divided difference
coordinates (6.4). Each divided difference u(™ forms an (n 4 1)-point numer-
ical approximation to the n-th order derivative coordinate on J". According
to the usual Taylor expansion, the order of the approximation is £ = 1. More
generally, any differential function A(x,u,u®, ..., u(™) can immediately be as-
signed an (n + 1)-point numerical approximation F' = A(z,u®,u™ ... u™)
by replacing each derivative by its divided difference coordinate approximation.
However, these are by no means the only numerical approximations possible.
Now let us consider an r-dimensional Lie group G which acts smoothly on
M. Since G evidently maps multi-pointed curves to multi-pointed curves while
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preserving the multi-contact equivalence relation, it induces an action on the
multi-space M (") that will be called the n-th multi-prolongation of G and de-
noted by G™). On the jet subset J* ¢ M ™ the multi-prolonged action reduced
to the usual jet space prolongation. On the other hand, on the off-diagonal part
M+ < M) the action coincides with the (n 4 1)-fold Cartesian product
action of G on M*(n+1),

We define a multi-invariant to be a function K: M — R on multi-space
which is invariant under the multi-prolonged action of G(™). The restriction of
a multi-invariant K to jet space will be a differential invariant, I = K | J", while
restriction to M°("+1) will define a joint invariant J = K | M1, Smoothness
of K will imply that the joint invariant J is an invariant n-th order numerical
approzimation to the differential invariant I. Moreover, every invariant finite
difference numerical approximation arises in this manner. Thus, the theory of
multi-invariants is the theory of invariant numerical approximations!

Furthermore, the restriction of a multi-invariant to an intermediate multi-
jet subspace, as in (6.1), will define a joint differential invariant, [86] — also
known as a semi-differential invariant in the computer vision literature, [33, 79].
The approximation of differential invariants by joint differential invariants is,
therefore, based on the extension of the differential invariant from the jet space
to a suitable multi-jet subspace (6.1). The invariant numerical approximations
to joint differential invariants are, in turn, obtained by extending them from
the multi-jet subspace to the entire multi-space. Thus, multi-invariants also
include invariant semi-differential approximations to differential invariants as
well as joint invariant numerical approximations to differential invariants and
semi-differential invariants — all in one seamless geometric framework.

Effectiveness of the group action on M implies, typically, freeness and reg-
ularity of the multi-prolonged action on an open subset of M (). Thus, we
can apply the basic moving frame construction. The resulting multi-frame
p™: M — G will lead us immediately to the required multi-invariants and
hence a general, systematic construction for invariant numerical approximations
to differential invariants. Any multi-frame will evidently restrict to a classical
moving frame p(™): J* — G on the jet space along with a suitably compatible
product frame p°+1) . pre»+l) . @G,

In local coordinates, we use w, = (y;,v;) = g - 2, to denote the trans-
formation formulae for the individual points on a multi-pointed curve. The
multi-prolonged action on the divided difference coordinates gives

U(O) :Uoz[wo]v v(l):[wowl]a
Yor-- ¥ @) (") — 1
v\ = [wywyw, |, v\ =nllwy,...,w,],

where the formulae are most easily computed via the difference quotients

_ [wow w, ... wy_ywy | — [wowywy .. wy_swy_q ]
[wow; ... wy_yw, ] = )
Ye — Yp—1 (7.3)

[wj] = Ujv
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and then taking appropriate limits to cover the case of coalescing points. In-
spired by the constructions in [40], we will refer to (7.2) as the lifted divided
difference invariants.

To construct a multi-frame, we need to normalize by choosing a cross-section
to the group orbits in M, which amounts to setting r = dim G of the lifted
divided difference invariants (7.2) equal to suitably chosen constants. An im-
portant observation is that in order to obtain the limiting differential invariants,
we must require our local cross-section to pass through the jet space, and define,
by intersection, a cross-section for the prolonged action on J". This compat-
ibility constraint implies that we are only allowed to normalize the first lifted
independent variable y, = ¢,.

With the aid of the multi-frame, the most direct construction of the requisite
multi-invariants and associated invariant numerical differentiation formulae is
through the invariantization of the original finite difference quotients (6.2). Sub-
stituting the multi-frame formulae for the group parameters into the lifted coor-
dinates (7.2) provides a complete system of multi-invariants on M (") this follows
immediately from Theorem 4. We denote the fundamental multi-invariants by

vy, Hi=(xy), o™ K™ = ™), (7.4)

where ¢ denotes the invariantization map associated with the multi-frame. The
fundamental differential invariants for the prolonged action of G on J" can all
be obtained by restriction, so that I = K™ |J™. On the jet space, the
points are coincident, and so the multi-invariants H, will all restrict to the same
differential invariant ¢, = H = H,|J™ — the normalization value of y,. On
the other hand, the fundamental joint invariants on M°(™*+1) are obtained by
restricting the multi-invariants H; = «(z;) and K, = ¢(u;). The multi-invariants
can computed by using a multi-invariant divided difference recursion

[Ij] :Kj = L(uj)

Iy Ly ol — 1y T ol 1] (7.5)

Lo L) = 20212 ]) = H,—H,_, )

and then relying on continuity to extend the formulae to coincident points. The
multi-invariants
K™ =nl[1,...1,] = u(u™) (7.6)

define the fundamental first order invariant numerical approximations to the dif-
ferential invariants 7™ . Higher order invariant approximations can be obtained
by invariantization of the higher order divided difference approximations. The
moving frame construction has a significant advantage over the infinitesimal ap-
proach used by Dorodnitsyn, [34, 35|, in that it does not require the solution of
partial differential equations in order to construct the multi-invariants.

Given a regular G-invariant differential equation

Az, u™) =0, (7.7)
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we can invariantize the left hand side to rewrite the differential equation in
terms of the fundamental differential invariants:

LAz, u™)) = AH, IO, ... 1MW) = 0.

The invariant finite difference approximation to the differential equation is then
obtained by replacing the differential invariants 1) by their multi-invariant
counterparts K*):

Alcy, KO, ... K™y =0. (7.8)

Example 29 Consider the elementary action
(r,u) +—— (A 'z4+a, u+b)

of the three-parameter similarity group G = R?nR on M = R?2. To obtain the
multi-prolonged action, we compute the divided differences (7.2) of the basic
lifted invariants

Yy = A\ 'z, +a, v, = Auy + 0.
We find
1) — _ Y 7% _ 2t T % 2 —2,M
v = [wawy | = = = 2971 ] = A2 ut.
gy | = P00 = 32 L0 = 32z
More generally,
o™ =\t () n > 1. (7.9)

Note that we may compute the multi-space transformation formulae assuming
initially that the points are distinct, and then extending to coincident cases
by continuity. (In fact, this gives an alternative method for computing the
standard jet space prolongations of group actions!) In particular, when all the
points coincide, each u(™ reduces to the n-th order derivative coordinate, and
(7.9) reduces to the prolonged action of G on J*. We choose the normalization
cross-section defined by

Yo =0, vy =0, o) = 1,

which, upon solving for the group parameters, leads to the basic moving frame

1
= Vu® = % =
a uD) ), b Ok A 5 (7.10)

where, for simplicity, we restrict to the subset where u(!) = [297,] > 0. The fun-
damental joint similarity invariants are obtained by substituting these formulae
into

Yo Uy — U
Yp —— Hy, = (3, — ) U(l)z(ﬂvk—xo) ! g,
L1 — Xy

u U T T

vy — K = & 0 = (uy, —u L L

k k ~ (uy, 0) u —
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both of which reduce to the trivial zero differential invariant on J”. Higher order
multi-invariants are obtained by substituting (7.10) into the lifted invariants
(7.9), leading to

KO — u(™ Conl 222, ]
B (u(l))(”JFl)/Q B [202122](”+1)/2 ’

In the limit, these reduce to the differential invariants (") = (u(1))=(+1)/2 4 (n)
and so K™ give the desired similarity-invariant, first order numerical approxi-
mations. To construct an invariant numerical scheme for any similarity-invariant
ordinary differential equation

Az, u, u®M u? .u(”)) =0,

we merely invariantize the defining differential function, leading to the general
similarity—invariant numerical approximation

A0,0,1, K@ ... K™) =0,

Example 30 For the action (3.4) of the proper Euclidean group of SE(2) on
M = R?2, the multi-prolonged action is free on M (™) for n > 1. We can thereby
determine a first order multi-frame and use it to completely classify Euclidean
multi-invariants. The first order transformation formulae are

Yo = Ty cost — uysind + a, Vg = Xy sin @ + u, cos O + b,
sinf + u® cos @ (7.11)

=x,co80 —u,sinf + a oM =T - "
% ! 1 T cosf —uMsinh’

where u") = [ 2,2, ]. Normalization based on the cross-section y, = v, = v(!) =
0 results in the right moving frame

Ty + u(®) Uy

a=—x5cosl +uysinfd = — ,
0 0 V1t (uM)2 W
) tanf = —u' . (7.12)
b= —x,sinf —u,cosf = T4 i)

Substituting the moving frame formulae (7.12) into the lifted divided differences
results in a complete system of (oriented) Euclidean multi-invariants. These
are easily computed by beginning with the fundamental joint invariants I, =
(Hy, K;,) = o(zy, u), where

(2, — o) + u™ (uy —uy) 1+ [2921 | [20%]

— H, = —(p, — 1
Yk k T+ ()2 (2, — 20) T+ (295, 2
o s K, = (g — g) = uV) (z, — 7o) _ (o — 20) (202 ] — [ 207 ]
L+ (u®)? T+ (2% ]
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The multi-invariants are obtained by forming divided difference quotients

K, —Ky ﬁ _ (@ —2)[ 20212 ]

1,1, ] = = = ,
o] H,—Hy Hy 1+4[z2][2%2%]
where, in particular, I() = [I,I,] = 0. The second order multi-invariant
7® — 9 [I,1,1,] =2 [ Lol ] = [1o]h ] _ 2292122 |1+ [29%1]?
Hy - H, (142021 ][2122]) (1 + (2021 ] [2022])

u® T+ (D)2

[T+ @) + 5u0u (w, — ) ] [1+ () + 2au®(a, — 7))

provides a Euclidean—invariant numerical approximation to the Euclidean cur-
vature:

@)
- (2) — o = Y
T TP DR

Similarly, the third order multi-invariant
Iy 1) — [1g5 1]

[
I® =6 [I,1,I,I;] =6 H, A,

will form a Fuclidean—invariant approximation for the normalized differential
invariant k, = t(u the derivative of curvature with respect to arc length,
[19, 40].

To compare these with the invariant numerical approximations proposed in
[18, 19], we reformulate the divided difference formulae in terms of the geomet-
rical configurations of the four distinct points z,, 2;, 29, 23 on our curve. We
find

:E:C:C)’

(21 — 29) - (2 — 20)

H, = =71, CcoS¢
b HZI_ZOH i m [II]—tan(b
_ A _ otkl = k>
K, = (21 — 20) A (2 — %) = 1, singy,
29— 2 |l
where
e =2, — % s O = Lz — 29,21 — 2),

denotes the distance and the angle between the indicated vectors. Therefore,
tan ¢,
Ty COS Py — T
1 _g (rycos @y — 1)) tan ¢ — (15 cos g — 1) tan ¢,
(rq €OS ¢y — 11)(15 COS g — 11 ) (15 COS 5 — T4 COS P5)

¥ =2
(7.13)

Interestingly, I®) is not the same Euclidean approximation to the curvature
that was used in [19, 18]. The latter was based on the Heron formula for the
radius of a circle through three points:
«_4A _ 2singy (7.14)
abe ||z — 2 ||
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Here A denotes the area of the triangle connecting z, 21, z, and
a=r =2 —z%] b=ry=|2— 2], c=llzg— 2|,

are its side lengths. The ratio tends to a limit I*/I® — 1 as the points
coalesce. The geometrical approximation (7.14) has the advantage that it is
symmetric under permutations of the points; one can achieve the same thing
by symmetrizing the divided difference version I(?). Furthermore, I®) is an
invariant approximation for the differential invariant x, that, like the approx-
imations constructed by Boutin, [9], converges properly for arbitrary spacings
of the points on the curve.

Recently, Pilwon Kim and I have been developing the invariantization tech-
niques to a variety of numerical integrators, e.g., Euler and Runge-Kutta, for
ordinary differential equations with symmetry, with sometimes striking results,
[67]. In preparation for extending these methods to functions of several vari-
ables and partial differential equations, I have recently formulated a new ap-
proach to the theory of multivariate interpolation based on noncommutative
quasi-determinants, [87].

8 Invariant Variational Problems.

In the fundamental theories of modern physics, [7, 43], one begins by postulating
an underlying symmetry group (e.g., conformal invariance, Poincaré invariance,
supersymmetry, etc.), and then seeks a suitably invariant Lagrangian or vari-
ational principle. The governing field equations are the Euler-Lagrange equa-
tions, which retain the invariance properties of the underlying pseudo-group. As
first recognized by Lie, [67], under appropriate regularity assumptions, all in-
variant differential equations and variational problems can be written in terms
of the differential invariants. Surprisingly, though, complete classifications of
differential invariants remain, for the most part, unknown, even for some of the
most basic cases in physics, e.g., the full Poincaré group. A principal aim of
the moving frame approach is to provide the necessary mathematical tools for
resolving such fundamental issues.

In this direction, Irina Kogan and I, [61, 62], extended the invariantiza-
tion process to formulate an invariant version of the wvariational bicomplex. In
particular, our results solve the previously outstanding problem of directly con-
structing the differential invariant form of the Euler-Lagrange equations from
that of the underlying variational problem. Previously, only a handful of special
examples were known, [2, 45].

Example 31 To illustrate, the simplest example is that of plane curves in
Euclidean geometry. Any Euclidean-invariant variational problem

Z[u] :/E(K, KgyKggy--.)ds
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can be written in terms of the Fuclidean curvature differential invariant x and
its successive derivatives D"k = D7« with respect to arc length ds. The associ-
ated Euler-Lagrange equation is Euclidean-invariant, and so is equivalent to an
ordinary differential equation of the form

F(k, kg, Kyg,...) =0.

The basic problem is to go directly from the invariant form of the variational
problem to the invariant form of its Euler-Lagrange equation. The correct
formula for the Euler-Lagrange equation is

(D* + #*) E(L) + k H(E) =0,
where
&)=Y (-py . HE) =Y k(DY 5 L

i>7]

are, respectively, the invariant Euler-Lagrange expression (or Eulerian), and the
mwvariant Hamiltonian of the invariant Lagrangian L.

Kogan and I proved that, in general, the invariant Euler-Lagrange formula
assumes an analogous form

A*E(L) — B*H(L) = 0,

where £(L) is the invariantized Eulerian, H(L) an invariantized Hamiltonian
tensor, [95], based on the invariant Lagrangian of the problem, while A*, B*
are certain invariant differential operators, which we name the Fulerian and
Hamiltonian operators. The precise forms of these operators follows from the
recurrence formulae for the moving frame on the invariant variational bicomplex,
which, as they rely solely on linear differential algebraic formulae, can be readily
implemented in computer algebra systems. Complete details on the construction
and applications can be found in our papers [61, 62].

9 Lie Pseudo—Groups.

With the moving frame constructions for finite-dimensional Lie group actions
taking more or less final form, my attention has shifted to developing a compa-
rably powerful theory that can be applied to infinite-dimensional Lie pseudo-
groups. The subject is classical: Lie, [66], and Medolaghi, [76], classified all
planar pseudo-groups, and gave applications to Darboux integrable partial dif-
ferential equations, [4, 100]. Cartan’s famous classification of transitive simple
pseudo-groups, [24], remains a milestone in the subject. Remarkably, despite
numerous investigations, there is still no entirely satisfactory abstract object
that will properly represent a Lie pseudo-group, cf. [64, 99, 101, 94].
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Pseudo-groups appear in a broad range of physical and geometrical contexts,
including gauge theories in physics, [7]; canonical and area-preserving transfor-
mations in Hamiltonian mechanics, [82]; conformal symmetry groups on two-
dimensional surfaces, [37]; foliation-preserving groups of transformations, with
the associated characteristic classes defined by certain invariant forms, [41];
symmetry groups of both linear and nonlinear partial differential equations ap-
pearing in fluid and plasma mechanics, such as the Fuler, Navier-Stokes and
boundary layer equations, [20, 82], in meteorology, such as semi-geostrophic
models, [96], and in integrable (soliton) equations in more than one space di-
mension such as the Kadomtsev—Petviashvili (KP) equation, [31]. Applications
of pseudo-groups to the design of geometric numerical integrators are being
emphasized in recent work of McLachlan and Quispel, [73, 74].

Juha Pohjanpelto and I, [89, 90, 91], recently announced a breakthrough
in the development of a practical moving frame theory for general Lie pseudo-
group actions. (A more abstract version was concurrently developed by my
former student Vladimir Itskov, [51].) Just as in the finite-dimensional theory,
the new methods lead to general computational algorithms for (i) determining
complete systems of differential invariants, invariant differential operators, and
invariant differential forms, (#) complete classifications of syzygies and recur-
rence formulae relating the differentiated invariants and invariant forms, (44) a
general algorithm for computing the Euler-Lagrange equations associated with
an invariant variational problem. Further extensions — pseudo-group algo-
rithms for joint invariants and joint differential invariants, invariant numerical
approximations, and so on — are also evident.

Our approach rests on an amalgamation of two powerful, general modern
theories: groupoids, [68, 107], which generalize the concept of transformation
groups, and the wvariational bicomplex, [2, 83, 103], which underlies the mod-
ern geometric approach to differential equations and the calculus of variations.
Groupoids (first formalized by Ehresmann, [36], for precisely these purposes)
are required because there is no underlying global geometric object to represent
the (local) pseudo-group. The simplest case, and one that must be fully under-
stood from the start, is the pseudo-group of all local diffeomorphisms. Their
jets (Taylor series) naturally form a groupoid, because one can only compose
two Taylor series if the target (or sum) of the first matches the source (or base
point) of the second. Thus, the first item of business is to adapt the Lie group
moving frame constructions to the groupoid category.

On an infinite jet bundle, the variational bicomplex, [2, 103], follows from
the natural splitting of the space of differential one-forms into contact forms
and horizontal forms, [83]. Our constructions involve two infinite jet bundles
and their associated variational bicomplexes: the first is the groupoid of infinite
jets of local diffeomorphisms; the second is the space of jets of submanifolds
(or graphs of functions or sections). This seriously complicates the analysis
(and the notation), but not beyond the range of being forged into a practical,
algorithmic method.

The next challenge is the construction of the Maurer—Cartan forms and the
associated structure equations for the pseudo-group. For finite-dimensional Lie
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groups, the pull-back action of the moving frame on the Maurer—Cartan forms
is used to construct the basic recurrence formulae that relate the differentiated
invariants and differential forms, [40, 62]. The recurrence formulae are the foun-
dation for all the advanced computational algorithms, including classification of
differential invariants and their syzygies, the general invariantization procedure,
and the applications in the calculus of variations.

In the case of the diffeomorphism pseudo-group, the Maurer—Cartan forms
are the invariant contact forms on the diffeomorphism jet groupoid, and can
be explicitly constructed, completely avoiding the more complicated inductive
procedure advocated by Cartan, [25]. Let z = (21,...,2™), Z = (Z',...,Z™)
be, respectively, the source and target coordinates on M. The induced coordi-
nates on the diffeomorphism jet bundle D> C J*°(M, M) are denoted by Z9,
a=1,...,m, #J > 0, representing all derivatives of the target coordinates. The
space of invariant contact forms on D has basis elements %, a = 1,...,m,
#J > 0, whose explicit formulas can be found in [89]. Utilizing the variational
bicomplex machinery, we readily establish the explicit formulae for the structure
equations for the diffeomorphism pseudo-group by equating coefficients in the
formal power series formula

dp[H] =V yu[HIA (u[H] - dZ). (9.1)

Here, u] H ] is the vector-valued formal power series depending on the parame-
ters H = (H",..., H™), with entries

wlH] = S w4 H,
#J>0

V] H] is its formal Jacobian matrix, while dZ = (dZ%,...,dZ™)T.
Given a Lie pseudo-group G acting on M, let

L(z...,C%..) =0 (9.2)

denote the involutive system of determining equations for its infinitesimal gen-
erators v .= > 1" (%0.., where (¢ = 97(?/0z’ stand for the correspond-
ing derivatives (or jets) of the vector field coefficients. For example, if G is
a symmetry group of a system of partial differential equations, then (9.3) are
(the involutive completion) of the classical Lie determining equations for its
infinitesimal symmetries, [82]. The remarkable fact, proved in [89], is that
Maurer—Cartan forms for the pseudo-group, which are obtained by restricting
the diffeomorphism Maurer—Cartan forms £9 to the pseudo-group jet subbundle
G(>) D) satisfy the ezact same linear relations®:

L(Z,...,u%,...)=0. (9.3)

Therefore, a basis for the solution space to the infinitesimal determining equa-
tions (9.3) prescribes the complete system of independent Maurer—Cartan forms

5With the source coordinates z replaced by target coordinates Z
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for the pseudo-group. Furthermore, the all-important pseudo-group structure
equations are obtained by restricting the diffeomorphism structure equations
(9.1) to the linear subspace spanned by the pseudo-group Maurer—Cartan forms,
i.e., to the space of solutions to (9.3). The result is a direct computational pro-
cedure for passing directly from the infinitesimal determining equations to the
structure equations for the pseudo-group relying on just linear differential alge-
bra.

With the Maurer—Cartan forms and structure equations in hand, we are now
in a position to implement to moving frame method. The primary focus is on
the action of the pseudo-group on submanifolds of a specified dimension. There
is an induced prolonged action of the (finite dimensional) n-th order pseudo-
group jet groupoid on the n-th order submanifold jet bundle. A straightforward
adaptation of the general normalization procedure will produce the n-th order
moving frame map. The consequent invariantization process is used to produce
the complete system of n-th order differential invariants, invariant differential
forms, and, when combined with the Maurer—Cartan structure equations, the
required recurrence formulae. In [28], these algorithms were applied to the sym-
metry groups of the Korteweg-deVries and KP equations arising in soliton the-
ory, and general packages for effecting these computations are being developed.
More substantial examples, arising as symmetry pseudo-groups of nonlinear par-
tial differential equations such as the KP equation and the equations in fluid
mechanics and meteorology, are in the process of being investigated.

10 Implementation.

A noteworthy feature of both the finite-dimensional and infinite-dimensional
moving frame methods is that most of the computations rely on purely lin-
ear algebra techniques. In particular, the structure of the pseudo-group, the
fundamental differential invariants, and the recurrence formulae, syzygies and
commutation relations all follow from the infinitesimal determining equations.
Only the explicit formulas for the differential invariants requires the nonlinear
pseudo-group transformations, coupled with elimination of the normalization
equations. The efficiency of the moving frame approach is underscored by the
fact that we can replace the complicated Spencer-based analysis of Tresse’s pro-
totypical example in [63] by a few lines of easy hand computation, [90]. More
substantial examples, such as the symmetry groups of nonlinear partial differen-
tial equations, that were previously unattainable are now well within our com-
putational grasp. However, large-scale applications, such as those in Mansfield,
[69], will require the development of a suitable noncommutative Grobner basis
theory for such algebras, complicated by the noncommutativity of the invariant
differential operators and the syzygies among the differentiated invariants.
Owing to the overall complexity of larger scale computations, any serious
application of the methods discussed here will, ultimately, rely on computer al-
gebra, and so the development of appropriate software packages is a significant
priority. The moving frame algorithms point to significant weaknesses in cur-
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rent computer algebra technology, particularly when manipulating the rational
algebraic functions which inevitably appear within the normalization formulae.
Following some preliminary work by the author in MATHEMATICA, Irina Ko-
gan, [60], has implemented the finite-dimensional moving frame algorithms on
Tan Anderson’s general purpose MAPLE package VESSIOT, [3]. As part of his
Ph.D. thesis, Jeongoo Cheh is implementing the full pseudo-group algorithms
for symmetry groups of partial differential equations in MATHEMATICA.
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