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Abstract

We outline a general construction of symmetry-preserving numer-

ical schemes for ordinary differential equations. The method of in-

variantization is based on the equivariant moving frame theory ap-

plied to prolonged symmetry group actions on multi-space, which has

been proposed as the proper geometric setting for numerical analysis.

We explain how to invariantize standard numerical integrators such

as the Euler and Runge–Kutta schemes. In favorable situations, the

resulting symmetry-preserving geometric integrators offer significant

advantages.

1 Introduction.

In modern numerical analysis, the development of schemes that incorporate
additional structure enjoyed by the problem being approximated has become
become increasingly active in recent years, [14]. The class of geometric nu-
merical methods include symplectic integrators, [8], energy conserving meth-
ods, [18], and Lie group methods, [15, 17]. The focus of this paper is on
symmetry-preserving numerical approximation schemes for differential equa-
tions, as developed by Shokin, [24], Dorodnitsyn, [11], Axford and Jaegers,
[16], and Budd and Collins, [3], and others.

∗Department of Mathematics, University of Minnesota, MN 55455, USA.

email: pwkim@math.umn.edu, olver@math.umn.edu.

Supported in part by NSF Grant DMS 01–03944

1



0 0.5 1
0

0.5

1

1.5

2

2.5
Exact Solution

0 0.5 1
0

0.5

1

1.5

2

2.5
RK 4th

0 0.5 1
0

0.5

1

1.5

2

2.5
Invariantized RK 4th

h=0.0270
h=0.0277
h=0.0283

h=0.0270
h=0.0277
h=0.0283

Figure 1: The equation y′ + 100y = 100x2 + 2x

In [22], the second author proposed a new foundation for geometric nu-
merical analysis, called multi-space. A direct implementation of the equivari-
ant moving frame algorithms, [12, 21], in multi-space leads to the systematic
construction of invariant numerical approximations to differential invariants
and invariant differential equations. As we demonstrate here, the invari-
antization process based on the moving frame can be applied to numerical
integration schemes for ordinary differential equations. Invariantized numer-
ical algorithms based on symmetry groups of the differential equation can
greatly reduce the numerical error. Figure 1 shows how the performance of
the Runge–Kutta method is improved through invariantization by the sym-
metry group of an elementary first order equation; additional examples can
be found in the final section of the paper.

Instead of pursuing the exact symmetry group for a difference equation,
we start from the fact that the continuous symmetry group of a given dif-
ferential equation also applies to its numerical scheme roughly. In practice,
the symmetry groups of a differential equation are found by the usual Lie in-
finitesimal prolongation algorithm, [20]. For the moving frame procedure, one
must determine the corresponding finite group transformations by exponen-
tiating the infinitesimal generators. We will not dwell on the determination
of symmetry groups, but will concentrate on their application to geometric
numerical integration of the underlying differential equation.
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2 Geometry of Numerical Methods.

In this section, we outline the basic construction of multi-space for curves,
which correspond to functions of a single independent variable, and hence
satisfy ordinary differential equations. The more difficult case of higher di-
mensional submanifolds, corresponding to functions of several variables that
satisfy partial differential equations, remains to be completely developed; the
proposed construction requires a new approach to multi-dimensional inter-
polation theory, [23].

Let M be an m-dimensional manifold M ; in all examples, M = R
m is

ordinary Euclidean space. Let π: Jn → M denote the n–th order jet space
for curves C ⊂ M , defined as the space of equivalence classes of curves under
the equivalence relation of n–th order contact at a single point. We let jnC|z
denote the n-jet or equivalence class of the curve C at the point z ∈ C.

If we introduce local coordinates z = (x, y) = (x, y1, . . . , yq), where q =
m− 1, then a curve C = {y = f(x)} defined by a smooth function f : I → M
defined on an interval I ⊂ R will be called a graph. The corresponding jet
coordinates of jnC|z at z = (x, f(x)) ∈ C are the value of x and all the

derivatives y
(k)
i = f

(k)
i (x) for i = 1, . . . , q, k = 0, 1, 2, . . . , n.

Numerical finite difference approximations to the derivatives of a function
y = f(x) rely on its values y0 = f(x0), . . . , yn = f(xn) at several distinct
points zi = (xi, yi) = (xi, f(xi)) on the curve. Thus, discrete approximations
to jet coordinates on Jn are functions F (z0, . . . , zn) defined on the joint space

M¦(n+1) = { (z0, . . . , zn) | zi 6= zj for all i 6= j } ⊂ M×(n+1)

which is the off-diagonal part of the Cartesian product consisting of all dis-
tinct (n+1)-tuples of points in M . As the points come together, the limiting
value of F (z0, . . . , zn) will be governed by the derivatives of the appropriate
order governing the direction of convergence, i.e., the jet of the curve at the
point of coalescence. Our goal is to construct a space that incorporates both
the jet space Jn and the joint space M ¦(n+1) in a consistent manner.

Definition 1 An (n+1)-pointed manifold is an object M = (z0, . . . , zn; M)
consisting of a smooth manifold M and n + 1 not necessarily distinct points
z0, . . . , zn ∈ M .

Let C(n) denote the set of all (n + 1)-pointed curves C = (z0, . . . , zn; C)
contained in M . We define an equivalence relation on C(n) that generalizes
the jet equivalence relation of n–th order contact at a single point.
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Definition 2 Two (n + 1)-pointed curves

C = (z0, . . . , zn; C), C̃ = (z̃0, . . . , z̃n; C̃),

have n–th order multi-contact if and only if

zi = z̃i, and j#i−1C|zi
= j#i−1C̃|zi

, for each i = 0, . . . , n,

where #i = #{ j | zj = zi } denotes the number of points which coincide with
the i–th one.

The n–th order multi-space, denoted M (n) is the set of equivalence classes
of (n + 1)-pointed curves in M under the equivalence relation of n–th order
multi-contact. The equivalence class of an (n + 1)-pointed curves C is called
its n–th order multi-jet, and denoted jnC ∈ M (n).

In particular, if the points on C = (z0, . . . , zn; C) are all distinct, then
jnC = jnC̃ if and only if zi = z̃i for all i, which means that C and C̃

have all n + 1 points in common. Therefore, we can identify the subset of
multi-jets of multi-pointed curves having distinct points with the off-diagonal
Cartesian product space M ¦(n+1) ⊂ Jn. On the other hand, if all n+1 points
coincide, z0 = . . . = zn, then jnC = jnC̃ if and only if C and C̃ have n–th
order contact at their common point z0 = z̃0. Therefore, the multi-space
equivalence relation reduces to the ordinary jet space equivalence relation on
the set of coincident multi-pointed curves, and in this way Jn ⊂ M (n). These
two extremes do not exhaust the possibilities, since one can have some but
not all points coincide. Intermediate cases correspond to multi-jet spaces

Jk1 ¦ · · · ¦ Jki

≡
{
(z

(k1)
0 , . . . , z

(ki)
i ) ∈ Jk1 × · · · × Jki

∣∣∣ zν = π(z(kν)
ν ) are distinct

}
,

(1)

where
∑

kν = n; see [10, 22] for details.

Theorem 3 If M is a smooth m-dimensional manifold, then its n–th order

multi-space M (n) is a smooth manifold of dimension (n+1)m, which contains

the joint space M ¦(n+1) as an open, dense submanifold, and the n–th order

jet space Jn as a smooth submanifold.

Just as the local coordinates on Jn are provided by the coefficients of Taylor
polynomials, the local coordinates on M (n) are provided by the coefficients of
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interpolating polynomials, and are most conveniently written in terms of the
classical divided differences of numerical interpolation theory, [9]. In terms
of the local coordinates on M , an (n + 1)-pointed graph consists of the graph
of a smooth function y = f(x) together with (n + 1) points zi = (xi, f(xi))
thereon. Again, it is worth emphasizing that we allow some or all of the
mesh points x0, . . . , xn ∈ R to coincide. The multi-jets of (n + 1)-pointed

graphs will form an open, dense submanifold M
(n)
Γ ⊂ M (n). The missing

part M (n) \ M
(n)
Γ consists of multi-jets of (n + 1)-pointed curves with either

vertical tangents at repeated points, or having two or more distinct points
lying on the same vertical line {x = c}.

We define the classical divided differences [ z0z1 . . . zk ] by the standard
recursive rule, namely [ zj ] = yj and

[ z0z1 . . . zk−1zk ] =
[ z0z1z2 . . . zk−2zk ] − [ z0z1z2 . . . zk−2zk−1 ]

xk − xk−1

. (2)

The divided differences are well-defined provided no two points lie on the
same vertical line.

Remark : The more usual divided difference notation [ y0y1 . . . yk ] is ambigu-
ous since it assumes that the mesh x0, . . . , xn is fixed throughout. Because we
are regarding the independent and dependent variables on the same footing
— and, indeed, are allowing changes of variables that mix up the two — it
is important to adopt an unambiguous divided difference notation here.

Divided differences are initially defined only for distinct points zk. Re-
quiring the points to lie on a smooth curve (graph) allows us to extend the
definitions to cases when two or more points are coincident. To emphasize
that the resulting “confluent divided differences” depend on the underlying
curve (or function) we sometimes write [ z0z1 . . . zk ]C instead of [ z0z1 . . . zk ].

Definition 4 Given an (n + 1)-pointed graph C = (z0, . . . , zn; C), its
divided differences are defined by [ zj ]C = f(xj), and

[ z0z1 . . . zk−1zk ]C = lim
z→zk

[ z0z1z2 . . . zk−2z ]C − [ z0z1z2 . . . zk−2zk−1 ]C
x − xk−1

. (3)

When taking the limit, the point z = (x, f(x)) must lie on the curve C, and
take limiting values x → xk and f(x) → f(xk).
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In the non-confluent case zk 6= zk−1 we can replace z by zk directly in the
difference quotient (3) and so ignore the limit. On the other hand, when all
k + 1 points coincide, the k–th order confluent divided difference converges
to

[ z0 . . . z0 ] =
f (k)(x0)

k!
. (4)

The classical Newton interpolation formula, [9], can be stated as follows.

Lemma 5 Let x0, . . . , xn ∈ R be mesh points, and let a0, . . . , an ∈ Rq.

Define the (n + 1)-pointed graph C = (z0, . . . , zn; C) where C denotes the

graph of the polynomial

pn(x) = a0 + a1 (x − x0) + a2 (x − x0)(x − x1) + · · ·

+ an (x − x0)(x − x1) · · · (x − xn−1),
(5)

and zk = (xk, pn(xk)) ∈ C for k = 0, . . . , n. Then the divided differences for

C are equal to

[ z0z1 . . . zk ]C = ak, k = 0, . . . , n. (6)

Theorem 6 Two (n+1)-pointed graphs C, C̃ have n–th order multi-contact

if and only if they have the same divided differences:

[ z0z1 . . . zk ]C = [ z0z1 . . . zk ]
C̃
, k = 0, . . . , n.

In particular, C̃ = (z0, . . . , zn; C̃) will have n–th order multi-contact with the

polynomial curve given by (5) if and only if C̃ is the graph of a function of

the form

y = f(x) = pn(x) + (x − x0)(x − x1) · · · (x − xn) h(x), (7)

where h(x) is smooth.

Local coordinates on the multi-graph subset M
(n)
Γ ⊂ M (n) consist of the

independent variables along with all the divided differences

x0, . . . , xn,
y(0) = y0 = [ z0 ]C , y(1) = [ z0z1 ]C ,

y(2) = 2 [ z0z1z2 ]C , . . . y(n) = n! [ z0z1 . . . zn ]C ,
(8)

prescribed by (n + 1)-pointed graphs C = (z0, . . . , zn; C). The n! factor is
included so that y(n) agrees with the derivative coordinate when restricted
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to Jn, cf. (4). The proof that the change of divided difference coordinates is
smooth on the overlap of coordinate charts proceeds indirectly; see [22] for
details.

A smooth function ∆: Jn → R on (an open subset of) the jet space,
written ∆(x, y, . . . , y(n)), is known as a differential function. These include
individual derivatives, as well as more complicated combinations such as
the the Euclidean curvature and torsion, general differential invariants, etc.
Any system of differential equations (or, even more generally, a system of
differential algebraic equations) is (locally) defined by the vanishing of one
or more differential functions:

∆1(x, y(n)) = · · · = ∆k(x, y(n)) = 0. (9)

To implement a numerical solution to the system (9) by finite difference
methods, one relies on suitable discrete approximations to each of its defining
differential functions ∆ν , and this requires extending the differential functions
from the jet space to the associated multi-space, in accordance with the
following definition.

Definition 7 Let M be a Riemannian manifold with metric ‖·‖. Suppose
N ⊂ M is a closed submanifold and H: N → R a smooth function on N .
We call F : M → R a k–th order extension of H if for each compact K ⊂ M
there exists a constant C > 0 so that

|F (x1) − H(x2) | ≤ C ‖x1 − x2 ‖
k, x1 ∈ K, (10)

where x2 ∈ N is the closest point on N to x1.

Definition 8 An (n + 1)-point numerical approximation of order k to a
differential function ∆: Jn → R is a k–th order extension N∆: M (n) → R of
∆ to multi-space, based on the inclusion Jn ⊂ M (n).

Let us convince the reader that Definition 8 is a legitimate geometric reformu-
lation of standard numerical approximation ideas. The simplest illustration
of Definition 8 is provided by the divided difference coordinates (8). Each
divided difference y(n) forms an (n + 1)-point numerical approximation to
the n–th order derivative coordinate on Jn. The order of the approxima-
tion is k = 1. More generally, any differential function ∆(x, y, y(1), . . . y(n))
can immediately be given an (n + 1)-point numerical approximation N∆ =
∆(x0, y

(0), y(1), . . . y(n)) by replacing each derivative by a k–th order divided
difference approximation.
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3 Invariantization.

The equivariant approach to moving frames developed in [12, 21] provides
a general procedure for invariantizing functions, forms, tensors, differential
operators, algorithms, etc. for completely general group actions. Our goal
is to use invariantization to algorithmically construct invariant numerical
approximations to differential invariants and invariant differential equations.

Definition 9 Given an r–dimensional Lie group G acting smoothly on a
manifold M , a moving frame is a smooth, G-equivariant map ρ : M → G.

The group G acts on itself by left or right multiplication. Classical moving
frames, [7, 13], which are all included in this general definition, rely on the
left action, but, in practice, the right versions are often easier to compute,
and will be the version of choice here. Right-equivariance requires

ρ(g · z) = ρ(z) · g−1 for all z ∈ M, g ∈ G.

The classical left-equivariant moving frame ρ̃(z) = ρ(z)−1 may be simply
obtained by applying the group inversion.

Theorem 10 A moving frame exists in a neighborhood of a point z ∈ M
if and only if G acts freely and regularly near z.

Freeness requires that every point z ∈ M has trivial isotropy, meaning g·z = z
if and only if g = e, and so the group orbits are all of dimension r = dim G.
Regularity requires that the orbits form a regular foliation; see [12] for details.

The practical implementation of the moving frame construction is based
on Cartan’s method of normalization, [7, 12], which relies on the choice of
a (local) cross-section to the r-dimensional group orbits, i.e., a submanifold
having the complementary dimension m − r that intersects each orbit once
and transversally.

Theorem 11 If G acts freely, regularly on M , and K ⊂ M is a cross-

section to the group orbits, then the map ρ : M → G that sends z ∈ M to

the unique group element g = ρ(z) that maps z to the cross-section, g · z =
ρ(z) · z ∈ K, defines a right moving frame.
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One usually chooses a local coordinate cross-section

K = { z1 = c1, . . . , zr = cr},

where the first r, say, of the coordinates z = (z1, . . . , zm) on M are set equal
to suitably chosen constants. If we write out the local coordinate formulae
z̃ = w(g, z) = g·z for the group transformations, then the corresponding right
moving frame g = ρ(z) is obtained by solving the normalization equations

w1(g, z) = c1, . . . wr(g, z) = cr, (11)

for the group parameters g = (g1, . . . , gr) in terms of z = (z1, . . . , zm). When
we substitute the moving frame expressions g = ρ(z) into the transformation
formulae, the resulting functions Iν(z) = wν(ρ(z), z) are easily seen to be
G-invariant. The first r coincide with the normalization constants, I1(z) =
c1, . . . , Ir(z) = cr, while the remaining m−r provide a system of fundamental
invariants for the group action.

Theorem 12 If g = ρ(z) is the moving frame solution to the normalization

equations (11), then Ir+1(z) = wr+1(ρ(z), z), . . . , Im(z) = wm(ρ(z), z) form a

complete system of functionally independent invariants for the group action.

The moving frame construction includes an added bonus — a canonical way
to associate an invariant with any function.

Definition 13 The invariantization of a scalar function F : M → R with
respect to a right moving frame ρ is the the invariant function I = ι(F )
defined by I(z) = F (ρ(z) · z).

In other words, given a function F (z1, . . . , zm), its invariantization is the
invariant function ι(F ) = F (I1, . . . , Im) = F (c1, . . . , cr, Ir+1(z), . . . , Im). Ge-
ometrically, invariantization amounts to restricting the function to the cross-
section and then requiring that the induced invariant be constant along the
group orbits. In particular, if I(z) is an invariant, then ι(I) = I. There-
fore, invariantization defines a canonical projection, depending on the moving
frame, from functions to invariants.

Example 14 Let G be the one-parameter Lie group acting on R3 as

(x1, x2, x3) 7−→

(
x1,

x2

1 − εe−x1x2

,
x3 − εe−x1x2

2

(1 − εe−x1x2)2

)
.

9



Choosing the cross-section x̃3 = 0 and solving for the group parameter ε
gives the moving frame

ε = ρ(x1, x2, x3) =
x3e

x1

x2
2

.

The resulting fundamental invariants are

(I1, I2, I3) = ρ(x1, x2, x3) · (x1, x2, x3) =

(
x1,

x2
2

x2 − x3

, 0

)
.

Invariantization of a function F (x1, x2, x3) is then given by

ι[ F (x1, x2, x3) ] = F (I1, I2, I3) = F

(
x1,

x2
2

x2 − x3

, 0

)
.

4 Multi-Invariants.

Let G be an r-dimensional Lie group which acts smoothly on M . Since G
evidently maps multi-pointed curves to multi-pointed curves while preserving
the multi-contact equivalence relation, there is an induced action on the
multi-space M (n) called its n–th multi-prolongation and denoted by G(n). On
the jet subset Jn ⊂ M (n) the multi-prolonged action reduced to the usual jet
space prolongation of our transformation group, [20]. On the other hand, on
the off-diagonal part M ¦(n+1) ⊂ M (n) the action coincides with the (n + 1)-
fold Cartesian product action of G on M×(n+1), [21].

Recall that a differential invariant is a function I: Jn → R which is in-
variant under the prolonged action of G on the jet space Jn. Similarly,
a joint invariant is a function J : M×(n+1) → R on the Cartesian product
space which is invariant under the product action of G, cf. [21]. In this
vein, we define a multi-invariant to be a function K: M (n) → R on multi-
space which is invariant under the multi-prolonged action of G(n). The re-
striction of a multi-invariant K to jet space will be a differential invariant,
I = K | Jn, while restriction to the joint space M ¦(n+1) will define a joint
invariant J = K |M ¦(n+1). Smoothness of K will imply that the joint invari-
ant J is an invariant numerical approximation to the differential invariant

I. Moreover, every invariant finite difference numerical approximation to
the differential invariant I arises in this manner. Thus, the theory of multi-
invariants is the theory of invariant numerical approximations! The basic
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idea of replacing differential invariants by joint invariants forms the foun-
dation of Dorodnitsyn’s approach to invariant numerical algorithms, [11],
and also the invariant numerical approximations of differential invariant sig-
natures in computer vision, [2, 5, 6, 21]. Furthermore, the restriction of a
multi-invariant to any intermediate multi-jet subspace, as in (1), will define
a joint differential invariant, [21] — also known as a semi-differential invari-
ant in the computer vision literature, [10, 19]. Thus, multi-invariants also
include invariant semi-differential approximations to differential invariants
as well as joint invariant numerical approximations to differential invariants
and semi-differential invariants — all in one seamless geometric framework.

Multi-invariants can be systematically constructed by applying the mov-
ing frame method to the multi-prolonged group action. Any equivariant
multi-frame ρ(n): M (n) → G will evidently restrict to a classical moving
frame ρ(n): Jn → G on the jet space along with a compatible product frame
ρ¦(n+1): M¦(n+1) → G. In local coordinates, we use z̃k = (x̃k, ỹk) = g ·zk to de-
note the transformation formulae for the individual points on a multi-pointed
curve. The multi-prolonged action on the divided difference coordinates gives

x̃0, . . . , x̃n,
ỹ(0) = ỹ0 = [ z̃0 ], ỹ(1) = [ z̃0z̃1 ],

ỹ(2) = 2 [ z̃0z̃1z̃2 ], . . . ỹ(n) = n! [ z̃0, . . . , z̃n ],
(12)

where the prolongation formulae are most easily computed via the difference
quotients

[ z̃0z̃1 . . . z̃k−1z̃k ] =
[ z̃0z̃1z̃2 . . . z̃k−2z̃k ] − [ z̃0z̃1z̃2 . . . z̃k−2z̃k−1 ]

x̃k − x̃k−1

, (13)

with [ z̃j ] = ỹj, and then taking appropriate limits to cover the case of
coalescing points.

To compute a multi-frame, we need to normalize by choosing a cross-
section to the group orbits in M (n), which amounts to setting r = dim G of
the transformed divided difference coordinates (12) equal to suitably chosen
constants. An important observation is that in order to obtain the limiting
differential invariants, we must require our local cross-section to pass through
the jet space, and define, by intersection, a cross-section for the prolonged ac-
tion on Jn. This compatibility constraint implies that we are only allowed to
normalize the first lifted independent variable x̃0 = c0. If we try to normalize
x̃1 then we must either set x̃1 = c0 = x̃0, and the cross-section would only be
valid for coincident points z̃1 = z̃0 which would prevent us from extending
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it to the non-coincident case required for constructing invariant numerical
approximations, or set x̃1 = c1 6= c0, and this would prevent the points z̃0

and z̃1 from coalescing, so our moving frame could not be restricted to the
jet subspace.

With the aid of the multi-frame, the most direct construction of the requi-
site multi-invariants and associated invariant numerical differentiation formu-
lae is through the invariantization of the original finite difference quotients
(2). Substituting the multi-frame formulae for the group parameters into
the lifted coordinates (12) provides a complete system of multi-invariants on
M (n); this follows immediately from Theorem 12. We denote the fundamental
multi-invariants by

Hi = ι(xi), K(n) = ι(y(n)), (14)

where ι denotes the invariantization map associated with the multi-frame.
The fundamental differential invariants for the prolonged action of G on Jn

can all be obtained by restriction, so that I (n) = K(n) | Jn. On the jet space,
the points are coincident, and so the multi-invariants Hi will all restrict to
the same differential invariant c0 = H = Hi | J

n — the normalization value
of x̃0. On the other hand, the fundamental joint invariants on M ¦(n+1) are
obtained by restricting the multi-invariants Hi = ι(xi) and Ki = ι(yi). The
multi-invariants can computed by using a multi-invariant divided difference
recursion

[ Ij ] = Kj = ι(yj),

[ I0 . . . Ik ] = ι( [ z0z1 . . . zk ] ) =
[ I0 . . . Ik−2Ik ] − [ I0 . . . Ik−2Ik−1 ]

Hk − Hk−1

,
(15)

and then relying on continuity to extend the formulae to coincident points.
The multi-invariants

K(n) = n! [ I0 . . . In ] = ι( y(n) ) (16)

define the fundamental first order invariant numerical approximations to the
differential invariants I (n).

Given a G-invariant differential equation

∆(x, y, . . . .y(n)) = 0, (17)

we can invariantize the left hand side to rewrite the differential equation in
terms of the fundamental differential invariants:

ι(∆(x, y, . . . .y(n))) = ∆(H0, I
(0), . . . , I(n)) = 0.
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The invariant finite difference approximation to the differential equation is
then obtained by replacing the differential invariants I (k) by their multi-
invariant counterparts K(k):

∆(H0, K
(0), . . . , K(n)) = 0. (18)

Example 15 The action of the proper Euclidean group SE(2) on M = R2

given by

(x̃, ỹ) = g · (x, y) = (x cos ε − y sin ε + a, x sin ε + y cos ε + b) (19)

forms the foundation of the Euclidean geometry of planar curves. The multi-
prolonged action is locally free on M (n) for n ≥ 1, and we can thereby
determine a first order multi-frame and use it to completely classify Euclidean
multi-invariants. The first order transformation formulae are

x̃0 = x0 cos ε − y0 sin ε + a, ỹ0 = x0 sin ε + y0 cos ε + b,

ỹ1 = x1 cos ε − y1 sin ε + a, ỹ(1) =
sin ε + y(1) cos ε

cos ε − y(1) sin ε
,

(20)

where u(1) = [ z0z1 ]. Normalization based on the cross-section x̃0 = ỹ0 =
ỹ(1) = 0 results in the right moving frame

a = −x0 cos ε + y0 sin ε = −
x0 + y(1) y0√
1 + (y(1))2

,

b = −x0 sin ε − y0 cos ε =
x0 y(1) − y0√
1 + (y(1))2

,

tan ε = −y(1) . (21)

(For simplicity, we will ignore the ambiguity of adding a multiple of π to the
angular coordinate; see [21] for complete details.) Substituting the moving
frame formulae (21) into the lifted divided differences results in a complete
system of (oriented) Euclidean multi-invariants. These are easily computed
by beginning with the fundamental joint invariants

Hk = ι(xk) =
(xk − x0) + y(1) (yk − y0)√

1 + (y(1))2
= (xk − x0)

1 + [ z0z1 ] [ z0zk ]
√

1 + [ z0z1 ]2
,

Kk = ι(yk) =
(yk − y0) − y(1) (xk − x0)√

1 + (y(1))2
= (xk − x0)

[ z0zk ] − [ z0z1 ]
√

1 + [ z0z1 ]2
.

13



The multi-invariants are obtained by forming divided difference quotients

[ I0Ik ] =
Kk − K0

Hk − H0

=
Kk

Hk

=
(xk − x1)[ z0z1zk ]

1 + [ z0zk ] [ z0z1 ]
,

where, in particular, I (1) = [ I0I1 ] = 0. The second order multi-invariant

I(2) = 2 [ I0I1I2 ] = 2
[ I0I2 ] − [ I0I1 ]

H2 − H1

=
2 [ z0z1z2 ]

√
1 + [ z0z1 ]2

( 1 + [ z0z1 ] [ z1z2 ] )( 1 + [ z0z1 ] [ z0z2 ] )

=
y(2)

√
1 + (y(1))2

[
1 + (y(1))2 + 1

2
y(1)y(2)(x2 − x0)

] [
1 + (y(1))2 + 1

2
y(1)y(2)(x2 − x1)

]

provides a Euclidean–invariant numerical approximation to the Euclidean
curvature:

lim
z1,z2→z0

I(2) = κ =
y(2)

(1 + (y(1))2)3/2
.

Similarly, the third order multi-invariant

I(3) = 6 [ I0I1I2I3 ] = 6
[ I0I1I3 ] − [ I0I1I2 ]

H3 − H2

will form a Euclidean–invariant approximation for the normalized differential
invariant κs = ι(yxxx), the derivative of curvature with respect to arc length,
[5, 12]. Higher order invariant numerical approximations can be obtained by
invariantization of the higher order divided difference approximations. The
moving frame construction has a significant advantage over the infinitesimal
approach used by Dorodnitsyn, [11], in that it does not require the solution
of partial differential equations in order to construct the multi-invariants.

5 Invariantization of Numerical Schemes.

Given a symmetry group of an ordinary differential equation, we can apply
the invariantization procedure to standard numerical integration schemes
such as the Euler and the Runge–Kutta methods to derive invariantized nu-
merical scheme that respects the symmetries. Invariantization under a well-
chosen group has the effect of transforming the points at each step along

14



the orbits of the symmetry group to the proper place where the numerical
scheme works better. Since it is the symmetry group that acts on the points,
the numerical scheme remains valid after the transformation. In this way we
invariantize existing numerical schemes, not necessarily changing the mesh.
The invariantization also can be applied to numerical methods for both ordi-
nary differential equations and partial differential equations. Moreover this
method works efficiently with symmetry groups that are more complicated
than the similarity or scaling group.

The following simple example shows how this method improves the ex-
isting numerical algorithms. Consider the scalar differential equation

y′ = y. (22)

Linearity implies that it has a one-parameter symmetry group

(x̃, ỹ) = ε · (x, y) = (x, y + εex) for all ε ∈ R. (23)

Let (x0, y0) = (x0, y(x0)) be the initial condition, and y1 = y0 + hy′(x0) =
y0 + hy0 = (1 + h)y0 the next point generated by the Euler method for
fixed x1. Since G does not act on the independent variable, the step size
h = x1 − x0 = x̃1 − x̃0 is not affected by the group transformations. Thus,
the transformed version the Euler method is

ỹ1 = y1 + εex1 = (1 + h)(y0 + εex0) = (1 + h)ỹ0

Since y(n)(x) = y(x) for all n = 1, 2, 3 . . ., using the Taylor expansion at x0,
we obtain

y1 = y(x1) − (y0 + εex0)

(
h2

2!
+

h3

3!
+ . . .

)

So far, this is nothing more than the Euler method with error O(h2). Now
suppose we actually transform (x0, y0) to (x̃0, ỹ0) = (x0, 0). That is, we
set ε = −y0/e

x0 . Then all error terms cancel and we have y1 = y(x1) ex-
actly. Note that our choice of transformation parameter ε depended on (x, y).
Therefore, in this simple example the Euler method yields an exact solution
after an appropriate symmetry transformation.

In general, suppose the function N∆(z0, . . . , zk) on the joint space M ¦(k+1)

defines a numerical integration scheme for a differential equation (17). Given
a group transformation g, we define the g-transformed numerical scheme as

N g
∆(z0, . . . , zk) = N∆(g · z0, . . . , g · zn).

15



If g defines a symmetry of the differential equation, in the sense that it
maps solutions to solutions, [20], then it is not hard to see that N g

∆ is also a
numerical scheme for the differential equation.

Example 16 The elementary Euler method for the first order differential
equation

∆(x, y, y′) = y′ − f(x, y) = 0

is given by the function

N∆(z0, z1) = y1 − y0 + (x1 − x0)f(x0, y0), (24)

which is defined on the joint space (R2)¦2. Under the one-parameter group
(23), the ε-transformed Euler scheme is

N ε
∆(z0, z1) = N∆(ε · z0, ε · z1)) = N∆(x0, y0 + εex

0 , x1, y1 + εex
1)

= (y1 + εex1) − (y0 + εex0) − (x1 − x0)f(x0, y0).
(25)

Suppose G is a symmetry group for a differential equation ∆ = 0, and let
ρ: M¦(k+1) → G be a moving frame. The invariantization of the numerical
scheme N∆ with respect to the moving frame ρ is given by

I∆(z0, . . . , zk) ≡ N
ρ(z)
∆ (z0, . . . , zk) = N∆(ρ(z) · z0, . . . , ρ(z) · zk).

This means that, at each step, we apply the numerical scheme after shifting
the points to a fixed cross-section and map the result back to the original
location. In particular, the invariantization of (25) using the moving frame
ε = ρ(z) = −y0e

−x0 is

I∆(z) = N∆(ρ(z) · z) = y1 − y0e
x1−x0 − (x1 − x0)f(x0, y0).

The key to the success of the invariantized numerical scheme lies in the
intelligent choice of cross-section for the moving frame. We usually set the
dependent variables and/or some of their derivatives to zero. Even though the
associated computations can become complicated, the more the symmetry
group is prolonged, the more choices we have for a cross-section.

Unfortunately, invariantization by elementary symmetry groups has no
effect. Every standard numerical scheme is already invariant with respect to
the affine symmetry group z̃ = Az + b whose infinitesimal generators are

∂

∂x
,

∂

∂y
, x

∂

∂x
, y

∂

∂x
, x

∂

∂y
, y

∂

∂y
.
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Figure 2: The logistic equation y′ = y( 1 − y
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)

However, as we will see below, affine symmetries can be still used to enhance
the numerical scheme when combined with other nontrivial symmetry groups.

In the following examples, we concentrate on the fourth order Runge–
Kutta method (RK) since is the most widely used single-step numerical
scheme for ordinary differential equations. Implementation of the resulting
invariantized Runge–Kutta schemes (IRK) is straightforward, and requires
only a small number of lines to be added to existing numerical codes.

Example 17 The logistic equation

y′ = y
(

1 −
y

100

)
. (26)

possesses the one-parameter symmetry group with infinitesimal generator
v = e−xy2 ∂

∂y . The corresponding prolonged group transformations are

(x̃, ỹ, ỹ′) =

(
x ,

y

1 − εe−xy
,

y′ − εe−xy2

(1 − εe−xy)2

)
,

which we analyzed in Example 14. Again, setting ỹ′ = 0 gives the moving
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frame ρ(x, y, y′) = exy−2y′ and therefore

ρ(x, y, y′) · (x, y, y′) =

(
x,

y2

y − y′
, 0

)
.

Since the standard RK scheme involves z0 = (x0, y0, y
′

0) and z1 = (x1, y1, y
′

1),
it is defined on the joint space (J1)¦2 ' (R3)¦2. The previous moving frame
is now extended and defined on the joint space as ρ(z0, z1) = ρ(z0), i.e., it
depends only on the first point. The invariantized numerical scheme ι[N∆ ]
can be obtained by substitution

(x0, y0, y′

0; x1, y1, y′

1) 7−→
(
x0,

y0
2

y0 − y′

0

, 0; x1 ,
y0

2y1

y0
2 − ex0−x1y1y′

0

,
y0

4y′

1 − ex0−x1y0
2y1

2y′

0

(y0
2 − ex0−x1y1y′

0)
2

)
.

As Figure 2 shows, the performance of invariantized RK overwhelms that of
the standard RK.

Example 18 The second order equation

y′′ = y′2 (27)

admits two independent one-parameter symmetry groups, with generators

v1 = x2 ∂

∂x
− x

∂

∂y
, v2 = ey ∂

∂y

The corresponding prolonged transformations are

(x, y, y′) 7−→





(
x

1 − ε1x
, y(1 − ε1x) ,

ε1x − 1

x
+ (xy′ + 1)

(ε1x − 1)2

x

)
,

(
x,− log(e−y − ε2),

e−yy′

e−y − ε2

)
.

Even though the second is easier to compute, it is less beneficial since we
can make neither ỹ nor ỹ′ zero by its action. So we use the first. By fixing
ỹ′ = 0, we obtain the moving frame

ρ(x, y, y′, y′′) =
y′

xy′ + 1
.

Figure 3 shows that the invariantized RK excels the RK by far again. It even
seems not affected by the step size!
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Figure 3: The equation y′′ = y′2

Example 19 Ames’s equation

y′′ = −
y′

x
− ey (28)

is a stiff equation that arises in a wide range of fields, including kinetics and
heat transfer, vortex motion of incompressible fluids, and the mass distribu-
tion of gaseous interstellar material under influence of its own gravitational
fields, [1]; it is also known as the Frank-Kaminetskii equation, the Gelfand
equation, and the Barenblatt equation. The infinitesimal generators

v1 = −x
∂

∂x
+ 2

∂

∂y
, v2 = −

1

2
x log x

∂

∂x
+ (1 + log x)

∂

∂y
,

induce the prolonged one-parameter symmetry groups

(x, y, y′) 7−→





(e−ε1x , y + 2ε1 , eε1y′),
(

ee−ε2/2 log x , y + 2 log x(1 − e−ε2/2) + ε2 ,
xy′ + 2 − 2e−ε2/2

ee−ε2/2 log x− 1

2
ε2

)
.

The first is a scaling transformation group, which does not change the per-
formance of the original scheme as mentioned above. The difficulty with
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Figure 4: Ames’ equation y′′ = −y′

x − ey

the second one is that we cannot set ỹ or ỹ′ zero. However, we can build
a better transformation by proper combination of the two groups. Let
ρ1(z0; z1) = log x0 and ρ2(z0; z1) = −y0. Through the successive applica-
tions of the two moving frames ρ1ρ2, every point (x, y) is projected to the
cross-section ỹ = 0. The corresponding invariantized numerical scheme is
written

I∆(z) = (N ρ1

∆ )ρ2(z) = N∆( ρ2(ρ1(z) · z) · (ρ1(z) · z) ).

Figure 4(a) is the comparison between the RK and the IRK scheme when
they start at x = 5. Even in this domain the performance of IRK exceeds
RK, but more dramatic difference appears when they apply around x = 0,
as illustrated in Figure 4(b). This implies that the invariantized Runge–
Kutta method successfully avoids the equation’s stiffness by preserving the
equation’s geometric structure.

In conclusion, the geometric foundations of numerical analysis based on
multi-space and the moving frame invariantization process leads, in favor-
able cases, to significant improvements to standard numerical integration
schemes for ordinary differential equations with symmetry. Applications of
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invariantized schemes to more challenging systems of ordinary differential
equations are currently under investigation. The construction of multi-space
for functions of several variables and applications to numerical analysis of
partial differential equations will be the subject of future research.
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