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1. Introduction.

Interpolation theory for functions of a single variable has a long and distinguished his-
tory, dating back to Newton’s fundamental interpolation formula and the classical calculus
of finite differences, [7, 47, 58, 64]. Standard numerical approximations to derivatives and
many numerical integration methods for differential equations are based on the finite dif-
ference calculus. However, historically, no comparable calculus was developed for functions
of more than one variable. If one looks up multivariate interpolation in the classical books,
one is essentially restricted to rectangular, or, slightly more generally, separable grids, over
which the formulae are a simple adaptation of the univariate divided difference calculus.
See [19] for historical details.

Starting with G. Birkhoff, [2] (who was, coincidentally, my thesis advisor), recent
years have seen a renewed level of interest in multivariate interpolation among both pure
and applied researchers; see [18] for a fairly recent survey containing an extensive bibli-
ography. De Boor and Ron, [8, 12, 13], and Sauer and Xu, [61, 10, 65], have systemati-
cally studied the polynomial case. Multivariate generalizations of divided differences have
been proposed by several authors [9, 30, 40, 52, 59, 60]. Other significant developments
include Kergin’s interpolation theory, [38, 45, 46], multivariate Birkhoff and Hermite in-
terpolation, [42, 43], radial basis functions, [4], and various algebraic and group-theoretic
approaches, [25, 31, 41, 48, 49, 67].

The goal of this paper is to investigate some of the basic computational issues that
arise in multivariate interpolation. In the polynomial case, it is an elementary observation
that the interpolation conditions require the solution of a Vandermonde linear system,
[27, 34], which is then effected by the classical divided difference calculus. Less commonly
known is that there is a beautiful, explicit LU factorization of the classical Vandermonde
matrix. Here is the third order case†:

S(3) =




1 1 1 1
x0 x1 x2 x3

x2
0 x2

1 x2
2 x2

3

x3
0 x3

1 x3
2 x3

3


 = L(3) U (3), (1.1)

where

L(3) =




1 0 0 0
x0 1 0 0

x2
0 x0 + x1 1 0

x3
0 x2

0 + x0x1 + x2
1 x0 + x1 + x2 1


,

U (3) =




1 1 1 1
0 x1 − x0 x2 − x0 x3 − x0

0 0 (x2 − x0)(x2 − x1) (x3 − x0)(x3 − x1)
0 0 0 (x3 − x0)(x3 − x1)(x3 − x2)


.

(1.2)

† I use S to indicate that we are dealing with the “sample matrix” — here of the monomials
1, x, x2, x3 — and reserve the symbol V for vector spaces.
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The general pattern, cf. (2.22), is almost evident from the 3 × 3 case. In particular, the
factorization yields a completely elementary proof of the classical Vandermonde determi-
nant formula as the product of the pivots, i.e., the diagonal entries of the upper triangular
factor. The entries of U (3) are the classical Newton difference monomials. Indeed, as we
will see, the classical interpolation and the divided difference formulae all follow imme-
diately from the factorization. The entries of L(3) are the classical complete symmetric
polynomials, [44]. Interestingly, the inverse of L(3) also has a nice explicit formula

E(3) = (L(3))−1




1 0 0 0
−x0 1 0 0
x0x1 −x0 − x1 1 0

−x0x1x2 x0x1 + x0x2 + x1x2 −x0 − x1 − x2 1


, (1.3)

whose entries are the classical elementary symmetric polynomials. The inverse of the upper
triangular factor (when it exists) is also striking:

(U (3))−1 =




1
1

x0 − x1

1

(x0 − x1)(x0 − x2)

1

(x0 − x1)(x0 − x2)(x0 − x3)

0
1

x1 − x0

1

(x1 − x0)(x1 − x2)

1

(x1 − x0)(x1 − x2)(x1 − x3)

0 0
1

(x2 − x0)(x2 − x1)

1

(x2 − x0)(x2 − x1)(x2 − x3)

0 0 0
1

(x3 − x0)(x3 − x1)(x3 − x2)




. (1.4)

Historical note: I noticed the factorization a few years ago, and was certain that it
must be well known. However, tracking down references has been a challenge. In lec-
tures given around 1991, George Andrews, [1], used it to motivate a general combinatorial
method, but never published it. With the help of Gil Strang and Dennis Stanton, I
found explicit versions in several rather recent publications, [26, 39, 57, 66], but, so far,
nothing older. De Boor, [11], emphasizes the importance of the LU Vandermonde factor-
ization for interpolation theory without explicitly writing it. In a 1973 paper, Mühlbach,
[50, 51], rewrites both classical and generalized divided differences as ratios of Vander-
monde determinants, but doesn’t relate them to matrix factorizations. Interestingly, the
rather extensive numerical literature on practical solutions to Vandermonde systems, in-
cluding [3, 33, 27, 34, 53, 63], fails to reveal the explicit factorization formula. The last
formula (1.4) was pointed out to me by Herbert Wilf.

In the multivariate version, the Vandermonde matrix assumes a block form, where
the ordinary powers are replaced by symmetric powers of vectors. To effect a similar
explicit block LU decomposition, and thus establish the multivariate analogs of the Newton
interpolation formulae, we are naturally led to the non-commutative quasi-determinants
originally proposed by Heyting, [32], and then developed in detail by Gel’fand, Retakh, and
their collaborators, [15, 16, 20–24]. The simplest example of a quasi-determinant is the
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well-known Schur complement ΘW (A) = d− ca−1b of a 2× 2 block matrix A =

(
a b
c d

)
,

which appears in its block LU factorization

(
a b
c d

)
=

(
1 0

ca−1 1

)(
a b
0 d− ca−1b

)
. (1.5)

The general case can be recursively defined based on the general heredity principle for-
mulated by Gel’fand and Retakh, [24, 20]: quasi-determinants of quasi-determinants are
quasi-determinants.

Warning : in the scalar case, a quasi-determinant does not reduce to an ordinary
determinant, but rather to a ratio of determinants.

The block factorization of the multivariate Vandermonde matrix leads to a full mul-
tivariate version of the classical divided difference calculus, including a general recursive
algorithm for computing the multivariate interpolation coefficients, as well as connections
with the theory of noncommutative symmetric functions, [21]. The result is a substantial
generalization of the univariate divided difference calculus to multivariate interpolation
that holds much promise for practical applications.

An alternative, intriguing approach is to relate the interpolation problem for surfaces
and higher dimensional submanifolds to that of curves. Suppose we use n + 1 points to
interpolate a submanifold N ⊂ R

m. As the points coalesce, the relevant coefficients of the
interpolating submanifold converge to the corresponding derivatives of the submanifold
at the point of coalescence. This, indeed, is the foundation of numerical differentiation
theory. At the same time, we could also regard the points as interpolating a curve, and
thus providing approximations to the derivatives of that curve up to order n. This indi-
cates that there is a profound connection between higher dimensional submanifolds and
curves that relate their derivatives at a point in such a manner that the divided difference
approximations to the curve derivatives will, in appropriate combinations, also serve to
approximate surface derivatives. This observation will be developed in depth in the final
section, leading to some fascinating new formulae that directly connect multivariate inter-
polation and approximation of derivatives with the classical univariate divided difference
calculus.

These observations strongly suggest that there is a heretofore unsuspected connection
between the derivatives, or “jets”, [54], of submanifolds of differing dimensions, and hence
a connection between the different jet bundles for submanifolds of a given manifold. In-
deed, the anticipated outcome of our studies should be a geometric blending, through a
general construction known as multispace [55], of interpolation-based numerical approx-
imation schemes for jets of submanifolds of dissimilar dimensions. Our theory has been
designed to establish a rigorous definition of multivariate multispace as the proper foun-
dation of a geometrical theory of numerical algorithms; see also [14, 35]. Applications to
the design of group-invariant numerical methods for approximating differential invariants
and integrating invariant differential equations via the method of moving frames, [55], and
more general methods of geometric integration, [29, 36], are under development.
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2. Interpolation as Factorization.

The purpose of this section is to show how the classical divided difference formulas
for univariate polynomial interpolation can be recovered from the LU factorization of a
Vandermonde matrix. Indeed, we will establish analogous formulas for completely gen-
eral function interpolation based on the same matrix factorization method, resulting in a
general divided difference calculus for univariate interpolation theory.

Suppose we are given n + 1 scalar-valued† functions p0(x), . . . , pn(x) depending on
x ∈ R. Let u0, . . . , un ∈ R indicate a set of interpolation data at the prescribed nodes
x0, . . . , xn ∈ R. The general interpolation problem seeks a linear combination

u = ϕ(x) = c0 p0(x) + · · · + cn pn(x) (2.1)

that passes through the interpolation points:

uj = ϕ(xj) =
n∑

k=0

ck pk(xj), j = 0, . . . , n. (2.2)

We will often view uj = f(xj) as the sample values of a function u = f(x). Of course in
many applications, there is no underlying function, and one merely replaces every occur-
rence of f(xj) by uj .

We can rewrite the basic interpolation equations in matrix form as follows. Let X =
(x0, . . . , xn) denote the sample points. Then (2.2) is equivalent to the matrix equation‡

u = cS, (2.3)

where u = (u0, u1, . . . , un ), c = ( c0, c1, . . . , cn ) are row vectors, while

S = p(X) =
(
p(x0) p(x1) . . . p(xn)

)
(2.4)

denotes the (n+1)×(n+1) sample matrix obtained by sampling the interpolating functions

p(x) = ( p0(x), . . . , pn(x) )
T

at the points. We shall assume that the the interpolation
equations (2.2) have a unique solution, which imposes the following key constraint on the
points.

Definition 2.1. A sequence of points X = (x0, . . . , xn) is said to be poised for
the interpolation functions p0, . . . , pn if and only if the sample matrix is nonsingular:
det p(X) 6= 0.

† The theory applies without significant modification to vector-valued functions of a single
variable.

‡ One can, equivalently, work with column vectors by transposing the matrix systems. How-
ever, this leads to a number of technical complications that only seem to obscure the key issues.
Despite some initial unease, I came to the conclusion that using to a row vector notation for the
interpolation coefficients is the more natural approach.
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There are two particularly important special cases. The first is classical polynomial
interpolation theory, which takes

p0(x) = 1, p1(x) = x, . . . pn(x) = xn.

The sample matrix

S = p(X) =




1 1 1 . . . 1
x0 x1 x2 . . . xn

x2
0 x2

1 x2
2 . . . x2

n
...

...
...

. . .
...

xn
0 xn

1 xn
2 . . . xn

n



. (2.5)

is a Vandermonde matrix. As is well known, S is nonsingular, with

detS =
∏

i<j

(xi − xj) 6= 0, (2.6)

and hence the points are poised if and only if they are distinct.

The second case is trigonometric interpolation, where

pk(x) = e i k x, k = 0, . . . , n.

Equally spaced points xν = 2 ν π/(n+ 1) on the interval [0, 2π ], lead to the discrete Fourier
transform of fundamental importance in signal processing, [62]. The entries of the sample
matrix

S = p(X) =




1 1 1 . . . 1

1 ζ ζ2 . . . ζn

1 ζ2 ζ4 . . . ζ2n

...
...

...
. . .

...

1 ζn ζ2n . . . ζn
2




are (n+ 1)st roots of unity, i.e., powers of ζ = e2π i /(n+1).

The direct method for solving the interpolation equations (2.3) is standard Gaussian
elimination, [62]. Let us assume that the coefficient matrix S is regular , [56], meaning
that it is invertible and, further, that no row interchanges are required to reduce it to
upper triangular form. Regularity is equivalent to the factorization†

S = LU, (2.7)

of the sample matrix into a special or unit (meaning it has all 1’s on the diagonal) lower
triangular matrix L and an upper triangular matrix U . Assuming invertibility, the regu-
larity condition can always be arranged by an appropriate ordering of the sample points

† Even though (2.3) is an equation for row vectors, we still use row operations on S (not ST )
to reduce it to upper triangular form. Once the LU factorization (2.7) is established, the system
can be solved by back and forward substitution.
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x0, . . . , xn. The entries of L and U can be computed using the following recursive scheme,
which is just the systematization of the Gaussian elimination algorithm. Similar formula-
tions can be found in Mühlbach, [50, 51].

Theorem 2.2. Given functions p0(x), . . . , pn(x), recursively define the functions

ωi
0(x) = pi(x), ωi

k+1(x) = ωi
k(x)−

ωi
k(xk)

ωk(xk)
ωk(x),

k = 0, . . . , n− 1,

i = k, . . . , n,
(2.8)

where we set

ωk(x) = ωk
k(x), λi

k(x) =
ωi
k(x)

ωk(x)
,

k = 0, . . . , n,

i = k, . . . , n.
(2.9)

Then the entries of L and U in the factorization (2.7) of the sample matrix are

Lk
j =

{
λk
j (xj), k ≥ j,

0, k < j,
Uk
j =

{
ωk(xj), k ≤ j,

0, k > j.
(2.10)

Thus, the upper triangular factor U = ω(X) is the sample matrix for the “triangular

basis” functions ω(x) = (ω0(x), . . . , ωn(x) )
T
. The effect of the iterative algorithm (2.9) is

to compute the interpolation coefficients

pi(x) =
i∑

k=0

Li
k ωk(x) =

i∑

k=0

λi
k(xk)ωk(x) (2.11)

of the original functions pi(x) relative to the triangular interpolation basis ωk(x). Indeed, if
we evaluate both sides of (2.11) at the interpolation points, we recover the LU factorization
of the sample matrix in the form

pi(xj) =

i∑

k=0

Li
k ωk(xj) =

i∑

k=0

Li
k U

k
j . (2.12)

The implementation of the recursion (2.9) requires that

ωk(xk) 6= 0, k = 0, . . . , n, (2.13)

which is just a restatement of the regularity condition. A simple induction proves that
ωi
k(xj) = 0 for j < k. Indeed, the functions ωi

k(x) can be completely characterized by an
interpolation condition, namely

ωi
k(x) = pi(x)− σi

k(x), where σi
k(x) = cik,0 p0(x) + · · ·+ cik,k−1 pk−1(x)

is the k point interpolating function for pi(x), i.e., σ
i
k(xj) = pi(xj), j = 0, . . . , k − 1.

The direct recursive algorithm for the functions

λi
k+1(x) =

λi
k(x)− λi

k(xk)

λk(x)− λk(xk)
, λi

0(x) =
pi(x)

p0(x)
where λk(x) = λk+1

k (x), (2.14)
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has the flavor of a divided difference. However, the recursion satisfied by the functions
ωi
k(x) is more fundamental, since it is the one that has a straightforward generalization in

the multivariate situation.

Given a function u = f(x), let us write the corresponding interpolating function,
satisfying uj = f(xj) = ϕ(xj) for j = 0, . . . , n, in terms of the triangular basis functions:

ϕ(x) =
n∑

k=0

ak ωk(x). (2.15)

Its coefficients ak are computed by an identical recursive scheme. We set h0(x) = f(x),
and then recursively define

hk+1(x) = hk(x)− ak ωk(x), ak =
hk(xk)

ωk(xk)
, k = 0, . . . , n. (2.16)

We note that the scheme can also be implemented by setting

gk(x) =
hk(x)

ωk(x)
, whence ak = gk(xk). (2.17)

The latter functions can be found directly by a generalized divided difference formula

g0(x) =
f(x)

p0(x)
, gk+1(x) =

gk(x)− gk(xk)

λk(x)− λk(xk)
. (2.18)

As we shall shortly see, for polynomial interpolation, the recursion scheme (2.18) is the
classical divided difference calculus.

A useful reformulation of the recurrence relations (2.9), (2.14) is based on the gener-
ating functions depending on a dummy variable t :

P (x, t) =
∑

i

pi(x) t
i = p0(x) + p1(x) t+ · · · ,

Ωk(x, t) =
∑

i≥k

ωi
k(x) t

i = ωk(x) t
k + ωk+1

k (x) tk+1 + · · · ,

Λk(x, t) =
Ωk(x, t)

ωk(x)
=
∑

i≥k

λi
k(x) t

i = tk + λk(x) t
k+1 + λk+2

k (x) tk+2 + · · · .

Then equations (2.9), (2.14) can be recast in the form

Ω0(x, t) = P (x, t),

Λ0(x, t) =
P (x, t)

p0(x)
,

,

Ωk+1(x, t) = Ωk(x, t)− Ωk(xk, t)
ωk(x)

ωk(xk)
,

Λk+1(x, t) =
Λk(x, t)− Λk(xk, t)

λk(x)− λk(xk)
.

(2.19)

Note that the denominator in the recurrence formula for Λk+1(x, t) is just the leading term
in the series expansion of the numerator.
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In the polynomial case, the LU factorization of the Vandermonde matrix (2.5) is,
interestingly, related to the classical symmetric polynomials, [44]. Indeed, the generating
function† for the ordinary monomials pi(x) = xi is

P (x, t) =
∞∑

i=0

xi ti =
1

1− x t
,

where we identify polynomials that agree up to terms of order tm. By induction, we easily
prove

Ωk(x, t) =
tk(x− x0)(x− x1) · · · (x− xk−1)

(1− x t)(1− xk−1 t) · · · (1− x0 t)
,

and hence the triangular interpolation basis functions

ωk(x) = (x− x0)(x− x1) · · · (x− xk−1),

are the usual difference polynomials . In this case, (2.15) reduces to the classical Newton
form for the interpolating polynomial

ϕ(x) = a0 ω0(x) + a1 ω1(x) + · · · + an ωn(x)

= a0 + a1(x− x0) + · · · + an(x− x0)(x− x1) · · · (x− xn−1).
(2.20)

On the other hand,

Λk(x, t) =
tk

(1− x t)(1− xk−1 t) · · · (1− x0 t)
=

∞∑

i=k

hk−i(x, x0, . . . , xk−1) t
i,

where
hk(x1, . . . , xn) =

∑

1≤i1≤i2≤···≤ik≤n

xi1
xi2

· · ·xik
, k > 0, (2.21)

is the complete symmetric polynomial of degree k in n variables. Thus, the S = LU
factorization of the Vandermonde matrix (2.5) is given by

Lk
j =

{
hk−j(x0, . . . , xj), k ≥ j,

0, k < j,
Uk
j = ωk(xj), (2.22)

where the lower triangular entries are the complete symmetric polynomials, while the upper
triangular entries are the difference polynomials! Incidentally, the factorization provides
a simple, direct proof of the classical Vandermonde determinant formula (2.6), since the
determinant of S = LU is the product of the pivots — the diagonal entries of U .

Another interesting observation is that the inverse of the complete symmetric poly-
nomial matrix L is the elementary symmetric polynomial matrix L−1 = E, where

Ei
j =

{
(−1)i−j ei−j(x0, . . . , xi−1), i ≥ j,

0, i < j,

† If we restrict our attention to polynomials of degree ≤ n, then all generating function series
should be truncated at order n.
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where ek(x0, . . . , xm) are the standard elementary symmetric polynomials, [44]. Indeed,
the generating functions for the entries of L−1 are

1

Λk(x, t)
=

(1− x t)(1− xk−1 t) · · · (1− x0 t)

tk
=

k∑

m=0

(−1)k−mek−m(x, x0, . . . , xk−1) t
−m.

In addition, the inverse Z−1 = U of the difference polynomial matrix has entries

Zi
j =





∏

0≤k 6=i≤j

1

xi − xk

, i ≤ j,

0, i > j.

Since we won’t need it, the proof of the latter formula is left as an exercise for the reader.

In particular,

λk(x) = h1(x, x0, . . . , xk−1) = x+ x0 + · · ·+ xk−1,

and so the recursive rule (2.18) for the interpolation coefficients ak reduces to the classical
divided difference formula

gk+1(x) =
gk(x)− gk(xk)

x− xk

, g0(x) = f(x). (2.23)

Therefore, the interpolation coefficients

ak = gk(xk) = [ u0u1u2 . . . uk ], k = 0, . . . , n, (2.24)

agree with the usual divided differences of the function values uj = f(xj) at the sample
points, [47, 58].

Let us write

δnf = δnϕ = (a0, . . . , an) =
(
g0(x0), g1(x1), . . . , gn(xn)

)
(2.25)

for the row vector of divided differences (2.24) of order ≤ n for the function f(x) on the
specified points — which are the same as the divided differences of its interpolant ϕ(x).
We can then write the Newton interpolating polynomial (2.20) in the compact form

ϕ(x) = δnf · ω(x) so that f(X) = ϕ(X) = δnf · ω(X) (2.26)

represent the defining interpolation conditions relative to ω(x) = (ω0(x), . . . , ωn(x))
T . In

particular, if we let p(x) = (p0(x), . . . , pn(x))
T = (1, x, . . . , xn)T be the original monomials,

then

p(x) = δnp · ω(x) where S = p(X) = δnp · ω(X) (2.27)

reproduces the S = LU factorization of the Vandermonde sample matrix.

To approximate the derivatives of a function, we consider the coalescent limit of
the divided difference formulas. We restrict our attention to the polynomial case, al-
though similar reasoning can be used for the analysis of general function interpolation. If
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f(x0, . . . , xn, x) is any function depending continuously on the sample points and, possibly,
a variable point x, we define

c-lim f = lim
x0,...,xn→x⋆

f(x0, . . . , xn, x) (2.28)

to be its coalescent limit as the sample points (but not necessarily x) all converge to the
same point x⋆.

Given a vector-valued function f(x) =
(
f1(x), . . . , fk(x)

)T
of a scalar variable x, let

dnf(x) =




f1(x) f ′
1(x) . . . f

(n)
1 (x)

...
...

. . .
...

fk(x) f ′
k(x) . . . f

(n)
k (x)


 (2.29)

denote the k × (n+ 1) Wronskian matrix of order n. In particular, taking the Wronskian
of the interpolating polynomial, written in the compact form (2.26), yields

dnϕ = δnf · dnω. (2.30)

where dnω denote the Wronskian of the difference polynomials. In the coalescent limit,
the latter Wronskian is readily seen to converge to the diagonal factorial matrix,

c-lim dnω = D = diag (0!, 1!, 2!, . . . , n!), (2.31)

while, assuming f ∈ Cn+1, the derivatives of f and its interpolating polynomial ϕ coincide
in the coalescent limit, [7, 58]. Thus, in the limit, (2.30) becomes

dnf = c-lim δnf ·D, (2.32)

which is just a matrix form of the classical result that, for a sufficiently smooth function,
its kth order divided difference converges to its kth order derivative divided by k! .

3. Quasi–Determinants.

In preparation for our development of the corresponding multivariate interpolation
formulae, we review the calculus of of quasi-determinants first introduced by Heyting, [32],
and then developed in detail by Gel’fand and Retakh and collaborators, [15, 16, 20–24].

As before, we will call a nonsingular square matrix A regular if it can be reduced
to upper triangular form by a sequence of elementary row operations that add multiples
of one row to another; row interchanges are not allowed. Regularity is equivalent to the
existence of a (unique) factorization

A = LU = LD Û (3.1)

into a product of a special lower triangular and an invertible upper triangular matrix, or,
in more detailed form, into a product of a special lower triangular matrix L, an invertible
diagonal matrix D, and a special upper triangular matrix Û , [62]. The pivots of A appear
along the diagonal of both U and D, and are ratios of determinants of successive minors
of A. The product of the pivots equals the determinant of A.
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In the standard theory, the entries of A are real or complex numbers, but the com-
putations apply to any matrix whose entries belong to a commutative field. Multivariate
interpolation theory requires extending the factorizations (3.1) to matrices in block form,
whose entries no longer necessarily commute. More specifically, consider a linear transfor-
mation A:V → V on a finite-dimensional vector space V . Introducing a basis e1, . . . , eN
of V results in the identification of A with an N ×N matrix with scalar entries aij . More
generally, a direct sum decomposition of

V = V1
⊕ · · · ⊕Vn (3.2)

into subspaces induces a block decomposition of A =
(
Ai

j

)
, in which each component

Ai
j :Vj −→ Vi (3.3)

denotes a linear transformation on the summands. The subspaces can be of varying di-
mensions, and so the off-diagonal blocks need not be square.

The primary goal of this section is to establish a corresponding block form of the LU
factorization (3.1). The explicit formula for the entries of the factors can be written in
terms of quasi-determinants. In the Gel’fand–Retakh formulation, [24], the entries Ai

j

of the matrix all belong to the same non-commutative or “skew” field, and hence can
be multiplied and inverted (when possible) arbitrarily. Our approach is more general, in
that the blocks Ai

j are allowed to have different sizes, and so multiplication of blocks is
only allowed if they are “compatible”. In general, the (non-commutative) multiplication
Ai

j A
k
l :Vl → Vi makes sense if and only if j = k. Moreover, since the subspaces Vi are not

necessarily of the same dimension, we are only permitted to invert diagonal entries, e.g.,
Ai

i or suitable products, e.g., Ai
jA

j
i , that map Vi to itself. (In subsequent formulas, we

implicitly assume that the matrix satisfies the requisite conditions that allow invertibility
of any indicated factor.) Despite the different contexts, the two theories turn out to be
almost identical.

Let us begin with the simplest case in which there is a direct sum decomposition
V = W ⊕Z into two subspaces W,Z. We shall decompose a linear map A:V → V into the
block form

A =

(
A1

1 A1
2

A2
1 A2

2

)
, (3.4)

where, for instance A1
1:W → W , A1

2:Z → W , etc.

Definition 3.1. Given A ∈ L(V ), and a direct sum decomposition V = W ⊕Z, we
define the W–quasi-determinant of A to be

ΘW (A) = A2
2 −A2

1(A
1
1)

−1A1
2 : Z −→ Z. (3.5)

Remark : We always assume that any indicated square matrix that is to be inverted is
invertible. The collection of all such invertibility assumptions will serve to define regularity
of our matrices.
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The formulas will look simpler if we abbreviate (3.4) as

A =

(
a b
c d

)
whereby ΘW (A) = d− ca−1b (3.6)

is the Schur complement of the block matrix A. The resulting block LU factorization

A = LU =

(
1 0

ca−1 1

)(
a b
0 d− ca−1b

)

permits us to write down a formula for the inverse of A,

A−1= U−1L−1 =

(
a−1 −a−1b(d− ca−1b)−1

0 (d− ca−1b)−1

)(
1 0

−ca−1 1

)

=

(
a−1 + a−1b(d− ca−1b)−1ca−1 −a−1b(d− ca−1b)−1

−(d− ca−1b)−1ca−1 (d− ca−1b)−1

)
.

(3.7)

We note that we could equally well reduce with respect to the subspace W instead of Z,
leading to the Z-quasi-determinant

ΘZ(A) = a− bd−1c,

that appears in the permuted LU factorization

A =

(
1 bd−1

0 1

)(
a− bd−1c 0

c d

)
= L̃ Ũ , (3.8)

whence

A−1 =

(
(a− bd−1c)−1 −(a− bd−1c)−1bd−1

−d−1c(a− bd−1c)−1 d−1 + d−1c(a− bd−1c)−1bd−1

)
. (3.9)

The reader may enjoy verifying that the two formulae (3.7), (3.9) are, in fact, equal!
This fact is known as the Matrix Inversion Lemma in linear estimation theory, [37], and
the Sherman–Morrison–Woodbury formula in linear algebra, [5, 28]. In particular, this
implies that if a and d are invertible, then ΘZ(A) = d− ca−1b is invertible if and only if
ΘW (A) = a− bd−1c is invertible.

Remark : In (3.8), the matrix L̃ is “lower triangular” and the matrix Ũ is “upper
triangular” with respect to the alternative basis ordering e2, e1. They happen to look
upper and lower triangular with respect to the standard ordering e1, e2, but this is a
low-dimensional accident.

The key result is that quasi-determinantal reduction is a commutative operation. This
is the heredity principle formulated by Gel’fand and Retakh, [20, 24]: quasi-determinants
of quasi-determinants are quasi-determinants. In the present set-up, we decompose the
subspace Z = X ⊕Y and then perform two successive quasi-determinantal reductions.
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Theorem 3.2. Suppose V = W ⊕X ⊕Y . Then

ΘX(ΘW (A)) = ΘW⊕X(A) = ΘW (ΘX(A)) : Y −→ Y. (3.10)

Proof : Let us write

A =




a x y
u p q
v r s




in block form relative to the decomposition V = W ⊕X ⊕Y . Then, according to the
definition (3.5),

ΘW (A) =

(
p q
r s

)
−

(
u
v

)
a−1 (x y ) =

(
p− ua−1x q − ua−1y
r − va−1x s− va−1y

)
.

Applying the X quasi-determinantal reduction to this matrix, we obtain

ΘX(ΘW (A)) = (s− va−1y)− (r − va−1x)(p− ua−1x)−1(q − ua−1y). (3.11)

On the other hand, using (3.5) on the decomposition V = (W ⊕X) ⊕Y yields

ΘW⊕X(A) = s− ( v r )

(
a x
u p

)−1(
y
q

)

= s− va−1y − va−1x(p− ua−1x)−1ua−1y +

+ va−1x(p− ua−1x)−1q + r(p− ua−1x)−1ua−1y − r(p− ua−1x)−1q,
(3.12)

where we used (3.7) to compute the inverse of

(
a x
u p

)
. The expressions (3.11), (3.12) are

clearly equal, proving the first equality in (3.10). The second, reverse equality, follows from
the trivial remark that the direct sum decomposition is independent of order: W ⊕X =
X ⊕W . (Alternatively, the reader can verify this by direct computation.) Q.E.D.

The heredity principle allows us to recursively compute quasi-determinants with re-
spect to general decompositions V = V1

⊕ · · · ⊕Vn of our vector space. Given an unordered
multi-index I = {i1, . . . , im} ⊂ {1, . . . , n}, we let VI = Vi1

⊕ · · · ⊕Vim
. Note that

V = VI
⊕V∼I (3.13)

where ∼I = {1, . . . , n} \ I is the complementary multi-index. In particular, set

V̂k = V1...k−1,k+1...n = V1
⊕ · · · ⊕Vk−1

⊕Vk+1 · · · ⊕Vn.

As above, let Ai
j:Vj → Vi be the restriction of A to the indicated subspaces. More

generally, given unordered multi-indices I = {i1, . . . , im}, J = {j1, . . . , jm} having the
same cardinality, we define AI

J :VJ → VI , so that AI
J is an m×m block matrix formed out

of the individual blocks Aiκ
jν

of A.
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Definition 3.3. Define the I = {i1, . . . , im} quasi-determinant of A to be

ΘI (A) = Θ{i1,...,im}(A) = ΘVI
(A) : V∼I −→ V∼I ,

relative to the decomposition (3.13).

The commutativity Theorem 3.2 implies that we can compute

ΘI(A) = Θi1
(Θi2

(· · ·Θim
(A) · · ·)) when I = {i1, . . . , im}

recursively, and in any order. The kth quasi-determinant of A is defined to be

Θ(k)(A) = Θ1,...,k−1,k+1,...,n(A) : Vk −→ Vk. (3.14)

In particular, the last quasi-determinant with respect to the given ordering of the subspaces
is denoted by

Θ∗(A) = Θ(n)(A) : Vn −→ Vn. (3.15)

Warning : In the commutative (scalar) case, the last quasi-determinant of a matrix
does not reduce to its usual determinant, but rather the ratio of its determinant to the
determinant of its upper left (n− 1)× (n− 1) minor — which is the same as its final pivot
under regular (no row interchanges) Gaussian elimination, [56, 62].

Remark : The last quasi-determinant Θ∗(A) does not require that the lower right block
An

n be invertible, and hence makes sense even for certain types of rectangular matrices.

The case that will appear shortly is for the submatrix A12...k−1,i
12...k−1,j with i 6= j.

Remark : If every Ai
j is invertible, then our quasi-determinants coincide with those of

Gel’fand and Reytakh, [20–24]. For example, our 2×2 quasi-determinant (3.6) is identical
to theirs, whereas they write a 3× 3 quasi-determinant in the form

Θ∗




a x y
u p q
v r s


= s− r(p− ua−1x)−1q − r(x− au−1p)−1y −

− v(u− px−1a)−1q − v(a− xp−1u)−1y.

The proof that this expression actually equals (3.11), when the appropriate invertibility
assumptions are made, is a nice challenge!

Quasi-determinants allow us to easily formulate the general triangular decomposition
of a block, non-commutative matrix.

Theorem 3.4. A regular block matrix A = (Ai
j) factors as

A = KD−1 U, (3.16)
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where

K =




A1
1

A2
1 Θ∗(A

12
12)

A3
1 Θ∗(A

13
12) Θ∗(A

123
123)

...
...

...
. . .

An
1 Θ∗(A

1n
12 ) Θ∗(A

12n
123 ) . . . Θ∗(A)



, Ki

j = Θ∗(A
12...j−1,i
12...j−1,j), i ≥ j,

D =




A1
1

Θ∗(A
12
12)

Θ∗(A
123
123)

. . .

Θ∗(A)



, Di

i = Θ∗(A
12...i−1,i
12...i−1,i),

U =




A1
1 A1

2 A1
3 . . . A1

n

Θ∗(A
12
12) Θ∗(A

12
13) . . . Θ∗(A

12
1n)

Θ∗(A
123
123) . . . Θ∗(A

123
12n)

. . .
...

Θ∗(A)



, U i

j = Θ∗(A
12...i−1,i
12...i−1,j), i ≤ j.

Regularity of A requires invertibility of each diagonal block in D, namely

Θ∗(A
12...k
12...k) is invertible for k = 1, . . . , n. (3.17)

Proof : The 2× 2 case of (3.16) takes the form

A =

(
a 0
c d− ca−1b

)(
a−1 0
0 (d− ca−1b)−1

)(
a b
0 d− ca−1b

)
. (3.18)

To proceed further, we break the lower right block up into subblocks and use an induction
based on the heredity principle (3.10). Q.E.D.

The preceding decomposition (3.16) is easily converted to the alternative factorizations

A = LU = LDV, where L = KD−1, V = D−1 U,

with L, V special — meaning identity matrices appear along their diagonal, and

Li
j = Θ∗(A

12...j−1,i
12...j−1,j) Θ∗(A

12...j
12...j)

−1, i ≥ j,

U i
j = Θ∗(A

12...i−1,i
12...i−1,j), i ≤ j.

(3.19)

4. Divided Differences for Functions of Several Variables.

We now adapt the preceding constructions to develop a general interpolation theory
for functions of several variables. In the first approach, the theory proceeds exactly as
in the one-dimensional version presented in Section 2, with x = (x1, . . . , xm) ∈ R

m now
referring to points inm-dimensional space. The number of variables dictates the dimension
of the interpolating submanifold. Thus, univariate interpolation, m = 1, corresponds to
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passing a curve through a collection of data points, bivariate, m = 2, corresponds to
interpolation by a surface, and so on.

Suppose we are given scalar-valued functions† Pk:R
m → R for k = 0, . . . , N . For the

multivariate interpolation problem, we are given points x0, . . . , xN ∈ R
m and associated

data u0 = F (x0), . . . uN = F (xN ) ∈ R
m, and seek a function

u = Φ(x) = c0 P0(x) + · · · + cN PN (x) (4.1)

that satisfies the interpolation conditions

uj = F (xj) = Φ(xj), j = 0, . . . , N. (4.2)

As before, the interpolation conditions can be written in the equivalent matrix form

cS = u, (4.3)

where u = (u0, u1, . . . , uN ) is the row vector of interpolation values, c = ( c0, c1, . . . , cN )
is the row vector of unknown coefficients, while

S = P (X) =
(
Pk(xj)

)
(4.4)

is the (N + 1) × (N + 1) sample matrix of the functions P (x) = (P0(x), . . . , Pn(x) )
T
at

the points X = (x0, . . . , xN).

The existence of a unique interpolating function (4.1) requires that the points be
poised , in the sense of Definition 2.1, meaning that the sample matrix is nonsingular,
detS 6= 0, or, equivalently, that no nontrivial linear combination (4.1) vanishes at all
the sample points. Unlike the scalar case, which, at least in the most important exam-
ples, merely requires that the points be distinct, in the multivariate theory this imposes
significant constraints on their geometric configuration.

The most important example is polynomial interpolation, where the interpolation
functions are all the monomials of degree 0 ≤ #I ≤ n, of which there are a total of

N + 1 = m(n) ≡ 1 +m1 + · · · +mn =

(
m+ n

m

)
, where mi =

(
m+ i− 1

m− 1

)
, (4.5)

counts the number of monomials of degree i. For later convenience, we rescale the mono-
mials by multinomial coefficients, and set

PI(x) =

(
#I

I

)
xI =

k !

i1 ! · · · im !
(x1)i1 · · · (xm)im , 0 ≤ #I = k = i1 + · · ·+ in ≤ n.

† For simplicity we assume the functions are globally defined, although one can easily adapt
the general construction to vector-valued functions defined on open subdomains of Euclidean
space, or even on general smooth manifolds.
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The sample matrix (4.4) is a multi-dimensional Vandermonde matrix, which we write in
columnar block form

S = S(n) = P (X) =




1 1 1 . . . 1
x0 x1 x2 . . . xN

x⊙2

0 x⊙2

1 x⊙2

2 . . . x⊙2

N
...

...
...

. . .
...

x⊙n

0 x⊙n

1 x⊙n

2 . . . x⊙n

N



. (4.6)

Here, given a column vector x = (x1, . . . , xp)T ∈ R
m, we define its ith symmetric power to

be the column vector† x⊙i ∈ R
mi , with entries

(
i
I

)
xI , 0 ≤ #I = i ≤ n, which are precisely

the terms appearing in the multinomial expansion of (x1+ · · ·+xm)i. Using this notation,
we can write a general polynomial of degree n in the abbreviated form

P (x) =

n∑

k=0

ck x
⊙k =

n∑

#I=k=0

(
k

I

)
cI x

I , (4.7)

where ck = ( . . . cI . . . ) is the row vector consisting of its degree k = #I coefficients. The
points are poised if and only if the Vandermonde matrix is nonsingular, which guarantees
a unique interpolating polynomial of degree ≤ n passing through the data points.

Theorem 4.1. The N + 1 = m(n) points x0, . . . , xN ∈ R
m are polynomially poised

if and only if they do not belong to a common algebraic hypersurface of degree ≤ n if

and only if for any u0, . . . , uN , there exists a unique interpolating polynomial u = Φ(x) of
degree ≤ n satisfying ui = Φ(xi) for i = 0, . . . , N .

In other words, the points are non-poised for polynomial interpolation if and only if
there exists a nonzero scalar-valued polynomial q(x) of degree ≤ n such that q(xν) = 0
for all ν = 0, . . . , N . Or, to state this another way, the vanishing of the multivariate
Vandermonde determinant detS(n) = 0 is necessary and sufficient for a collection of points
to lie on a common algebraic hypersurface of degree ≤ n.

Implementation of the recursive factorization algorithm (2.8, 9) is straightforward.
However, the scheme does depend upon a choice of ordering of the polynomials, and
requires that the points satisfy the additional restriction (2.13) that ensures continuation
of the recursive algorithm. Thus, we must assume that, for each k = 1, . . . , N , there is no
linear combination of the first k polynomials that vanishes on the first k sample points.
Unlike the poised condition, this depends upon the ordering of the sample points, as well
as the monomial ordering.

The resulting triangular basis functions ωk(x) will also depend upon the ordering.
Unlike the univariate case, they no longer depend in a polynomial manner upon the sample
point coordinates, and, while eminently computable, the general formula is complicated.

† We can identify R
mi with the kth symmetric power

⊙i
R

m of our underlying vector space,
cf. [17]. However, this level of abstraction is unnecessary for what follows.
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(Generating functions do not appear to offer any appreciable help.) For example, under
the standard degree lexicographic ordering, 1, x, y, x2, 2xy, y2, . . . , we find

ω0(x) = 1, ω1(x) = x− x0, ω2(x) =
(x1 − x0)(y − y0)− (y1 − y0)(x− x0)

x1 − x0

,

ω3(x) =

[
(x1 − x0)(y2 − y0)(x− x0)(x− x1)− (x2 − x0)(y1 − y0)(x− x0)(x− x2)

− (x2 − x0)(x2 − x1)(x1 − x0)(y − y0)

]

(x1 − x0)(y2 − y0)− (y1 − y0)(x2 − x0)
,

and so on.

One way to avoid the issue of ordering is to reformulate the interpolation conditions
using a block factorization of the multivariate Vandermonde matrix. The idea of treating
interpolation using block decomposition of the Vandermonde coefficient matrix is not new,
a block factorization of the multivariate Vandermonde matrix, as in [5, 6, 8, 12, 59, 61];
see also [63] for numerical solution methods for block Vandermonde systems.

A key advantage of the divided difference calculus is that one can efficiently pass
from the interpolation polynomial of degree n − 1 to that of degree n without having to
recompute any of the previous coefficients. As we learned in Section 2, this is a direct result
of the LU factorization of the Vandermonde matrix. In the multivariate version, we note
that there are mn additional coefficients in an nth degree polynomial that do not appear
in that of degree n − 1, and hence the passage requires the inclusion of mn additional
interpolation points. To this end, we partition the interpolation points into blocks , which
are subsets of sizes m0 = 1, m1 = m, . . . ,mn. Along with the initial point x0, the first m1

points will be used to determine the linear interpolating polynomial, the next m2 will be
added in to determine the interpolating quadratic polynomial, and so on. Let

Xk =
(
xm(k−1) , . . . , xm(k)−1

)
(4.8)

denote the m×mk matrix whose columns consist of the kth block of interpolation points.
We write the multivariate Vandermonde matrix in block form

S = S(n) =




1 1 1 . . . 1

X0 X1 X2 . . . Xn

X ⊙2

0 X ⊙2

1 X ⊙2

2 . . . X ⊙2

n
...

...
...

. . .
...

X ⊙n

0 X ⊙n

1 X ⊙n

2 . . . X ⊙n

n



. (4.9)

The (i, j) block X i
j = X ⊙i

j has size mi ×mj and its columns are the ith symmetric powers
of the jth block of interpolation vectors xm(j−1)+1, . . . , xm(j) . The first row of S consists of
row vectors of the appropriate sizes all of whose entries are equal to 1.
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Example 4.2. In the two-dimensional case, m = 2, the second order block Vander-
monde matrix takes the form

S(2) =




1 1 1

X0 X1 X2

X ⊙2

0 X ⊙2

1 X ⊙2

2


 =




1 1 1 1 1 1

x0 x1 x2 x3 x4 x5

y0 y1 y2 y3 y4 y5

x2
0 x2

1 x2
2 x2

3 x2
4 x2

5

2x0y0 2x1y1 2x2y2 2x3y3 2x4y4 2x5y5
y20 y21 y22 y23 y24 y25




,

where

X0 =

(
x0

y0

)
, X1 =

(
x1 x2

y1 y2

)
, X2 =

(
x3 x4 x5

y3 y4 y5

)
,

have sizes 2×1, 2×2 and 2×3 respectively. This reflects the fact that a homogeneous linear
polynomial ax + by has m1 = 2 coefficients, while a homogeneous quadratic polynomial
cx2+2dxy+ey2 hasm2 = 3 coefficients. The 6 points (x0, y0), . . . , (x5, y5) are polynomially
poised if and only if they do not lie on a common conic section, which is equivalent to the
condition detS(2) 6= 0.

Now, in analogy with the univariate case, we base our multivariate divided difference
calculus on the block LU factorization

S(n) = L(n) U (n), or, if the order n is fixed, S = LU, (4.10)

of the multi-dimensional Vandermonde matrix (4.9). The lower and upper triangular
matrices L and U are in block form, and are constructed by recurrence formulae similar
to the scalar case (2.8), (2.9).

Lemma 4.3. The Vandermonde matrix (4.9) is block regular if and only if the

sample points are poised in block, meaning that each subset x0, x1, . . . , xm(k)−1 is poised

for k = 1, . . . , n.

Note that the poised in block condition depends on the ordering of the points. More-
over, any poised set of sample points is poised in block relative to some ordering. We make
the blanket assumption that our data points are ordered so as to be poised in block.

Theorem 4.4. Recursively define the vector-valued polynomials

Ωi
0(x) = x⊙i, Ωi

k+1(x) = Ωi
k(x)− Ωi

k(Xk) Ωk(Xk)
−1 Ωk(x), Ωk(x) = Ωk

k(x). (4.11)

Then the multi-dimensional Vandermonde matrix (4.9) has block LU factorization (4.10)
in which

Lk
j =

{
Ωk

j (Xj) Ωj(Xj)
−1, k ≥ j,

0, k < j,
Uk
j =

{
Ωk(Xj), k ≤ j,

0, k > j.
(4.12)
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Note that Ωk:R
m → R

mi is a vector-valued polynomial of degree k in the entries of
x ∈ R

m. However, unlike the scalar case, the coefficients of Ωk(x) are not polynomial in
the sample points x0, . . . , xN . The notation Ωk(Xj) refers to the corresponding sample
matrix, (2.4), based on the jth set of sample points in Xj . Theorem 4.4 is established by
a straightforward induction, mimicking the proof of its commutative version Theorem 2.2.
Our quasi-determinantal formulas can be viewed as alternative forms of Rabut’s formulae
for multivariate divided differences based on Vandermonde determinant ratios, [59].

Example 4.5. The cubic case n = 3 has the following factorization




1 1 1 1

X0 X1 X2 X3

X ⊙2

0 X ⊙2

1 X ⊙2

2 X ⊙2

3

X ⊙3

0 X ⊙3

1 X ⊙3

2 X ⊙3

3


=




1 0 0 0

X0 1 0 0

X ⊙2

0 L2
1 1 0

X ⊙3

0 L3
1 L3

2 1







1 1 1 1

0 Ω1(X1) Ω1(X2) Ω1(X3)

0 0 Ω2(X2) Ω2(X3)

0 0 0 Ω3(X3)


,

where

x̂ ≡ Ω1(x) = x− x0, Ω2(x) = x̂⊙2 − X̂ ⊙2

1 X̂−1
1 x̂,

Ω3(x) = x̂⊙3−X̂ ⊙3

1 X−1
1 x̂−(X̂ ⊙3

2 −X̂ ⊙3

1 X̂−1
1 X̂2)(X̂

⊙2

2 −X̂ ⊙2

1 X̂−1
1 X̂2)

−1(x̂⊙2−X̂ ⊙2

1 X̂−1
1 x̂),

with X̂j = Ω1(Xj) obtained by subtracting x0 from each column — which is equivalent to
translating the first point to the origin — and

L2
1 = X̂ ⊙2

1 X̂−1
1 , L3

1 = X̂ ⊙3

1 X̂−1
1 ,

L3
2 = (X̂ ⊙3

2 − X̂ ⊙3

1 X−1
1 X̂2)(X̂

⊙2

2 − X̂ ⊙2

1 X̂−1
1 X̂2)

−1.

As a specific example, in the m = 2 dimensional situation, we set x̂ = x− x0, ŷ = y − y0,
and then

Ω1(x, y) =

(
x̂
ŷ

)
, Ω2(x, y) =




x̂2 −
(x̂2

1ŷ2 − x̂2
2ŷ1) x̂+ (x̂2 − x̂1)x̂1x̂2 ŷ

x̂1ŷ2 − x̂2ŷ1

2 x̂ ŷ −
2(x̂1 − x̂2)ŷ1ŷ2 x̂+ 2(ŷ2 − ŷ1)x̂1x̂2 ŷ

x̂1ŷ2 − x̂2ŷ1

ŷ2 −
(ŷ1 − ŷ2)ŷ1ŷ2 x̂+ (x̂1ŷ

2
2 − x̂2ŷ

2
1) ŷ

x̂1ŷ2 − x̂2ŷ1



, (4.13)

while

L2
1 =




x̂2
1 x̂2

2

2 x̂1ŷ1 2 x̂2ŷ2
ŷ21 ŷ22



(
x̂1 x̂2

ŷ1 ŷ2

)−1

=
1

x̂1ŷ2 − x̂2ŷ1




x̂2
1ŷ2 − x̂2

2ŷ1 (x̂2 − x̂1)x̂1x̂2

2(x̂1 − x̂2)ŷ1ŷ2 2(ŷ2 − ŷ1)x̂1x̂2

(ŷ1 − ŷ2)ŷ1ŷ2 x̂1ŷ
2
2 − x̂2ŷ

2
1


.

The third order entries are a bit too complicated to display explicitly.
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According to Theorem 3.4, the entries of the block LU factorization can be identified
as quasi-determinants.

Lemma 4.6. The polynomials appearing in the recursive scheme (4.11) are equal to
the following quasi-determinants:

Ωi
1(x) = x⊙i, Ωi

k(x) = Θ∗




1 1 1 . . . 1 1
X0 X1 X2 . . . Xk−1 x
X ⊙2

0 X ⊙2

1 X ⊙2

2 . . . X ⊙2

k−1 x⊙2

...
...

. . .
...

...

X ⊙k−1

0 X ⊙k−1

1 X ⊙k−1

2 . . . X ⊙k−1

k−1 x⊙k−1

X ⊙i

0 X ⊙i

1 X ⊙i

2 . . . X ⊙i

k−1 x⊙i




. (4.14)

The final block in each row of the quasi-determinant matrix has a single column, and so

the entire matrix has size m(k−1) × (m(k−1) + 1).

In particular, the multivariate difference polynomials are given as quasi-determinants

Ωk(x) = Θ∗




1 1 1 . . . 1 1
X0 X1 X2 . . . Xk−1 x
X ⊙2

0 X ⊙2

1 X ⊙2

2 . . . X ⊙2

k−1 x⊙2

...
...

. . .
...

...
X ⊙k−1

0 X ⊙k−1

1 X ⊙k−1

2 . . . X ⊙k−1

k−1 x⊙k−1

X ⊙k

0 X ⊙k

1 X ⊙k

2 . . . X ⊙k

k−1 x⊙k




, (4.15)

Consequently, the blocks in the factorization have the quasi-determinant formulae

Uk
j = Θ∗(X

01...k−1,k
01...k−1,j ), Lk

j = Θ∗(X
01...j−1,k
01...j−1,j ) Θ∗(X

01...j−1,j
12...j−1,j )

−1,

where, for j ≥ k, we abbreviate

X01...k−1,k
01...k−1,j =




1 1 1 . . . 1 1

X0 X1 X2 . . . Xk−1 Xj

X ⊙2

0 X ⊙2

1 X ⊙2

2 . . . X ⊙2

k−1 X ⊙2

j

...
...

. . .
...

...

X ⊙k−1

0 X ⊙k−1

1 X ⊙k−1

2 . . . X ⊙k−1

k−1 X ⊙k−1

j

X ⊙k

0 X ⊙k

1 X ⊙k

2 . . . X ⊙k

k−1 X ⊙k

j




.

The entries Li
j can be viewed as non-commutative versions of the classical complete sym-

metric polynomials (2.21), while the block entries of its inverse, which can also be written
in terms of quasi-determinants, [24], are the non-commutative versions of elementary sym-
metric polynomials, [21, 20].

We now characterize the difference polynomials by their interpolation properties.
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Proposition 4.7. The difference polynomials (4.14) have the form

Ωi
k(x) = x⊙k − Σi

k(x), (4.16)

where Σi
k(x) is the unique (vector-valued) polynomial of degree k−1 that interpolates the

polynomial x⊙k on the points x0, x1, . . . , xm(k−1)−1. In other words,

Σi
k(xν) = x⊙k

ν , and so Ωi
k(xν) = 0, ν = 0, . . . , m(k−1) − 1. (4.17)

The interpolation coefficients (a0, . . . , an) = ( . . . aI . . . ) for a function F (x) with
interpolating polynomial

Φ(x) =

n∑

k=0

ak Ωk(x) (4.18)

are computed using the same recursive scheme as in (2.16). We set H0(x) = F (x), and
then recursively define

Hk+1(x) = Hk(x)− ak Ωk(x), ak = Hk(Xk) Ωk(Xk)
−1 , k = 0, . . . , n. (4.19)

We have thus established a full multivariate version of the classical recursive divided dif-
ference recursive scheme.

Example 4.8. In the two-dimensional case, suppose we are given m(2) = 10 data
points (x0, y0, u0), (x1, y1, u1), . . . , (x9, y9, u9), where we identify uν = F (xν , yν) as sample
values of a function F (x, y). To simplify the formulae we will assume that (x0, y0, u0) =
(0, 0, 0) so that the interpolating polynomial

u = Φ(x, y) = a1x+ a2 y + a3̟3(x, y) + a4̟4(x, y) + a5̟5(x, y) +

+ a6̟6(x, y) + a7̟7(x, y) + a8̟8(x, y) + a9̟9(x, y)
(4.20)

goes through the origin. The general case can then be simply obtained by subtracting
x0, y0, u0 from, respectively, x, y, u and xj , yj, uj in the final interpolation formulae. The
quadratic difference polynomials ̟3(x, y), ̟4(x, y), ̟5(x, y) are the corresponding entries
of Ω2(x, y) given in (4.13), namely

̟3(x, y) = x2 −
(x2

1y2 − x2
2y1) x+ (x2 − x1)x1x2 y

x1y2 − x2y1
,

̟4(x, y) = 2

(
xy −

(x1 − x2)y1y2 x+ (y2 − y1)x1x2 y

x1y2 − x2y1

)
,

̟5(x, y) = y2 −
(y1 − y2)y1y2 x+ (x1y

2
2 − x2y

2
1) y

x1y2 − x2y1
,

(4.21)

while ̟6(x, y), . . . , ̟9(x, y) are their cubic counterparts, The coefficients of the linear
terms in ̟3, ̟4, ̟5 are uniquely determined by the interpolation conditions

̟k(xi, yi) = 0, i = 0, 1, 2, k = 3, 4, 5, (4.22)

as in Proposition 4.7. The polynomials ̟1(x, y) = x, ̟2(x, y) = y, ̟3(x, y), . . .̟9(x, y)
play the role of the univariate difference polynomials of degree ≤ 3.

23



To determine the explicit formulae for the difference coefficients a1, . . . , a9, we use the
recursive scheme (4.19). Since we are assuming w0 = 0, there is no constant term in the
interpolation formula, and so we begin with H1(x, y) = F (x, y). According to (4.19),

( a1 a2 ) = (u1 u2 )

(
x1 x2

y1 y2

)−1

, where uj = H1(xj , yj) = F (xj, yj).

At the next stage

H2(x, y) = H1(x, y)− (a1x+ a2 y) = F (x, y)− (a1x+ a2 y),

and so the quadratic coefficients are given by

( a3 a4 a5 ) = ( v3 v4 v5 )




̟3(x3, y3) ̟3(x4, y4) ̟3(x5, y5)

̟4(x3, y3) ̟4(x4, y4) ̟4(x5, y5)

̟5(x3, y3) ̟5(x4, y4) ̟5(x5, y5)




−1

,

where vj = H2(xj, yj). The third order terms are computed similarly:

H3(x, y) = H2(x, y)−
[
a3̟3(x, y) + 2a4̟4(x, y) + a5̟5(x, y)

]
,

whence

( a6 a7 a8 a9 ) = (w6 w7 w8 w9 )




̟6(x6, y6) ̟6(x7, y7) ̟6(x8, y8) ̟6(x9, y9)

̟7(x6, y6) ̟7(x7, y7) ̟7(x8, y8) ̟7(x9, y9)

̟8(x6, y6) ̟8(x7, y7) ̟8(x8, y8) ̟8(x9, y9)

̟9(x6, y6) ̟9(x7, y7) ̟9(x8, y8) ̟9(x9, y9)




−1

,

where wj = H3(xj, yj).

Now let us analyze the coalescent limit of the multivariate divided difference formulae.
In analogy with (2.25), we write

∆nF = ∆nΦ = (a0, . . . , an) (4.23)

for the vector of multi-variate divided differences of order ≤ n for the function F (x) on
the specified points. We can then write the multivariate interpolating polynomial (4.18)
in the compact form

Φ(x) = ∆nF · Ω(x) (4.24)

so that
F (X) = Φ(X) = ∆nF · Ω(X)

are the defining interpolation conditions relative to the block triangular basis polynomi-
als ω(x) = (ω0(x), . . . , ωn(x)). Similarly, as in the scalar version (2.27), we write the
multivariate monomials in terms of the difference polynomials,

P (x) = ∆nP · Ω(x) where S = P (X) = ∆nP · Ω(X) (4.25)
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indicates the block LU factorization of the multivariate Vandermonde matrix S.

Given a vector-valued function G(x) =
(
G1(x), . . . , Gk(x)

)T
depending on x ∈ R

m,
let

∂nG(x) =

(
∂#JGi

∂xJ

)
, 0 ≤ #J ≤ n, (4.26)

denote its k ×m(n) multivariate Wronskian matrix , consisting of all partial derivatives of
the components of G up to order n. Differentiation of (4.24) yields

∂nΦ(x) = ∆nP · ∂nΩ(x). (4.27)

We note that, since Ω consisting of polynomials, block ordered by their degree, the Wron-
skian matrix ∂nΩ(x) is block lower triangular.

In the univariate situation, the difference Wronskian converges to a diagonal facto-
rial matrix in the coalescent limit, cf. (2.31). This is no longer necessarily valid in the
multivariate context; one must control the determinantal denominators appearing in the
formulae, e.g., (4.21), as the points coalesce.

Definition 4.9. The points x0, . . . , xN for N + 1 = m(n) are said to coalesce inde-
pendently if, as xi → x⋆, the nth order difference Wronskian matrix ∂nΩ converges to a
diagonal matrix.

For instance, in the two-dimensional case covered in Example 4.5, independence of a
coalescent system of 6 points is assured provided

det Ω1(X1) = det X̂1 = det

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)

remains bounded as the points converge, while the independence of a nine point coalescence
requires that

det Ω2(X2) = det X̂ ⊙2

2 − X̂ ⊙2

1 X̂−1
1 X̂2

also remains bounded. The detailed analysis of the coalescence criteria will be deferred
until a later paper; see also [59, 61].

Under the independence assumption and Proposition 4.7, the coalescent limit of the
multivariate polynomial Wronskian matrix is found to be the block diagonal multivariate
factorial matrix

c-lim ∂nΩ = D̂ ≡ diag (0!, 1! Im, 2! Im2
, . . . n! Imn

), (4.28)

in which Imj
denotes anmj×mj identity matrix. Furthermore, assuming sufficient smooth-

ness, the derivatives of the interpolating polynomial converge to the corresponding deriva-
tives of the function at the point of coalescence, and so (2.30) becomes

∂nf = c-lim∆nF · D̂, (4.29)

which is the multivariate version of the classical divided difference coalescent limit formula
(2.32). In other words, under the preceding conditions, the multivariate divided differences
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converge to the corresponding partial derivatives of the function, divided by a suitable
product of factorials.

Summarizing the results of this section, we discovered that, in order to maintain an
analogy between the univariate and multivariate interpolation equations, we must split
the multi-dimensional Vandermonde matrix (4.6) into block factors and apply the quasi-
determinantal block LU factorization. The result is a recursive formula for the interpo-
lation coefficients that, although more complicated, retains the computational advantages
of the classical univariate divided differences. In particular, the recursive formulae for
the multivariate divided differences imply that one can successively compute higher or-
der interpolants without having to adjust any of the already computed lower order terms.
Moreover, assuming sufficient smoothness of the interpolated function F and independent
coalescence of the points, the interpolating coefficients converge to the appropriate partial
derivatives of F , [61, 10, 59].

5. Curves and Submanifolds.

The purpose of this final section is to formulate a new connection between univari-
ate and multivariate interpolation theory. As usual, the number of independent variables
refers to the dimension of the interpolating submanifold. The starting point is the trivial
observation that the same set of data can interpolate submanifolds of dissimilar dimen-
sions, i.e., graphs of functions depending on different numbers of independent variables.
The relationships among these interpolated submanifolds will lead us to a collection of
intriguing formulae for multi-dimensional interpolation coefficients in terms of the clas-
sical univariate divided differences. The coalescent limits of these formulae is of great
interest. Depending on the mode of coalescence, the univariate divided difference coeffi-
cients converge to ordinary derivatives of curves, while, in other regimes, the multivariate
difference coefficients converge to partial derivatives of higher dimensional submanifolds.
The formulae relating the interpolation coefficients will then reduce to formulae relating
the derivatives (or “jets”, [54]) of submanifolds of dissimilar dimensions. As we shall see,
the latter formulae can be obtained directly by implicit differentiation. Moreover, they
can be used to reconstruct the original formulae connecting the classical divided difference
expressions for curves to the complicated multivariate difference formulae for surface and
higher dimensional submanifold interpolation.

In order to understand this novel construction, let us concentrate on the simplest case
of curves and surfaces in R

3. Suppose we are given three points w0 = (x0, y0, z0), w1 =
(x1, y1, z1), w2 = (x2, y2, z2) ∈ R

3 in space. Without loss of generality, we translate the first
point to the origin, so x0 = y0 = u0 = 0. We first view the three points as interpolating a
surface S. In the simplest version, we choose S to be a plane, which we assume is given
as the graph of a first order polynomial function

z = p x+ q y. (5.1)

This already passes through the origin, and the remaining interpolation conditions

zν = p xν + q yν , ν = 1, 2,
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uniquely prescribe the coefficients

p =
y1z2 − y2z1
x1y2 − x2y1

, q =
x1z2 − x2z1
x1y2 − x2y1

, (5.2)

subject to the condition that the points are poised, meaning that the points (x0, y0) =
(0, 0), (x1, y1), (x2, y2) do not lie on a common straight line.

On the other hand, we can view the three points as interpolating a curve C ⊂ R
3.

Again, we focus on the simplest case, when C is a quadratic curve parametrized by x, and
so can be expressed using the Newton form of the interpolating polynomial:

y = a x+ b x(x− x1), z = c x+ d x(x− x1).

Since x0 = y0 = 0, the coefficients are given by the divided differences

a = [ y0y1 ] =
y1
x1

, b = [ y0y1y2 ] =
x1y2 − x2y1
x1x2(x1 − x2)

,

c = [ z0z1 ] =
z1
x1

, d = [ z0z1z2 ] =
x1z2 − x2z1
x1x2(x1 − x2)

.
(5.3)

Comparing the two sets of formulae (5.2), (5.3), we find that we can write the coefficients
p, q of the interpolating surface in terms of the coefficients a, b, c, d of the interpolating
curve as follows:

p = c−
d

b
a = [ z0z1 ]−

[ z0z1z2 ]

[ y0y1y2 ]
[ y0y1 ], q =

d

b
=

[ z0z1z2 ]

[ y0y1y2 ]
. (5.4)

Now consider what happens as the points coalesce: w1, w2 → 0 = w0. If the points
follow a curve C parametrized by y = y(x), z = z(x), then the divided difference coefficients
(5.3) converge to the curve derivatives,

a −→
dy

dx
, b −→

1

2

d2y

dx2
, c −→

dz

dx
, d −→

1

2

d2z

dx2
, (5.5)

evaluated at the origin. On the other hand, if the points coalesce along a surface S given
by the graph z = z(x, y) while maintaining independence, as in Definition 4.9, then the
surface coefficients (5.2) converge to the surface derivatives

p −→
∂z

∂x
, q −→

∂z

∂y
, (5.6)

again at the origin. Therefore, assuming that the relations (5.4) persist in the limit, we
deduce the interesting formulae

∂z

∂x
= zx − yx

zxx
yxx

,
∂z

∂y
=

zxx
yxx

, (5.7)

connecting first order (partial) surface derivatives and second order (ordinary) curve deriva-
tives, which are here denoted by x subscripts.
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Remark : The formulae for the two partial derivatives look different, but this is because
we are singling out x as the parametric variable. If we chose to parametrize our curve C
by y instead, we would find the alternative formulae

∂z

∂x
=

zyy
xyy

,
∂z

∂y
= zy − xy

zyy
xyy

. (5.8)

Extending the formulae to general parametrizations is straightforward; complete details
are left to future development of the subject.

Of course, the points cannot actually coalesce along both a curve and a surface in
such a manner that they approximate both sets of derivatives in any reasonable manner,
and so the interpretation of formulae (5.7) requires some thought. The distinction between
the two ways of coalescence can be formalized as follows. If w1, w2 → w0 along a smooth
curve, then the divided difference approximations (5.5) are valid and the error formulae
are classical. However, if they coalesce in independent directions along a surface, then
the surface formulae (5.2), (5.6) apply; corresponding error formulae can be found in [61].
The independence condition requires that the denominators are well behaved in the limit,
and this will happen provided the two unit vectors

v1 =
w1 − w0

‖w1 − w0 ‖
, v2 =

w2 − w0

‖w2 − w0 ‖
,

remain linearly independent, and so their cross product v1∧v2 6= 0, even in the coalescence
limit. On the other hand, if v1∧v2 → 0 as the points coalesce, then one reverts to the curve
approximation, with the divided differences converging to the derivatives of the limiting
interpolating curve.

How can we make sense of the resulting connection formulae (5.7), or, even better,
how can we derive them from first principles? Consider the first order Taylor polynomial

z = p x+ q y, where p =
∂z

∂x
(0, 0), q =

∂z

∂y
(0, 0), (5.9)

for the surface. If we regard the curve C ⊂ S as lying in S, then we can differentiate (5.9)
with respect to the parameter x, yielding the two equations

dz

dx
= p+ q

dy

dx
,

d2z

dx2
= q

d2y

dx2
,

whose solutions are precisely (5.7). Although this derivation is in a sense formal, since it
ignores higher order terms in the Taylor expansion, it serves to capture the essence of the
connection formulae, and, moreover, provides a computational mechanism for constructing
similar formulae in more complex situations.

On a more rigorous level, if the curve parametrized by y = y(x), z = z(x) is contained
in the surface z = z(x, y), then it satisfies the restriction

z(x, y(x)) = z(x).

If we differentiate twice and evaluate at x = 0, we find

zx = p+ qyx, zxx = qyxx + r + 2syx + ty2x, (5.10)
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where

p =
∂z

∂x
, q =

∂z

∂y
, r =

∂2z

∂x2
, s =

∂2z

∂x ∂y
, t =

∂2z

∂y2
, (5.11)

are the first and second order derivatives of z(x, y) evaluated at the point (x0, y0) = (0, 0).
Solving (5.10) for p, q, assuming yxx 6= 0, we find

∂z

∂x
= p = zx − qyx,

∂z

∂y
= q =

zxx
yxx

−
r + 2syx + ty2x

yxx
. (5.12)

If we fix the tangent direction to our curve, as given by the first order derivatives yx, zx
but allow curves with higher and higher curvature, so yxx, zxx → ∞, then the second term
in the formula (5.12) for q goes to zero and, in the “infinite curvature” limit,

∂u

∂x
−→ zx − qyx =

zxyxx − zxxyx
yxx

,
∂u

∂y
−→

zxx
yxx

,

which are precisely our original formulae (5.7). Therefore, from this point of view, surfaces
are limiting cases of curves as the curvature becomes infinite!

A good elementary illustration of this phenomenon is to take planar points

x0 = y0 = 0, x1 = y1 = ε, x2 = −y2 = −ε,

where ε is small and positive. Thus, as ε → 0, the points coalesce along two independent
lines y = ±x. The interpolating quadratic polynomial y(x) = ε−2x2 has, in the ε → 0
limit, infinite curvature at the origin: yxx(0) = 2/ε → ∞. Thus, these three points should
be viewed as interpolating the (x, y)-plane, not a curve! (Of course, this is only a limiting
interpretation, since at any positive ε they do interpolate a perfectly respectable curve,
but are poor approximations to its second order derivative.)

Keeping the preceding discussion in mind, let us next discuss the second order case.
In order to approximate the 5 derivatives (5.11) of order ≤ 2 for a surface z = z(x, y), we
require 6 points z0, z1, . . . , z5 on our surface. On the other hand, the same 6 points will
interpolate a smooth curve and can be used to approximate its derivatives up to fifth order
by the usual divided difference formulae

[ y0 . . . yk ] ≈
1

k!

dky

dxk
, [ z0 . . . zk ] ≈

1

k!

dkz

dxk
, k = 0, . . . , 5. (5.13)

Therefore, the key problem is to assemble combinations that reproduce the interpolation
approximations to the surface derivatives (5.11). Rather than tackle this directly, we shall
appeal to the limiting case to motivate the proper formulae.

In the coalescent limit, wi → w0, we can proceed as follows. We begin with the
multivariate surface interpolating polynomial

z = Φ(x, y) = p x+ q y + r̟3(x, y) + s̟4(x, y) + t̟5(x, y), (5.14)

through the six data points, where the quadratic difference polynomials ̟3, ̟4, ̟5, are
given in (4.21). The question is: what happens to the multivariate difference polynomi-
als in the coalescent limit? For univariate difference polynomials, this is not a significant
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issue, since they converge to the standard monomials ωk(x) → xk. However, in the mul-
tivariate version, this limit is not so elementary. The correct condition that replaces the
interpolation condition (4.22) is that the limiting quadratic difference polynomials

̟3(x, y) = x2 + c3 x+ d3 y, ̟4(x, y) = 2xy + c4 x+ d4 y, ̟5(x, y) = y2 + c5 x+ d5 y,
(5.15)

vanish to order 2 at the origin x0 = y0 = 0 whenever y(x) is a parametrized curve.
Differentiating these equations, we find

d̟3

dx
= 2x+ c3 + d3 yx,

d2̟3

dx2
= d3 yxx,

d̟4

dx
= 2y + 2xyx + c4 + d4 yx,

d2̟4

dx2
= 4yx + 2xyxx + d4 yxx,

d̟5

dx
= 2y yx + c5 + d5 yx,

d2̟5

dx2
= 2y yxx + 4y2x + d5 yxx,

which all vanish at x = y = 0 when

̟3(x, y) = x2 − 2
y − xyx
yxx

, ̟4(x, y) = 2xy − 4yx
y − xyx
yxx

,

̟5(x, y) = y2 − 2y2x
y − xyx
yxx

.
(5.16)

In these coalescent formulae, the independent variables x, y are allowed to vary, but the
derivatives yx = yx(0), yxx = yxx(0) are kept fixed at their values at the point of coales-
cence. As the reader can check, these are the coalescent limits of the difference polynomials

(4.21), and satisfy ̟k(0, 0) =
d̟k

dx
(0, 0) =

d2̟k

dx2
(0, 0) = 0 along any parametrized curve

y = y(x) passing through the origin.

Thus, the connection formulae, relating curve and surface derivatives, can be derived
by differentiating the coalescent surface interpolating polynomial (5.14), where the quad-
ratic polynomials are given by (5.16), with respect to x. The result is a linear system

zx = p+ q yx, zxx = q yxx,
dkz

dxk
= q

dky

dxk
+ r

dk̟3

dxk
+ s

dk̟4

dxk
+ t

dk̟5

dxk
, k = 3, 4, 5,

for the surface derivatives p, q, r, s, t. We can write this in matrix form

z = pW where z = ( zx, zxx, z3x, z4x, z5x ) , p = ( p, q, r, s, t ) ,
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while W is the 5× 5 reduced† Wronskian matrix




1 0 0 0 0
yx yxx y3x y4x y5x

0 0 −2
y3x
yxx

−2
y4x
yxx

−2
y5x
yxx

0 0
6y2xx − 4yxy3x

yxx

8yxxy3x − 4yxy4x
yxx

10yxxy4x − 4yxy5x
yxx

0 0
6yxy

2
xx − 2y2xy3x
yxx

6y3xx + 8yxyxxy3x − 2y2xy4x
yxx

20y2xxy3x + 10yxyxxy4x − 2y2xy5x
yxx




(5.17)
whose columns consist of the x derivatives of ̟1(x, y), . . . , ̟5(x, y) treating y = y(x) as a
function of x. Note that W is in block upper triangular form.

Indeed, we can compute W directly as follows. Start with the reduced Taylor Wron-
skian matrix




1 0 0 0 0
yx yxx y3x y4x y5x

2x 2 0 0 0
2xyx + 2y 2xyxx + 4yx 2xy3x + 6yxx 2xy4x + 8y3x 2xy5x + 10y4x

2yyx 2yyxx + 2y2x 2yy3x + 6yxyxx 2yy4x + 8yxy3x + 6y2xx 2yy5x + 10yxy4x + 20yxxy3x




based on the standard monomials

x, y, x2, 2xy, y2.

We evaluate the Taylor Wronskian at x = y = 0, yielding

Z =




1 0 0 0 0
yx yxx y3x y4x y5x

0 2 0 0 0
0 4yx 6yxx 8y3x 10y4x
0 2y2x 6yxyxx 8yxy3x + 6y2xx 10yxy4x + 20yxxy3x




. (5.18)

† Since we omit the first column corresponding to the undifferentiated function, which has
been normalized by our choice w0 = 0.
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Then W is obtained by block LU factorization of Z, so

Z = KW, where K =




1 0 0 0 0
0 1 0 0 0

−
2yx
yxx

2

yxx
1 0 0

−
4y2x
yxx

4yx
yxx

0 1 0

2y3x
yxx

2y2x
yxx

0 0 1




(5.19)

is special lower triangular. This factorization corresponds to replacing the Taylor expansion

z = P (x, y) = a x+ b y + 1
2 r x

2 + s xy + 1
2 t y

2, (5.20)

by the alternative coalescent expansion (5.14). The coefficients are related by

(
a, b, 12 r,

1
2 s,

1
2 t
)
=
(
p, q, 12 r,

1
2 s,

1
2 t
)
K.

Note that a, b are higher order approximations to the first order surface derivatives, in the
infinite curvature limit.

Let us conclude by placing the preceding constructions into a general framework.
Given a function F :Rm → R depending on x = (x1, . . . , xm) and a poised collection of
N + 1 = m(n) points X = (x0, . . . , xN ), we can construct the multivariate interpolant
(4.24). On the other hand, suppose we view the interpolation points as lying on a curve
parametrized by, say, the first coordinate t = x1. Let ti be the parameter value correspond-
ing to the ith interpolation point xi = x(ti), and set T = (t0, . . . , tN ) so that X = x(T ) are
the interpolation points. We write the univariate vector-valued interpolating polynomial
ϕ(t) = δnF · ω(t) of degree N = m(n) − 1 in the abbreviated Newton form (2.26), where
the divided difference coefficients are prescribed by the interpolation conditions

F (X) = ϕ(T ) = δnF · ω(T ) at X = x(T ). (5.21)

Similarly, interpolating the multivariate divided difference functions Ωi(x) by univariate
polynomials of degree N , we have

Ω(X) = δnΩ · ω(T ). (5.22)

Combining (4.24) and (5.22),

F (X) = ∆nF · Ω(X) = ∆nF · δnΩ · ω(T );

equating the result to (5.21), we deduce

δnf = ∆nF · δnΩ. (5.23)
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In the coalescent limit, in view of (2.32), (4.29), we obtain

dnf = ∂nf · D̂ · dnω, (5.24)

which is the coalescent limit of the difference formula (5.23) relating the multivariate and
univariate divided differences. Of course, as noted above, the formulae (5.24) rely on two
very different types of coalescent limits; coalescing along a curve, as in (2.32) will violate
the independence conditions required for the multivariate coalescence formulae (4.29). The
precise geometric interpretation of the connection formulae (5.24)will be developed in more
depth in subsequent publications.

On the other hand, the original multivariate monomials P (x) can be rewritten in
terms of the difference polynomials using (4.24):

P (x) = ∆nP ·Ω(x), where P (X) = ∆nP · Ω(X)

is the block LU factorization of the multivariate Vandermonde matrix. Therefore,

dnP = ∆nP · dnΩ.

In the coalescent limit, this reduces to the block LU factorization of the multivariate
Wronskian

dnP = Z = KW, (5.25)

where
K = c-lim∆nP, W = c-lim dnΩ. (5.26)

This factorization formula is the general version the two-dimensional formula (5.19).

One final word of caution: The formulae (5.23) for the multivariate divided differences
in terms of their univariate counterparts cannot be unambiguously reconstructed from
the limiting formula for the derivatives (5.26). This is because the the replacement of a
function by its divided difference approximation is not an algebra morphism — it does
not respect multiplication. For example, given y(x), the divided difference approximations
to p(x) = y′(x) y′′(x) are not the products of divided differences for y′(x) times those for
y′′(x)! In other words, a combination of derivatives of one or more functions can lead to
different divided difference approximations, all of the same order. Thus, when forming
the block factorization of the Wronskian (5.25), one needs to be careful in keeping track
of algebraic operations that are not reflected in their divided difference counterparts. An
interesting question is whether the correspondence between the univariate and multivariate
divided difference approximations is maintained under such replacements. On the surface,
this expectation seems reasonable, but a complete resolution of this issue will be delegated
to future research.
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