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Abstract. Based on a new, general formulation of the geometric methotbu-
ing frames, invariantization of numerical schemes has lestablished during
the last years as a powerful tool to guarantee symmetrigsuimierical solutions
while simultaneously reducing the numerical errors. Iis feper, we make the
first step to apply this framework to the differential eqoasi of image process-
ing. We focus on the Hamilton—-Jacobi equation governingtidih and erosion
processes which displays morphological symmetry, i.enariant under strictly
monotonically increasing transformations of gray-valuBesults demonstrate
that invariantization is able to handle the specific neediiftédrential equations
applied in image processing, and thus encourage furthearels in this direction.

1 Introduction

Image filters based on partial differential equations plajngortant role in contempo-
rary digital image processing. The field therefore has a fheeelfficient and accurate
numerical algorithms for solving the PDEs that arise in aggpions.

The method ofnvariantizationprovides a general framework for designing numer-
ical schemes for (ordinary and partial) differential eduras [17, 12, 10] that preserve
symmetries of the continuous-scale differential equafidve method is based on a new
approach to the Cartan method of moving frames [4] that epjpti completely general
group actions, and has been extensively developed in théelasyears [7,18]. The
invariantization process is based on a choice of crossesettt the symmetry group
orbits, and careful selection of the cross-section canymec more robust numerical
scheme that is better able to handle rapid variations argukirities. So far, the in-
variantization technique has been studied for standarcerioal schemes for ordinary



differential equations [10], as well as for a number of adifferential equations in-
cluding the heat equation, the Korteweg—deVries equasind Burgers’ equation [11],
with encouraging results.

In this paper, we will investigate the applicability of thevariantization framework
in the context of image processing. This field of applicapioses special needs in that
it requires in particular an accurate representation afstiscontinuity-type structures
such as edges. A variety of partial differential equatiofith @iscontinuity-preserving
properties has been developed over the years but often roatndissipation adversely
affects their favorable theoretical properties. We areatoge especially interested in
whether invariantization can contribute to reducing nucatrdissipation effects and
thereby improve the treatment of edges in images.

For our investigation, we select the Hamilton—Jacobi équatgoverning the mor-
phological processes of dilation and erosion [1, 6]. Thégrahe advantage of combin-
ing formal simplicity with high relevance for image analysi mathematical morphol-
ogy being one of the oldest and most successful techniquibe ifield [15,21] — and
a particularly attractive symmetry property, namely thecatbed morphological invari-
ance. The latter is also a characteristic of many other inpageessing PDEs such as
mean curvature motion [8, 9, 2], and the affine invariant rhotpgical scale space [1,
20]. Thus, our present results can be viewed as a proof obgtfier a wider application
of the invariantization idea in this field.

2 Morphological PDEs

Dilation and erosion are the basic operations of matheadatiorphology. LetS be
a closed connected convex set containing zero. Dilationgrbg-value image: with

S as structuring element then comes down to taking at eachidodde maximum of
gray-values within the translated structuring elementevlrosion uses the minimum

instead:
dilation: (u® S)(z) = maxu(z+y),
- o

erosion: (v © S)(x) := minu(r +y) .
yeS

Dilation and erosion with disk-shaped structuring eleraeare closely related to the
Hamilton—Jacobi partial differential equation

ug = = |Vul 2

whereVu denotes the spatial gradient of i.e. Vu = wu, in the 1D case, oFu =
(uz,uy)" inthe 2D case: Given the initial image at timet = 0, we evolve via (2) up
to timet. In the case of the positive sign in (2) the resulting imageill be the dilation

of ugp with the diskS = D, = {z | |z| < ¢} as structuring element while in the case of
the negative sign an erosion with the same structuring eieresults.

2.1 TheUpwind Scheme

In spite of the simplicity of the PDE (2), its numerical evation remains a challenge. In
image processing, one is particularly interested in theeobtreatment of steep gradi-



ents which representimage edges. Under the Hamilton—Diémelthese should propa-
gate in space at constant speed without being blurred. Mergethe partial differential
equation (2) obeys a maximum—minimum principle which i®assential in image
processing applications.

The simplest approach, a forward Euler discretizationhwéntral spatial differ-
ences, generates oscillations in the vicinity of edgesfiotdte the maximum—minimum
principle; this is another manifestation of the generaldSiphenomena observed in nu-
merical approximations to discontinuous solutions, [T4jey can only be reduced but
not eliminated by choosing very small time step sizes. Meeecedges are smeared
out as the number of iterations increases, and so the prdi#enmes even worse with
smaller time steps.

An alternative scheme that avoids the oscillatory behaviorobeys the maximum—
minimum principle is the upwind scheme [22]. Its idea is tecdétize the first-order
derivatives on the right-hand side of (2) by one-sided diffee and switch between
their possible directions depending on the local gradigettion, and hence on the in-
formation flow direction. In the case of 1D dilatiom, = |u,|, one step of the resulting
explicit scheme with spatial grid siZeand time step size then reads

k+1
Uy

= Uf + % max{u§+1 - u?v ’UJ?71 - ufa O} . (3)
For time step sizes < h this scheme respects the maximum—minimum principle.

There are several ways to adapt this idea to the two-dimeakitase. We defer
these considerations until Subsection 3.3.

3 Morphological invariantization

In general, given a freely acting-parameter transformation group acting onran
dimensional space, one defines a moving frame by the choieeafss-section to the
group orbits, [7, 18]. In practice, one begins by writing th# group transformations
as explicit functions of the coordinates= (z1,...,z,) and the group parameters
A = (A1,..., ). One then normalizes of these expressions by equating them to
well-chosen constants — typically eith@or 1 — and solving for the group parameters
in terms of the coordinates: = p(z), which defines the moving frame map. The in-
variantization of any function, numerical scheme, etchentfound by first writing out
its transformed version and then replacing the group paesiby their moving frame
formula. In particular, the invariantization of the coardiesz; yields the fundamental
invariantsl; (z), with those corresponding to thenormalization coordinates being con-
stant. The invariantization of any other functif¥z, . . ., z,,) is then found by replac-
ing eachz; by its corresponding invariant (constant or not), leadmthe invariantized
functionI(z) = F(I1(2),...,In(2)). In particular, invariantization does not change
a function that is already invariant under the group. Thisalted Replacement Rule
makes it particularly easy to convert (both mathematicafigt in pre-existing software
packages) numerical schemes into invariant numericahseleThe resulting schemes
are guaranteed to be consistent with the underlying difféakequations, since invari-
antization preserves consistency of numerical schemdactnone of the key benefits



of the invariantization method is that it enables one to fyaahd tune existing schemes
without affecting their consistency. In numerical appficas, one selects the normal-
ization coordinates and constants so as to try to elimirateany of the error terms as
possible; see [12, 10, 18] for further details.

3.1 Symmetry Group

The Hamilton—Jacobi PDE (2) that governs the processedatfati and erosion dis-
plays one outstanding symmetry: It is invariant unaey (differentiable) strictly mono-
tonically increasing gray-value transformation [3]. Tlsigecific symmetry which is
shared by a class of other PDEs relevant for image proce$ikmgnean curvature
motion and affine curvature flow is calledorphological invariancePDEs with this
symmetry can be re-formulated into intrinsic level set atiohs, i.e. curve or hyper-
surface evolutions of the level sets which depend on noteisg but the geometry of
the evolving level sets themselves [19, 3]. Infinitesimaleyators for this symmetry are
given by f(u)0,, for arbitrary differentiable functiong(u).

From the viewpoint of the invariantization of numerical sotes, the morphological
symmetry is special in that it involves the function value$ypin contrast to the sym-
metries of many other differential equations that invole¢hthe independent and the
dependent variables. Moreover, it is a very rich symmetrgesthe group of strictly in-
creasing differentiable maps & is an infinite-dimensional Lie pseudogroup. Though
an extension of the invariantization framework for the Lsepdogroup case has been
recently developed, [18], to simplify the constructions, will restrict our attention to
a particular one-dimensional subgroup.

To this end, we use the strictly monotonically increasimgsformations

N R @

wherel € R™ is the group parameter. This family of functions [on1] forms a one-
parameter Lie group with infinitesimal generatdt — «)d,,, satisfying the group laws
TuoTA =Tau (TA)71 = T1/A

3.2 TheOne-Dimensional Case

We want now to use the invariantization idea in order to imprthe accuracy of numer-
ical schemes for the 1D Hamilton—Jacobi equatign= |u,|. With respect to image
processing applications we are particularly interesteéducing numerical dissipation
at edges.

The one-parameter Lie group selected in the previous stibsedlows us to im-
pose one equality constraint on the local numerical datdogec look reveals that both
the forward Euler scheme with central spatial differenaes the upwind scheme are
exact if the functionu is linear inz. We want therefore to annihilate locally the second
derivativeu,,,.

While this idea is easy to carry out for the central diffeescheme, it turns out
that the numerical dissipation is in no way reduced. Thustwme our attention to



the upwind scheme. Since this scheme uses one-sided difeesgpproximations for
the first derivatives, the question arises which approxnatf the second derivative
should be used in the constraint that is to be enforced byiaviézation. Since the
first order derivative approximations can be consideredeasral differences located
at inter-pixel positions + 1/2, thus providing higher accuracy at these locations, we
decide to use a four-pixel stencil centred at the same lorcédir the second derivative.

Let us consider without loss of generality the case> 0 in which the upwind
scheme uses the right-sided derivative approximation.pfssaximation of the second
derivative we then us@u,.); ~ w2 — u;11 — u; + u;—1. For the invariantization at
pixeli in time stepk, we linearly transform the pixel value§,j =1—1,7,14+1,9+2,
to [0, 1] which givesa¥, and apply (4) to obtain} = 7, (a¥). Herein, the parameter
A = A¥ > 0is to be determined, using the invariantization condition

k k ko, ok _
Viho — Uiy1 — U + ;24 =0. 5)

Inserting (4) into (5) gives

0= )\(()\ )0 g U O + Ul Uy + WUy — A A )

(6)
200+ D)0y — Ay @if) + (U — @y — f + ﬁ?—l)) :

This equation has exactly one positive solution if the seqae’ ,, u¥, uf , uf , is

strictly monotonic. If this is not the case, our one-parangansformation group in fact

does not contain a transformation that satisfies (5). Idstea- 0 is then calculated as

largest solution of (6). We select therefore a smal 0 and use\ = max{\, e} inthe

algorithm. Whenevek < ¢, our invariantization is therefore imperfect, and the setco

derivative error term not completely annihilated. Stilethumerical error is reduced in

these cases.

One time step for pixel of a 1D signal reads therefore as follows.

1. Compute the one-sided derivative approximatigrjs := uf,, — uf, A} =
ulf —uf I max{AF, —AF_ 0} =0, letuf"" = u¥ and finish. Otherwise, if
Af, > —AF_leto = +1, elsec = —1. Letu; := uf, ;, forj = —1,0,1,2.

2. Let

m = min{i; | j € {~1,0,1,2}},
M = maxi; | j € {1,0,1,2}},

- (7)
~ U; —m .
== -1,0,1,2} .
u] M —m ) J € { y Uy Ly }
3. Compute the coefficients
a = UgUiUy — UoULU—_1 — UoUeU—_1 + ULUQU_1 ,
b= tsti_1 — Uyt , (8)
C :ﬂg—ﬂl —’1104‘17,_1
and the transformation parameter
b+ Vb2 +4
A= 14 2T VOT A dac (9)

a



Bound the transformation parameter Wa= max{\, ¢}.
4. Transform the pixel values by

vj = T13(0;) , je€{-1,0,1,2}. (10)

5. Perform one step of the upwind scheme on the transforntad da

Vg = vy + %(Ul - ’Uo) . (11)
6. Transform back:
ubth = m (M - m)7y 5 (To) - (12)

Itis easy to see that as for the unmodified upwind scheme, &xé@mum-minimum
principle is guaranteed for the modified algorithm if thedistep size fulfills- < 1.

3.3 TheTwo-Dimensional Case

In the two-dimensional situation there is a continuum ofgile “upwind” directions.
This adds complication to the discretization of first andosekcderivatives. While in
the original upwind scheme an approximation of the gradieanitude based on one-
sided difference approximationsof andu, works reasonably, experiments show that
the invariantization via second derivatives is highly siresto misestimations of the
second derivatives in gradient direction.

Fig. 1. Interpolation of a local 1-D subsample in gradient direttionsisting of function values
at P_1, Py, P1, and P;. The pointsP_1, P1, P; are located on circular arcs aroufd. P_1 is
linearly interpolated within the trianglé_,, P, within 737, and P, within one of the triangles
To1, Toz, Tos.

However, since the 2D Hamilton—Jacobi flow at every singtatimn is essentially
a 1D process, we can directly build on our 1D algorithm in théofving way. First,



we compute viau,, andu, approximations in the spirit of classical 2D upwind scheme
implementations the gradient direction. Then, we resathg@eeded pixels along this
direction to obtain a 1D section that represents the probletime given location. While
in principle this could be done via bilinear interpolatioitvin grid squares, we choose
an interpolation within isosceles right triangles of siéadth1 that experimentally
represents the local features of the 1D section slightliebé&ee Fig. 1). To interpolate
u for a pointP on a 1D section throughi, ;) in gradient direction, we use the triangle
of grid points that enclosel® and whose vertex has either maximal or minimal distance
to (i, j) among the three corner points.

One time step for pixeli, j) then reads as follows.

1. Compute
k ok k k ik k
A jat = Uiy1y — Ui A ja— = U= U (13)
AF = P —uF AP =l —uf
Bgy+ T Wil T Wi igiy— = Wiy T Yij—1 -
If maX{Aﬁjw_‘_,—Aﬁjw_,O} =0,lets, := 0, A, := 0, else ifAﬁj;w_‘_ >
—AF. lets, = +1, A, = Ak else lets, := —1, A, := —AF, .

4,730~ ,J;w4"
Proceed analogously to determiseand A,,.
2. 1fA, = A, =0, letu}T" = uf ; and finish. Otherwise, let

Oy i= . , Oy 1= . (14)
\/52 + 82 \/52+s2
3. Compute
U= U, i, L= —1,0,1,2, (15)

where inter-pixel values of are linearly interpolated between three neighboring
grid locations.
4. Apply steps 2—6 of the 1D algorithm to the 1D sigiialand assign the resulting

value tou} 1.

Though the calculation on the resampled 1D subsample iagohter-pixel sample
values which are not present in the previous time step ofrtfege, the maximum-—
minimum principle is still obeyed because the linear intdafon itself satisfies the
maximum-—minimum principle.

4 Experiments

4.1 One-Dimensional Case

To illustrate the effect of invariantization on a 1D examplgure 2 shows the dilation
of a single peak by the upwind scheme and our invariantizedification together with
the theoretical solution. The higher sharpness of the iamtized scheme is clearly
visible. We note that comparing with the theoretical rethudt propagation of the edge
is slightly accelerated, an undesired effect that evereames for smaller time step
sizes. The reason is that our scheme in its present form dmiesompensate for the
bias in the treatment of regions of opposite curvature wtiéhtroduced by the use of
one-sided derivative approximations. Since experimbntaé effect is much smaller
in the 2D case, we do not discuss remedies here.
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Fig. 2. 1D dilation of a single peak20 iterations withr = 0.5 of upwind scheme without and
with invariantization. For comparison, the theoreticdhtion result at evolution timé = 10 is
also included.

4.2 Two-Dimensional Case

We demonstrate the 2D version of our algorithm with two ekpents. First, Fig. 3
shows a test image featuring three discs, together with tages of dilation evolution,
for both the upwind scheme and our method. It is evident tiasharp boundaries of
the expanding discs are preserved better by the invarehtizheme. The second stage
of evolution demonstrates the correct handling of the nrmgrgeetween the objects.

At the same time, one can observe the reasonable degreeatibnat invariance
achieved by our method. This has been supported by choosimgber time step size
than in the 1D case. Sitill, a close look suggests that a smmadLiat of additional blur
is added in diagonal directions due to the interpolatiortpdure used to obtain the 1D
subsample.

A 1D section from the 2D evolution (slightly above the hontal diameter of one
circle, as indicated in Fig. 3) is shown in Fig. 4. The incexhsharpness of the invari-
antized scheme is again visible; the interface betweenrigbttand dark region attains
a width of approx. four to five pixels, which is in accordandéwihe effective region
of influence of each time step. This degree of edge blur resregraentially unchanged
even after many more time steps.

The position of the expanded contour under an exact dilatitimequal evolution
time is also shown. Here, the speed of expansion of the brégfidns is in good agree-
ment with the theoretically derived speed, even with thellemt@me step size. Besides
this, the maximum—minimum stability is confirmed by Fig. 4.
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Fig. 3. Top, left: Original image 256 x 256 pixels) showing three discs. White line marks a 1D
section shown in Fig. 4Top, middle: Dilation by upwind scheme without invariantizatior0
iterations, time step = 0.1. Top, right: Same but withR00 iterations.Bottom row: Same as
above but with invariantized upwind scheme
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Fig. 4. Profiles of 2D dilation results along the line marked in FigQ8iginal image, theoretical
result of dilation at time¢ = 10, upwind scheme without and with invariantizatidifQ iterations
with 7 = 0.1
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Fig.5. Left: Original image 256 x 256 pixels). Middle: Dilation with invariantized upwind
schemej0 iterations withr = 0.1 Right: Same with150 iterations
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Fig.6. Left: Dilation of Fig. 3 by flux-corrected transport (FCT) scherR8, iterations with

7 = 0.5 (provided by M. BreuRR)Right: Central part of the dilated profiles from Fig. 4 and
corresponding profile of the FCT result

Fig. 5 finally demonstrates the dilation process of a natuaétone image by our
algorithm.

A comparison with another state-of-the-art numerical métfor evaluating the
Hamilton—Jacobi equation of dilation is shown in Fig. 6. The-corrected transport
(FCT) scheme by Breuf3 and Weickert [5] relies on a direct tiodeof, and compen-
sation for, the numerical viscosity of the upwind schemeer&hy, it achieves a higher
degree of sharpness, with an interface width of only one togixels. Note that for the
FCT scheme a larger time step size has been used. Since trapproaches exploit
different aspects of the process, it will be worth condugfinture research to look for
ways how their respective advantages can be combined.

Erosion is equivalent to dilation of an inverted image andtb@refore be performed
in a completely analogous fashion by our method. Due to siratations, we have not
included an erosion example here.

5 Conclusion

We have demonstrated that the invariantization technigunebe applied to the numer-
ics of PDE-based image filters. It allows to raise the acgucdamumerical schemes



and also to reduce numerical problems that are particullanjplesome in image pro-
cessing applications such as numerical blurring of edgesh&Ve concentrated here on
a particular interesting symmetry of PDEs occurring in im@gocessing applications,
namely morphological invariance. One direction of ongaieggearch is the transfer of
these techniques to other image filtering schemes based Ba With invariance prop-
erties. Though our method already displays a reasonalagaoal invariance, the high
directional sensitivity of the process makes further inweraents in this respect desir-
able. Also, combinations of the invariantization idea witinservation properties are
of interest. Finally, by reducing the morphological symmeéb a one-parameter sub-
group, it has not been fully used so far; a better exploitetibits potential is therefore
also a topic of continued research.
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