
Numerical Analysis LectureNotes

Peter J. Olver

13. Approximation and Interpolation

We will now apply our minimization results to the interpolation and least squares
fitting of data and functions.

13.1. Least Squares.

Linear systems with more equations than unknowns typically do not have solutions.
In such situations, the least squares solution to a linear system is one means of getting as
close as one can to an actual solution.

Definition 13.1. A least squares solution to a linear system of equations

Ax = b (13.1)

is a vector x⋆ ∈ R
n that minimizes the Euclidean norm ‖Ax− b ‖.

If the system (13.1) actually has a solution, then it is automatically the least squares
solution. Thus, the concept of least squares solution is new only when the system does not
have a solution.

To find the least squares solution, we need to minimize the quadratic function

‖Ax− b ‖2 = (Ax− b)T (Ax− b) = (xT AT − bT)(Ax− b)

= xT AT Ax− 2xT ATb + bTb = xT Kx− 2xT f + c,

where

K = AT A, f = ATb, c = ‖b ‖2. (13.2)

According to Theorem 12.10, the Gram matrix K = AT A is positive definite if and only if
ker A = {0}. In this case, Theorem 12.12 supplies us with the solution to this minimization
problem.

Theorem 13.2. Assume that kerA = {0}. Set K = AT A and f = ATb. Then

the least squares solution to the linear system Ax = b is the unique solution x⋆ to the

so-called normal equations

Kx = f or, explicitly, (AT A)x = ATb, (13.3)

namely

x⋆ = (AT A)−1AT b. (13.4)

5/18/08 219 c© 2008 Peter J. Olver

The least squares error is

‖Ax⋆ − b ‖2 = ‖b ‖2 − fTx⋆ = ‖b ‖2 − bT A(AT A)−1AT b. (13.5)

Note that the normal equations (13.3) can be simply obtained by multiplying the
original system Ax = b on both sides by AT . In particular, if A is square and invertible,
then (AT A)−1 = A−1(AT)−1, and so (13.4) reduces to x = A−1b, while the two terms in
the error formula (13.5) cancel out, producing zero error. In the rectangular case — when
inversion is not allowed — (13.4) gives a new formula for the solution to a compatible
linear system Ax = b.

Example 13.3. Consider the linear system

x1 + 2x2 = 1,

3x1 − x2 + x3 = 0,

−x1 + 2x2 + x3 = −1,

x1 − x2 − 2x3 = 2,

2x1 + x2 − x3 = 2,

consisting of 5 equations in 3 unknowns. The coefficient matrix and right hand side are

A =











1 2 0
3 −1 1

−1 2 1
1 −1 −2
2 1 −1











, b =











1
0

−1
2
2











.

A direct application of Gaussian Elimination shows that the system is incompatible — it
has no solution. Of course, to apply the least squares method, we are not required to check
this in advance. If the system has a solution, it is the least squares solution too, and the
least squares method will find it.

To form the normal equations (13.3), we compute

K = AT A =





16 −2 −2
−2 11 2
−2 2 7



, f = AT b =





8
0

−7



 .

Solving the 3 × 3 system K x = f by Gaussian Elimination, we find

x = K−1f ≈ (.4119, .2482,−.9532)
T

to be the least squares solution to the system. The least squares error is

‖b− Ax⋆ ‖ ≈ ‖ (−.0917, .0342, .1313, .0701, .0252)
T ‖ ≈ .1799,

which is reasonably small — indicating that the system is, roughly speaking, not too
incompatible.

5/18/08 220 c© 2008 Peter J. Olver

13.2. Data Fitting and Interpolation.

One of the most important applications of the least squares minimization process is
to the fitting of data points. Suppose we are running an experiment in which we measure
a certain time-dependent physical quantity. At time ti we make the measurement yi, and
thereby obtain a set of, say, m data points

(t1, y1), (t2, y2), . . . (tm, ym). (13.6)

Suppose our theory indicates that the data points are supposed to all lie on a single line

y = α + β t, (13.7)

whose precise form — meaning its coefficients α, β — is to be determined. For example,
a police car is interested in clocking the speed of a vehicle by using measurements of its
relative distance at several times. Assuming that the vehicle is traveling at constant speed,
its position at time t will have the linear form (13.7), with β, the velocity, and α, the initial
position, to be determined. Experimental error will almost inevitably make this impossible
to achieve exactly, and so the problem is to find the straight line (13.7) that “best fits”
the measured data and then use its slope to estimate the vehicle’s velocity.

The error between the measured value yi and the sample value predicted by the
function (13.7) at t = ti is

ei = yi − (α + β ti), i = 1, . . . , m.

We can write this system of equations in matrix form as

e = y − Ax,

where

e =











e1

e2

...
em











, y =











y1

y2

...
ym











, while A =









1 t1
1 t2
...

...
1 tm









, x =

(

α
β

)

. (13.8)

We call e the error vector and y the data vector . The coefficients α, β of our desired
function (13.7) are the unknowns, forming the entries of the column vector x.

If we could fit the data exactly, so yi = α + β ti for all i, then each ei = 0, and we
could solve Ax = y for the coefficients α, β. In the language of linear algebra, the data
points all lie on a straight line if and only if y ∈ rng A. If the data points are not collinear,
then we seek the straight line that minimizes the total squared error or Euclidean norm

Error = ‖ e ‖ =
√

e2
1 + · · · + e2

m .

Pictorially, referring to Figure 13.1, the errors are the vertical distances from the points
to the line, and we are seeking to minimize the square root of the sum of the squares of

5/18/08 221 c© 2008 Peter J. Olver

Figure 13.1. Least Squares Approximation of Data by a Straight Line.

the individual errors†, hence the term least squares. In other words, we are looking for the
coefficient vector x = (α, β)

T
that minimizes the Euclidean norm of the error vector

‖ e ‖ = ‖Ax− y ‖. (13.9)

Thus, we recover the problem of characterizing the least squares solution to the linear
system Ax = y.

Theorem 13.2 prescribes the solution to this least squares minimization problem. We
form the normal equations

(AT A)x = AT y, with solution x⋆ = (AT A)−1ATy. (13.10)

Invertibility of the Gram matrix K = AT A relies on the assumption that the matrix A has
linearly independent columns. For the particular matrix in (13.8), linear independence of
its two columns requires that not all the ti’s be equal, i.e., we must measure the data at
at least two distinct times. Note that this restriction does not preclude measuring some of
the data at the same time, e.g., by repeating the experiment. However, choosing all the
ti’s to be the same is a silly data fitting problem. (Why?)

† This choice of minimization may strike the reader as a little odd. Why not just minimize
the sum of the absolute value of the errors, i.e., the 1 norm ‖ e ‖1 = | e1 | + · · · + | en | of the
error vector, or minimize the maximal error, i.e., the ∞ norm ‖ e ‖∞ = max{| e1 |, . . . , | en |}?
Or, even better, why minimize the vertical distance to the line? The perpendicular distance from
each data point to the line might strike you as a better measure of error. The answer is that,
although each of these alternative minimization criteria is interesting and potentially useful, they
all lead to nonlinear minimization problems, and so are much harder to solve! The least squares
minimization problem can be solved by linear algebra, and so, purely on the grounds of simplicity,
is the method of choice in most applications. Moreover, one needs to fully understand the linear
problem before diving into more treacherous nonlinear waters.

5/18/08 222 c© 2008 Peter J. Olver

Under this assumption, we then compute

AT A =

(

1 1 . . . 1
t1 t2 . . . tm

)









1 t1
1 t2
...

...
1 tm









=

(

m
∑

ti
∑

ti
∑

(ti)
2

)

= m

(

1 t

t t2

)

,

AT y =

(

1 1 . . . 1
t1 t2 . . . tm

)









y1

y2

...
ym









=

(

∑

yi
∑

ti yi

)

= m

(

y

t y

)

,

(13.11)

where the overbars, namely

t =
1

m

m
∑

i=1

ti, y =
1

m

m
∑

i=1

yi, t2 =
1

m

m
∑

i=1

t2
i , t y =

1

m

m
∑

i=1

ti yi, (13.12)

denote the average sample values of the indicated variables.

Warning : The average of a product is not equal to the product of the averages! In
particular,

t2 6= (t)2, t y 6= t y.

Substituting (13.11) into the normal equations (13.10), and canceling the common
factor of m, we find that we have only to solve a pair of linear equations

α + t β = y, t α + t2 β = t y,

for the coefficients:

α = y − t β, β =
t y − t y

t2 − (t)2
=

∑

(ti − t) yi
∑

(ti − t)2
. (13.13)

Therefore, the best (in the least squares sense) straight line that fits the given data is

y = β (t − t) + y, (13.14)

where the line’s slope β is given in (13.13).

Example 13.4. Suppose the data points are given by the table

ti 0 1 3 6

yi 2 3 7 12

To find the least squares line, we construct

A =







1 0
1 1
1 3
1 6






, AT =

(

1 1 1 1
0 1 3 6

)

, y =







2
3
7

12






.

5/18/08 223 c© 2008 Peter J. Olver

1 2 3 4 5 6

2

4

6

8

10

12

Figure 13.2. Least Squares Line.

Therefore

AT A =

(

4 10
10 46

)

, AT y =

(

24
96

)

.

The normal equations (13.10) reduce to

4α + 10β = 24, 10α + 46β = 96, so α = 12

7
, β = 12

7
.

Therefore, the best least squares fit to the data is the straight line

y = 12

7
+ 12

7
t.

Alternatively, one can compute this formula directly from (13.13–14). As you can see in
Figure 13.2, the least squares line does a fairly good job of approximating the data points.

Example 13.5. Suppose we are given a sample of an unknown radioactive isotope.
At time ti we measure, using a Geiger counter, the amount mi of radioactive material
in the sample. The problem is to determine the initial amount of material along with
the isotope’s half life. If the measurements were exact, we would have m(t) = m0e

β t,
where m0 = m(0) is the initial mass, and β < 0 the decay rate. The half-life is given by
t⋆ = β−1 log 2.

As it stands this is not a linear least squares problem. But it can be easily converted
to the proper form by taking logarithms:

y(t) = log m(t) = log m0 + β t = α + β t.

We can thus do a linear least squares fit on the logarithms yi = log mi of the radioactive
mass data at the measurement times ti to determine the best values for β and α = log m0.

Polynomial Approximation and Interpolation

The basic least squares philosophy has a variety of different extensions, all interesting
and all useful. First, we can replace the straight line (13.7) by a parabola defined by a
quadratic function

y = α + β t + γ t2. (13.15)

5/18/08 224 c© 2008 Peter J. Olver

For example, Newton’s theory of gravitation says that (in the absence of air resistance) a
falling object obeys the parabolic law (13.15), where α = h0 is the initial height, β = v0

is the initial velocity, and γ = − 1

2
g is minus one half the gravitational constant. Suppose

we observe a falling body on a new planet, and measure its height yi at times ti. Then we
can approximate its initial height, initial velocity and gravitational acceleration by finding
the parabola (13.15) that best fits the data. Again, we characterize the least squares fit
by minimizing the sum of the squares of the individual errors ei = yi − y(ti).

The method can evidently be extended to a completely general polynomial function

y(t) = α0 + α1 t + · · · + αn tn (13.16)

of degree n. The total least squares error between the data and the sample values of the
function is equal to

‖ e ‖2 =

m
∑

i=1

[

yi − y(ti)
]2

= ‖y − Ax ‖2, (13.17)

where

A =













1 t1 t21 . . . tn1
1 t2 t22 . . . tn2
...

...
...

. . .
...

1 tm t2m . . . tnm













, x =













α0

α1

α2

...
αn













, y =











y1

y2

...
ym











. (13.18)

The coefficient m× (n + 1) coefficient matrix is known as a Vandermonde matrix , named
after the eighteenth century French mathematician, scientist and musicologist Alexandre–
Théophile Vandermonde — despite the fact that it appears nowhere in his four mathemat-
ical papers! In particular, if m = n + 1, then A is square, and so, assuming invertibility,
we can solve Ax = y exactly. In other words, there is no error, and the solution is an
interpolating polynomial , meaning that it fits the data exactly. A proof of the following
result can be found at the end of this section.

Lemma 13.6. If t1, . . . , tn+1 are distinct, ti 6= tj , then the (n+1)× (n +1) Vander-

monde interpolation matrix (13.18) is nonsingular.

This result immediately implies the basic existence theorem for interpolating polyno-
mials.

Theorem 13.7. Let t1, . . . , tn+1 be distinct sample points. Then, for any prescribed

data y1, . . . , yn+1, there exists a unique interpolating polynomial of degree ≤ n with the

prescribed sample values y(ti) = yi for all i = 1, . . . , n + 1.

Thus, two points will determine a unique interpolating line, three points a unique
interpolating parabola, four points an interpolating cubic, and so on; see Figure 13.3.

The basic ideas of interpolation and least squares fitting of data can be applied to
approximate complicated mathematical functions by much simpler polynomials. Such ap-
proximation schemes are used in all numerical computations. Your computer or calculator
is only able to add, subtract, multiply and divide. Thus, when you ask it to compute

√
t or

5/18/08 225 c© 2008 Peter J. Olver

Linear Quadratic Cubic

Figure 13.3. Interpolating Polynomials.

et or cos t or any other non-rational function, the program must rely on an approximation
scheme based on polynomials†. In the “dark ages” before computers, one would consult
precomputed tables of values of the function at particular data points. If one needed a
value at a nontabulated point, then some form of polynomial interpolation would be used
to accurately approximate the intermediate value.

Example 13.8. Suppose that we would like to compute reasonably accurate values
for the exponential function et for values of t lying in the interval 0 ≤ t ≤ 1 by approxi-
mating it by a quadratic polynomial

p(t) = α + β t + γ t2. (13.19)

If we choose 3 points, say t1 = 0, t2 = .5, t3 = 1, then there is a unique quadratic polynomial
(13.19) that interpolates et at the data points, i.e.,

p(ti) = eti for i = 1, 2, 3.

In this case, the coefficient matrix (13.18), namely

A =





1 0 0
1 .5 .25
1 1 1



,

is nonsingular. Therefore, we can exactly solve the interpolation equations

Ax = y, where y =







et1

et2

et3






=







1.

1.64872

2.71828







is the data vector, which we assume we already know. The solution

x =







α

β

γ






=







1.

.876603

.841679







† Actually, one could also allow interpolation and approximation by rational functions, a sub-
ject known as Padé approximation theory , [3].

5/18/08 226 c© 2008 Peter J. Olver

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

Figure 13.4. Quadratic Interpolating Polynomial for et.

yields the interpolating polynomial

p(t) = 1 + .876603 t + .841679 t2. (13.20)

It is the unique quadratic polynomial that agrees with et at the three specified data points.
See Figure 13.4 for a comparison of the graphs; the first graph shows et, the second p(t),
and the third lays the two graphs on top of each other. Even with such a primitive
interpolation scheme, the two functions are quite close. The maximum error or L∞ norm
of the difference is

‖ et − p(t) ‖∞ = max
{

| et − p(t) |
∣

∣ 0 ≤ t ≤ 1
}

≈ .01442,

with the largest deviation occurring at t ≈ .796.

There is, in fact, an explicit formula for the interpolating polynomial that is named af-
ter the influential eighteenth century Italo–French mathematician Joseph–Louis Lagrange.
Suppose we know the solutions x1, . . . ,xn+1 to the particular interpolation systems

Axk = ek, k = 1, . . . , n + 1, (13.21)

where e1, . . . , en+1 are the standard basis vectors of R
n+1. Then the solution to

Ax = y = y1 e1 + · · · + yn+1 en+1

is given by the superposition formula

x = y1x1 + · · · + yn+1 xn+1.

The particular interpolation equation (13.21) corresponds to the interpolation data y = ek,
meaning that yk = 1, while yi = 0 at all points ti with i 6= k. If we can find the
n + 1 particular interpolating polynomials that realize this very special data, we can use
superposition to construct the general interpolating polynomial.

Theorem 13.9. Given distinct sample points t1, . . . , tn+1, the kth Lagrange inter-
polating polynomial is given by

Lk(t) =
(t − t1) · · · (t − tk−1)(t − tk+1) · · · (t − tn+1)

(tk − t1) · · · (tk − tk−1)(tk − tk+1) · · · (tk − tn+1)
, k = 1, . . . , n + 1.

(13.22)

5/18/08 227 c© 2008 Peter J. Olver

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

L1(t)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

L2(t)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

L3(t)

Figure 13.5. Lagrange Interpolating Polynomials for the Points 0, .5, 1.

It is the unique polynomial of degree n that satisfies

Lk(ti) =

{

1, i = k,

0, i 6= k,
i, k = 1, . . . , n + 1. (13.23)

Proof : The uniqueness of the Lagrange interpolating polynomial is an immediate
consequence of Theorem 13.7. To show that (13.22) is the correct formula, we note that
when t = ti for any i 6= k, the factor (t− ti) in the numerator of Lk(t) vanishes, while the
denominator is not zero since the points are distinct. On the other hand, when t = tk, the
numerator and denominator are equal, and so Lk(tk) = 1. Q.E.D.

Theorem 13.10. If t1, . . . , tn+1 are distinct, then the polynomial of degree ≤ n that

interpolates the associated data y1, . . . , yn+1 is

p(t) = y1 L1(t) + · · · + yn+1 Ln+1(t). (13.24)

Proof : We merely compute

p(tk) = y1 L1(tk) + · · · + yk Lk(t) + · · · + yn+1 Ln+1(tk) = yk,

where, according to (13.23), every summand except the kth is zero. Q.E.D.

Example 13.11. For example, the three quadratic Lagrange interpolating polyno-
mials for the values t1 = 0, t2 = 1

2
, t3 = 1 used to interpolate et in Example 13.8 are

L1(t) =

(

t − 1

2

)

(t − 1)
(

0 − 1

2

)

(0 − 1)
= 2 t2 − 3 t + 1,

L2(t) =
(t − 0)(t − 1)
(

1

2
− 0

)(

1

2
− 1

) = −4 t2 + 4 t,

L3(t) =
(t − 0)

(

t − 1

2

)

(1 − 0)
(

1 − 1

2

) = 2 t2 − t.

(13.25)

Thus, we can rewrite the quadratic interpolant (13.20) to et as

y(t) = L1(t) + e1/2 L2(t) + e L3(t)

= (2 t2 − 3 t + 1) + 1.64872(−4 t2 + 4 t) + 2.71828(2 t2 − t).

5/18/08 228 c© 2008 Peter J. Olver

-3 -2 -1 1 2 3

-0.2

0.2

0.4

0.6

0.8

1

-3 -2 -1 1 2 3

-0.2

0.2

0.4

0.6

0.8

1

-3 -2 -1 1 2 3

-0.2

0.2

0.4

0.6

0.8

1

Figure 13.6. Degree 2, 4 and 10 Interpolating Polynomials for 1/(1 + t2).

We stress that this is the same interpolating polynomial — we have merely rewritten it in
the more transparent Lagrange form.

You might expect that the higher the degree, the more accurate the interpolating
polynomial. This expectation turns out, unfortunately, not to be uniformly valid. While
low degree interpolating polynomials are usually reasonable approximants to functions,
high degree interpolants are not only more expensive to compute, but can be rather badly
behaved, particularly near the ends of the interval. For example, Figure 13.6 displays the
degree 2, 4 and 10 interpolating polynomials for the function 1/(1 + t2) on the interval
−3 ≤ t ≤ 3 using equally spaced data points. Note the rather poor approximation of the
function near the ends of the interval. Higher degree interpolants fare even worse, although
the bad behavior becomes more and more concentrated near the endpoints. As a conse-
quence, high degree polynomial interpolation tends not to be used in practical applications.
Better alternatives rely on least squares approximants by low degree polynomials, to be
described next, and interpolation by piecewise cubic splines, a topic that will be discussed
in depth later.

If we have m > n + 1 data points, then, usually, there is no degree n polynomial that
fits all the data, and so we must switch over to a least squares approximation. The first
requirement is that the associated m× (n+1) interpolation matrix (13.18) has rank n+1;
this follows from Lemma 13.6, provided that at least n + 1 of the values t1, . . . , tm are
distinct. Thus, given data at m ≥ n+1 different sample points t1, . . . , tm, we can uniquely
determine the best least squares polynomial of degree n that fits the data by solving the
normal equations (13.10).

Example 13.12. Let us return to the problem of approximating the exponential
function et. If we use more than three data points, but still require a quadratic polynomial,
then we can no longer interpolate exactly, and must devise a least squares approximant.
For instance, using five equally spaced sample points t1 = 0, t2 = .25, t3 = .5, t4 = .75,
t5 = 1, the coefficient matrix and sampled data vector (13.18) are

A =











1 0 0
1 .25 .0625
1 .5 .25
1 .75 .5625
1 1 1











, y =











1.
1.28403
1.64872
2.11700
2.71828











.

5/18/08 229 c© 2008 Peter J. Olver

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

Figure 13.7. Quadratic Approximant and Quartic Interpolant for et.

The solution to the normal equations (13.3), with

K = AT A =





5. 2.5 1.875
2.5 1.875 1.5625
1.875 1.5625 1.38281



, f = ATy =





8.76803
5.45140
4.40153



,

is

x = K−1f = (1.00514, .864277, .843538)
T

.

This leads to the quadratic least squares approximant

p2(t) = 1.00514 + .864277 t + .843538 t2.

On the other hand, the quartic interpolating polynomial

p4(t) = 1 + .998803 t + .509787 t2 + .140276 t3 + .069416 t4

is found directly from the data values as above. The quadratic polynomial has a maximal
error of ≈ .011 over the interval [0, 1] — slightly better than the quadratic interpolant —
while the quartic has a significantly smaller maximal error: ≈ .0000527. (In this case, high
degree interpolants are not ill behaved.) See Figure 13.7 for a comparison of the graphs.

Proof of Lemma 13.6 : We will establish the rather striking LU factorization of
the transposed Vandermonde matrix V = AT , which will immediately prove that, when
t1, . . . , tn+1 are distinct, both V and A are nonsingular matrices. The 4 × 4 case is in-
structive for understanding the general pattern. Applying regular Gaussian Elimination,

5/18/08 230 c© 2008 Peter J. Olver

we find the explicit LU factorization











1 1 1 1

t1 t2 t3 t4
t21 t22 t23 t24
t31 t32 t33 t34











=











1 0 0 0

t1 1 0 0

t21 t1 + t2 1 0

t31 t21 + t1 t2 + t22 t1 + t2 + t3 1





















1 1 1 1

0 t2 − t1 t3 − t1 t4 − t1
0 0 (t3 − t1)(t3 − t2) (t4 − t1)(t4 − t2)

0 0 0 (t4 − t1)(t4 − t2)(t4 − t3)











.

In the general (n + 1) × (n + 1) case, the individual entries of the matrices appearing in
factorization V = LU are

vij = ti−1
j , i, j = 1, . . . , n + 1, (13.26)

ℓij =
∑

1≤k1≤···≤ki−j≤j

tk1
tk2

· · · tki−j
, 1 ≤ j < i ≤ n + 1,

ℓii = 1, i = 1, . . . , n + 1,

ℓij = 0, 1 ≤ i < j ≤ n + 1,

uij =

i
∏

k=1

(tj − tk), 1 < i ≤ j ≤ n + 1,
u1j = 1, j = 1, . . . , n + 1,

uij = 0, 1 ≤ j < i ≤ n + 1.

Full details of the proof that V = LU can be found in [21, 45]. (Surprisingly, as far as we
know, these are the first places this factorization appears in the literature.) The entries of
L lying below the diagonal are known as the complete monomial polynomials since ℓij is
obtained by summing, with unit coefficients, all monomials of degree i−j in the j variables
t1, . . . , tj. The entries of U appearing on or above the diagonal are known as the Newton

difference polynomials. In particular, if t1, . . . , tn are distinct, so ti 6= tj for i 6= j, all
entries of U lying on or above the diagonal are nonzero. In this case, V has all nonzero
pivots, and is a regular, hence nonsingular matrix. Q.E.D.

Approximation and Interpolation by General Functions

There is nothing special about polynomial functions in the preceding approximation
scheme. For example, suppose we were interested in finding the best trigonometric ap-
proximation

y = α1 cos t + α2 sin t

to a given set of data. Again, the least squares error takes the same form ‖y − Ax ‖2 as
in (13.17), where

A =









cos t1 sin t1
cos t2 sin t2

...
...

cos tm sin tm









, x =

(

α1

α2

)

, y =











y1

y2

...
ym











.

5/18/08 231 c© 2008 Peter J. Olver

Thus, the columns of A are the sampled values of the functions cos t, sin t. The key is
that the unspecified parameters — in this case α1, α2 — occur linearly in the approximat-
ing function. Thus, the most general case is to approximate the data (13.6) by a linear
combination

y(t) = α1 h1(t) + α2 h2(t) + · · · + αn hn(t)

of prescribed functions h1(x), . . . , hn(x). The least squares error is, as always, given by

Error =

√

√

√

√

m
∑

i=1

(

yi − y(ti)
)2

= ‖y − Ax ‖,

where the sample matrix A, the vector of unknown coefficients x, and the data vector y

are

A =













h1(t1) h2(t1) . . . hn(t1)

h1(t2) h2(t2) . . . hn(t2)
...

...
. . .

...

h1(tm) h2(tm) . . . hn(tm)













, x =











α1

α2

...
αn











, y =











y1

y2

...
ym











. (13.27)

If A is square and nonsingular, then we can find an interpolating function of the prescribed
form by solving the linear system

Ax = y. (13.28)

A particularly important case is provided by the 2n + 1 trigonometric functions

1, cos x, sin x, cos 2x, sin 2x, . . . cos nx, sin nx.

Interpolation on 2n + 1 equally spaced data points on the interval [0, 2π] leads to the
Discrete Fourier Transform, used in signal processing, data transmission, and compression.

If there are more than n data points, then we cannot, in general, interpolate exactly,
and must content ourselves with a least squares approximation that minimizes the error at
the sample points as best it can. The least squares solution to the interpolation equations
(13.28) is found by solving the associated normal equations K x = f , where the (i, j) entry
of K = AT A is m times the average sample value of the product of hi(t) and hj(t), namely

kij = m hi(t) hj(t) =

m
∑

κ=1

hi(tκ) hj(tκ), (13.29)

whereas the ith entry of f = AT y is

fi = m hi(t) y =

m
∑

κ=1

hi(tκ) yκ. (13.30)

The one issue is whether the columns of the sample matrix A are linearly independent.
This is more subtle than the polynomial case covered by Lemma 13.6. Linear independence

5/18/08 232 c© 2008 Peter J. Olver

of the sampled function vectors is, in general, more restrictive than merely requiring the
functions themselves to be linearly independent.

If the parameters do not occur linearly in the functional formula, then we cannot use
linear algebra to effect a least squares approximation. For example, one cannot determine
the frequency ω, the amplitude r, and the phase shift δ of the general trigonometric
approximation

y = c1 cos ω t + c2 sin ω t = r cos(ω t + δ)

that minimizes the least squares error at the sample points. Approximating data by such
a function constitutes a nonlinear minimization problem.

Weighted Least Squares

Another extension to the basic least squares method is to introduce weights in the
measurement of the error. Suppose some of the data is known to be more reliable or
more significant than others. For example, measurements at an earlier time may be more
accurate, or more critical to the data fitting problem, than later measurements. In that
situation, we should penalize any errors in the earlier measurements and downplay errors
in the later data.

In general, this requires the introduction of a positive weight ci > 0 associated to
each data point (ti, yi); the larger the weight, the more vital the error. For a straight line
approximation y = α + β t, the weighted least squares error is defined as

Error =

√

√

√

√

m
∑

i=1

ci e
2
i =

√

√

√

√

m
∑

i=1

ci

[

yi − (α + β ti)
]2

.

Let us rewrite this formula in matrix form. Let C = diag (c1, . . . , cm) denote the diagonal
weight matrix . Note that C > 0 is positive definite, since all the weights are positive. The
least squares error,

Error =
√

eT C e = ‖ e ‖,
is then the norm of the error vector e with respect to the weighted inner product 〈v ;w 〉 =
vT Cw. Since e = y − Ax,

‖ e ‖2 = ‖Ax− y ‖2 = (Ax− y)T C (Ax− y)

= xT AT C Ax− 2xT AT C y + yT C y = xT K x− 2xT f + c,
(13.31)

where

K = AT C A, f = AT C y, c = yT Cy = ‖y ‖2.

Note that K is the weighted Gram matrix derived in (12.10), and so is positive definite
provided A has linearly independent columns or, equivalently, has rank n.

Theorem 13.13. Suppose A is an m×n matrix with linearly independent columns.

Suppose C > 0 is any positive definite m×m matrix. Then, the quadratic function (13.31)
giving the weighted least squares error has a unique minimizer, which is the solution to

the weighted normal equations

AT C Ax = AT C y, so that x = (AT C A)−1 AT C y. (13.32)

5/18/08 233 c© 2008 Peter J. Olver

1 2 3 4 5 6

2

4

6

8

10

12

Figure 13.8. Weighted Least Squares Line.

In brief, the weighted least squares solution is obtained by multiplying both sides of
the original system Ax = y by the matrix AT C. The derivation of this result allows C > 0
to be any positive definite matrix. In applications, the off-diagonal entries of C can be
used to weight cross-correlation terms in the data, although this extra freedom is rarely
used in practice.

Example 13.14. In Example 13.4, we fit the following data

ti 0 1 3 6

yi 2 3 7 12

ci 3 2 1

2

1

4

with an unweighted least squares line. Now we shall assign the weights listed in the last
row of the table for the error at each sample point. Thus, errors in the first two data values
carry more weight than the latter two. To find the weighted least squares line y = α + β t
that best fits the data, we compute

AT C A =

(

1 1 1 1
0 1 3 6

)







3 0 0 0
0 2 0 0
0 0 1

2
0

0 0 0 1

4













1 0
1 1
1 3
1 6






=

(

23

4
5

5 31

2

)

,

AT C y =

(

1 1 1 1
0 1 3 6

)







3 0 0 0
0 2 0 0
0 0 1

2
0

0 0 0 1

4













2
3
7

12






=

(

37

2

69

2

)

.

Thus, the weighted normal equations (13.32) reduce to

23

4
α + 5β = 37

2
, 5α + 31

2
β = 69

2
, so α = 1.7817, β = 1.6511.

Therefore, the least squares fit to the data under the given weights is

y = 1.7817 + 1.6511 t,

as plotted in Figure 13.8.

5/18/08 234 c© 2008 Peter J. Olver

13.3. Splines.

Polynomials are but one of the options for interpolating data points by smooth func-
tions. In pre–CAD (computer aided design) draftsmanship, a spline was a long, thin,
flexible strip of wood that was used to draw a smooth curve through prescribed points.
The points were marked by small pegs, and the spline rested on the pegs. The mathemat-
ical theory of splines was first developed in the 1940’s by the Romanian mathematician
Isaac Schoenberg as an attractive alternative to polynomial interpolation and approxima-
tion. Splines have since become ubiquitous in numerical analysis, in geometric modeling,
in design and manufacturing, in computer graphics and animation, and in many other
applications.

We suppose that the spline coincides with the graph of a function y = u(x). The
pegs are fixed at the prescribed data points (x0, y0), . . . , (xn, yn), and this requires u(x) to
satisfy the interpolation conditions

u(xj) = yj, j = 0, . . . , n. (13.33)

The mesh points x0 < x1 < x2 < · · · < xn are distinct and labeled in increasing order.
The spline is modeled as an elastic beam, [42], and so

u(x) = aj + bj (x − xj) + cj (x − xj)
2 + dj (x − xj)

3,
xj ≤ x ≤ xj+1,

j = 0, . . . , n − 1,
(13.34)

is a piecewise cubic function — meaning that, between successive mesh points, it is a cubic
polynomial, but not necessarily the same cubic on each subinterval. The fact that we write
the formula (13.34) in terms of x − xj is merely for computational convenience.

Our problem is to determine the coefficients

aj , bj , cj , dj , j = 0, . . . , n − 1.

Since there are n subintervals, there are a total of 4n coefficients, and so we require 4n
equations to uniquely prescribe them. First, we need the spline to satisfy the interpolation
conditions (13.33). Since it is defined by a different formula on each side of the mesh point,
this results in a total of 2n conditions:

u(x+
j) = aj = yj ,

u(x−
j+1) = aj + bj hj + cj h2

j + dj h3
j = yj+1,

j = 0, . . . , n − 1, (13.35)

where we abbreviate the length of the jth subinterval by

hj = xj+1 − xj .

The next step is to require that the spline be as smooth as possible. The interpolation con-
ditions (13.35) guarantee that u(x) is continuous. The condition u(x) ∈ C1 be continuously
differentiable requires that u′(x) be continuous at the interior mesh points x1, . . . , xn−1,
which imposes the n − 1 additional conditions

bj + 2cj hj + 3dj h2
j = u′(x−

j+1) = u′(x+
j+1) = bj+1, j = 0, . . . , n − 2. (13.36)

5/18/08 235 c© 2008 Peter J. Olver

To make u ∈ C2, we impose n − 1 further conditions

2cj + 6dj hj = u′′(x−
j+1

) = u′′(x+
j+1

) = 2cj+1, j = 0, . . . , n − 2, (13.37)

to ensure that u′′ is continuous at the mesh points. We have now imposed a total of 4n−2
conditions, namely (13.35–37), on the 4n coefficients. The two missing constraints will
come from boundary conditions at the two endpoints, namely x0 and xn. There are three
common types:

(i) Natural boundary conditions: u′′(x0) = u′′(xn) = 0, whereby

c0 = 0, cn−1 + 3dn−1 hn−1 = 0. (13.38)

Physically, this models a simply supported spline that rests freely on the first and last
pegs.

(ii) Clamped boundary conditions: u′(x0) = α, u′(xn) = β, where α, β, which could
be 0, are fixed by the user. This requires

b0 = α, bn−1 + 2cn−1 hn−1 + 3dn−1 h2
n−1 = β. (13.39)

This corresponds to clamping the spline at prescribed angles at each end.

(iii) Periodic boundary conditions: u′(x0) = u′(xn), u′′(x0) = u′′(xn), so that

b0 = bn−1 + 2cn−1 hn−1 + 3dn−1 h2
n−1, c0 = cn−1 + 3dn−1 hn−1. (13.40)

If we also require that the end interpolation values agree,

u(x0) = y0 = yn = u(xn), (13.41)

then the resulting spline will be a periodic C2 function, so u(x+p) = u(x) with p = xn−x0

for all x. The periodic case is used to draw smooth closed curves; see below.

Theorem 13.15. Suppose we are given mesh points a = x0 < x1 < · · · < xn = b,
and corresponding data values y0, y1, . . . , yn, along with one of the three kinds of boundary

conditions (13.38), (13.39), or (13.40). Then there exists a unique piecewise cubic spline

function u(x) ∈ C2[a, b] that interpolates the data, u(x0) = y0, . . . , u(xn) = yn, and

satisfies the boundary conditions.

Proof : We first discuss the natural case. The clamped case is left as an exercise for
the reader, while the slightly harder periodic case will be treated at the end of the section.
The first set of equations in (13.35) says that

aj = yj , j = 0, . . . , n − 1. (13.42)

Next, (13.37–38) imply that

dj =
cj+1 − cj

3hj

. (13.43)

This equation also holds for j = n − 1, provided that we make the convention that†

cn = 0.

† This is merely for convenience; there is no cn used in the formula for the spline.

5/18/08 236 c© 2008 Peter J. Olver

We now substitute (13.42–43) into the second set of equations in (13.35), and then solve
the resulting equation for

bj =
yj+1 − yj

hj

−
(2cj + cj+1)hj

3
. (13.44)

Substituting this result and (13.43) back into (13.36), and simplifying, we find

hj cj + 2(hj + hj+1)cj+1 + hj+1 cj+2 = 3

[

yj+2 − yj+1

hj+1

−
yj+1 − yj

hj

]

= zj+1, (13.45)

where we introduce zj+1 as a shorthand for the quantity on the right hand side.

In the case of natural boundary conditions, we have

c0 = 0, cn = 0,

and so (13.45) constitutes a tridiagonal linear system

A c = z, (13.46)

for the unknown coefficients c =
(

c1, c2, . . . , cn−1

)T
, with coefficient matrix

A =

















2(h0 + h1) h1

h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

. . .
. . .

. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−2 2(hn−2 + hn−1)

















(13.47)

and right hand side z =
(

z1, z2, . . . , zn−1

)T
. Once (13.47) has been solved, we will then

use (13.42–44) to reconstruct the other spline coefficients aj , bj, dj.

The key observation is that the coefficient matrix A is strictly diagonally dominant ,
cf. Definition 6.25, because all the hj > 0, and so

2(hj−1 + hj) > hj−1 + hj .

Theorem 6.26 implies that A is nonsingular, and hence the tridiagonal linear system has
a unique solution c. This suffices to prove the theorem in the case of natural boundary
conditions. Q.E.D.

To actually solve the linear system (13.46), we can apply our tridiagonal solution
algorithm (4.47). Let us specialize to the most important case, when the mesh points are
equally spaced in the interval [a, b], so that

xj = a + j h, where h = hj =
b − a

n
, j = 0, . . . , n − 1.

5/18/08 237 c© 2008 Peter J. Olver

1 2 3 4

-1

-0.5

0.5

1

1.5

2

Figure 13.9. A Cubic Spline.

In this case, the coefficient matrix A = hB is equal to h times the tridiagonal matrix

B =

















4 1
1 4 1

1 4 1
1 4 1

1 4 1
. . .

. . .
. . .

















that first appeared in Example 4.26. Its LU factorization takes on an especially simple
form, since most of the entries of L and U are essentially the same decimal numbers. This
makes the implementation of the Forward and Back Substitution procedures almost trivial.

Figure 13.9 shows a particular example — a natural spline passing through the data
points (0, 0), (1, 2), (2,−1), (3, 1), (4, 0). As with the Green’s function for the beam, the
human eye is unable to discern the discontinuities in its third derivatives, and so the graph
appears completely smooth, even though it is, in fact, only C2.

In the periodic case, we set

an+k = an, bn+k = bn, cn+k = cn, dn+k = dn, zn+k = zn.

With this convention, the basic equations (13.42–45) are the same. In this case, the
coefficient matrix for the linear system

A c = z, with c =
(

c0, c1, . . . , cn−1

)T
, z =

(

z0, z1, . . . , zn−1

)T
,

5/18/08 238 c© 2008 Peter J. Olver

Figure 13.10. Three Sample Spline Letters.

is of circulant tridiagonal form:

A =

















2(hn−1 + h0) h0 hn−1

h0 2(h0 + h1) h1

h1 2(h1 + h2) h2

. . .
. . .

. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−1 hn−2 2(hn−2 + hn−1)

















.

(13.48)
Again A is strictly diagonally dominant, and so there is a unique solution c, from which
one reconstructs the spline, proving Theorem 13.15 in the periodic case.

One immediate application of splines is curve fitting in computer aided design and
graphics. The basic problem is to draw a smooth parametrized curve u(t) = (u(t), v(t))

T

that passes through a set of prescribed data points xk = (xk, yk)
T

in the plane. We have
the freedom to choose the parameter value t = tk when the curve passes through the kth

point; the simplest and most common choice is to set tk = k. We then construct the
functions x = u(t) and y = v(t) as cubic splines interpolating the x and y coordinates of
the data points, so u(tk) = xk, v(tk) = yk. For smooth closed curves, we require that both
splines be periodic; for curves with ends, either natural or clamped boundary conditions
are used.

Most computer graphics packages include one or more implementations of parame-
trized spline curves. The same idea also underlies modern font design for laser printing
and typography (including the fonts used in this book). The great advantage of spline
fonts over their bitmapped counterparts is that they can be readily scaled. Some sample
letter shapes parametrized by periodic splines passing through the indicated data points
are plotted in Figure 13.10. Better fits can be easily obtained by increasing the number of
data points. Various extensions of the basic spline algorithms to space curves and surfaces
are an essential component of modern computer graphics, design, and animation, [15, 49].

5/18/08 239 c© 2008 Peter J. Olver

