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AbSImCt. We completely classify all ’quasi-exactly solvable’ Lie algebras of first-order 
differential operators in two complex variables. Applications to quasi-exactly solvable 
quantum problems are indicated. 

1. Introduction 

Quantum mechanical problems can roughly be divided into two classes. The first class 
consists of the few ‘exactly solvable’ models, such as the harmonic oscillator, whose 
complete spectrum can be exactly analysed using algebraic or group-theoretical tech- 
niques. The second class then lumps together all other quantum systems, whose 
spectrum cannot be explicitly calculated, but can only, at best, be approximated 
cumerica!!y. P.ecent!y, work nf Turbiner and co!!zbora!ors [!?-I41 has pointed out 
the existence of a new, intermediate class of problems, named ‘quasi-exactly solvable’, 
for which some non-empty part of the (point) spectrum can be exactly characterized, 
while the remainder of the spectrum is, as in the second class, of non-explicit form. 
The theoretical foundation underlying these quasi-exactly solvable problems is the 
existence of a hidden symmetry group with a finite-dimensional module of wave- 
functionst Specifically, we will call a differential operator Lie al&raici as in [ R I ,  if it 
can be written as a bilinear combination of first-order differential operators which 
generate a finite-dimensional Lie algebra. The problem of classifying Lie algebraic 
Hamiltonian operators was posed by Levine [9] in the context of molecular dynamics, 
since such Hamiltonians are amenable to the so-called algebraic approach to scattering 
theory [2]. Furthermore, we will call a finite-dimensional Lie algebra of (first order) 
differential operators pasi-exactly solvable if it has a finite-dimensional representation 
on some subspace of the space of smooth functions. (Since our results are local, we 
will leave aside questions of whether the functions in the representation space are L2 
integrable, and therefore genuine wavefunctions.) Therefore, in this terminology, a 
quasi-exactly solvable differential operator is a Lie algebraic differential operator corre- 
sponding to a quasi-exactly solvable Lie algebra of differential operators, the ‘hidden 
symmetry algebra’. In this case, any finite-dimensional representation space associated 
with the hidden symmetry algebra is invariant under the given differential operator, 
and hence that part of the spectrum can be computed algebraically via a finite matrix 
eigenvalue problem. See [13] for the details of this method. 

For one-dimensional problems, complete results are known. Let p denote the 
derivative operator or (ignoring factors of f i  and i )  momentum, p = dldx. According 
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to [B], a complete list of finite-dimensional Lie algebras of first-order differential 
operators in one (real or complex) variable, up to equivalence, is provided by the 
one-parameter family of Lie algebras 

(1) 
and their subalgebras. Here e is a (real or complex) parameter; see [8] for a more 
detailed statement of this result. Turbiner [14] has proved that the condition that the 
Lie algebra g, be quasi-exactly solvable, i.e. that it possess a finite-dimensional module 
of functions f ( x ) ,  requires that the parameter c satisfy a ‘quantization’ condition 
c = -n, where n is a non-negative integer. Therefore, a complete list of quasi-exactly 
solvable Lie algebras in one dimension is provided by the algebras g-”, 0 s  n E Z, and 
their subalgebras. By taking bilinear combinations of the generators of one of these 
algebras, one obtains a complete list of quasi-exactly solvable Schrodinger operators 
in one dimension [B, 141. The associated quantum potentials include many of interest, 
such as the harmonic oscillator, one-soliton (Poschl-Teller), Morse and elliptic function 
potentials. 

The purpose of this paper is to extend these classification results to Lie algebras 
of first-order differential operators in two complex variables x, y. (The real case would 
be similar, cf [ 5 ] ,  but slightly more involved.) In an earlier paper [3] (see also [4] for 
a more detailed account) we completely classified all finite-dimensional Lie algebras 
of first-order differential operators in two complex variables. Therefore, we need only 
determine those Lie algebras which satisfy the quasi-exactly solvable condition, i.e. 
possess a finite-dimensional module of smooth functions. Employing the general 
techniques from our earlier paper, we find that this problem can be completely resolved. 
Surprisingly, all the ‘cohomology’ parameters (an example being the parameter c in 
the above one-dimensional Lie algebras gc) which enter into our classification of Lie 
algebras of first-order differential operators must, as in the one-dimensional case, 
satisfy a similar quantization condition that they can assume only a discrete set of 
values. We do not know at present why this quantization condition always arises, nor 
whether it will hold in general, e.g. for Lie algebras of differential operators in three 
variables. This phenomenon of the ‘quantization of cohomology’ is an intriguing 
problem that deserves more investigation. 

Every bilinear combination of the generators of a quasi-exactly solvable Lie algebra 
of first-order differential operators produces a quasi-exactly solvable second-order 
differential operator, although the operator may not be written in a convenient form, 
or coordinate system, e.g. a Schrodinger operator of the form A +  V, with A denoting 
the Laplace-Beltrami operator on a (possibly curved) space and V ( x )  a scalar potential. 
In fact, once the dimension is larger than one, not every second-order differential 
operator is equivalent to such a Schrodinger operator, although complete necessary 
and sufficient conditions for equivalence are not hard to find. Nevertheless, it appears 
to be a rather complicated problem to determine which potentials over a given curved 
space can be written in quasi-exactly solvable form. Shifman and Turbiner [13] have 
produced several special, intriguing examples of quasi-exactly solvable Schrodinger 
operators in two variables, but the general theory awaits a more complete development. 

We begin by recalling some general facts about the classification problem for Lie 
algebras of first-order differential operators [3,4]. In local coordinates x = (x,, . . . , x.) 
on a manifold (open set) M, any first-order differential operator takes the form 

gc = spanb,  XP, x2p  + cx, 1) 
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where gj , fe  Cm(M) are smooth scalar-valued functions on M. Thus 9 is the sum of 
a vectorfield U =g(x)J/Jx, and a multiplication operator f (x). The Lie bracket between 
differential operators is the usual commutator [9, %I = 9% - 89. 

There are two natural classes of coordinate changes which act on the algebra of 
differential operators. The first class consists of all (invertible) smooth changes of 
variables: f = ~ ( x ) .  The second class are the 'gauge transformations' given by rescalings 
of the wavefunction by smooth (non-zero) functions +(x), which correspondingly 
rescales a differential operator according to the rule 

We will call two (Lie algebras of) differential operators equiualent if there is a change 
of variables f = ~ ( x )  and a scalar-valued function +(x) such they are related by (3). 
L,G*,,J, W G  IlGiCiU ullly cm.sar,y LIC 'l.rg=u,as U, YIIICilCIILI'lI uyslrrruls up L U  squrvrrcrrcr;. 

A finite-dimensional Lie algebra g of first-order differential operators has a basis 
of the form 

,-I.."-,.. ...~-"...l ̂_ 1 _ _  ..I""":.-.. 1 :- -,--I.--- - c  A:.z..""̂ .:-, ^^^ -,..--- 1.. "-..:..","....- 

o , + h ( ~ ) ,  . . . , vr+6(x),  h , ( x ) ,  . . , , hm(x) .  (4) 
Here U,, . . . , U, are linearly independent vector fields spanning an r-dimensional Lie 
algebra I). The functions h , ( x ) ,  . . . , h m ( x )  define multiplication operators, and span a 
finite-dimensional +module m c C"( M) of smooth functions. (By 'I)-module' we mean 
a (finite-dimensional) representation space for the Lie algebra h, i.e. if U € $ ,  and 
h ( x ) e n ,  then u ( h ) ( x ) E m  also.) Finally, the functions f ; ( x )  can be interpreted as 
defining a '1-cochain' for the Lie algebra $, given as the linear map F : t ) +  Cm(M), 
defined by (F;  U,) =&, and extended to all of by linearity. Actually, since we can add 
in any constant coefficient linear combination of the hi to the .( without changing the 
Lie algebra g, we should interpret the .( as lying in the quotient module C " ( M ) / m ,  
and hence regard F as a Cm(M)/m-valued cochain. Recall that the coboundary of a 
1-cochain F is defined as the bilinear map S , F : I ) X I ) +  C " ( M ) / m  (or 2-cochain) given 
by the standard formula 

(See Jacobson [6] for the necessary facts from Lie algebra cohomology.) The cochain 
F is called a cocycle if its coboundary S,F = 0 vanishes, meaning that the right-hand 
side of (5) lies in the module for each pair of Lie algebra elements U, W E  $, which 
is readily seen to be the same as the condition that the entire collection of differential 
operators (4) span a Lie algebra, cf [3]. On the other hand, the cocycle F is itself a 
coboundary, written F =  Sop, if it has the form ( F ;  U,) = u ~ ( Q )  for some smooth function 
p E C"(.%f!. TKO s c ~ h  caryr!es wi!! differ hy a Coboundary 8,p If and on!y if !hc 
corresponding Lie algebras are equivalent under a rescaling of the wavefunction (3) 
with + =e--. Therefore two cocycles lying in the same cohomology class, in the first 
Lie algebra cohomology space H'(I) ,  C " ( M ) / m )  = ker S,/Im So, will give rise to 
equivalent Lie algebras of differential operators. 

In summary, then, we have the following fundamental characterization of Lie 
algebras o f  first-order differential operators [3! 41. 

Theorem 1 .  There is a one-to-one correspondence between equivalence classes of 
finite-dimensional Lie algebras of first-order differential operators on M and 
equivalence classes of triples [I), m, [Fl], where: 

( S , F ; U , W ) E U ( F ;  w)-w(F;  ~ ) - ( F ; [ u , w ] )  for U, w E I). ( 5 )  

1. I) is a finite-dimensional Lie algebra of vector fields; 
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2. mc C " ( M )  is a finite-dimensional h-module of functions; 
3. [F] is a cohomology class in HI($ ,  C"(M)Im) .  

Two such triples are equivalent if they are directly mapped to each other by a change 
of variables X =  ~ ( x ) ,  the cohomology taking care of the rescaling (3) .  

For example, in the case of the Lie algebras Q ~ ,  given in ( l ) ,  the corresponding 
triple consists of the Lie algebra of vector fields h = span{p, xp, x2p},  generating the 
group of linear fractional transformations eI(2). The module l l ~  = { 1) consists of just 
the constant functions, spanned by the constant function 1 .  (It can be seen that this 
is the only non-zero $-module of functions.) Finally, the cohomology class is represen- 
ted by the cocycle or linear map F which has the values ( F ;  p ) =  0, ( F ;  xp) = 0 and 
(F; x$) = cx, on the generators of 6. 

According to theorem 1, there are three basic steps required to classify finite- 
dimensional Lie algebras of first-order differential operators. First, one needs to classify 
the finite-dimensional Lie algebras of vector fields Q on the manifold M up to changes 
of variables. Secondly, for each of these Lie algebras, one needs to classify all possible 
finite-dimensional b-modules .m of C" functions. Finally, for each of the modules *, 
one needs to determine the first cohomology space HI($, Cm(M)/*) .  For M = W  this 
was done in [SI. For M =C2,  the first step was effected by Lie [ l o ,  1 1 1  and the second 
and third by the present authors [3,4]. Finally, for M = W2, only the first step, i.e. 
classifying finite-dimensional Lie algebras of vector fields, has been completed [SI .  

Tables 1-3 summarize the classification results of finite-dimensional Lie algebras 
of differential operators in two complex variables. The derivative operators (momenta) 
are denoted by p =a/ax,  q = a/ay. Lie's classification of generic finite-dimensional Lie 
algebras of vector fields on C2 is summarized in table 1. ('Generic' means that we are 
avoiding singular points where the dimension of the orbits of the Lie algebra varies, 
e.g. singularities of vector fields.) The first column provides our identification number 
for the indicated class of Lie algebras. The second column gives a basis for the algebra, 
and the third indicates its structure as an abstract Lie algebra. Here, h2 = C KC denotes 
the unique solvable two-dimensional Lie algebra, K denoting semi-direct product. The 
last column indicates where the Lie algebra lies in Lie's 'Gruppenregister' [ l l ] .  (We 
have, in a few cases, used different coordinate systems than Lie.) Table 2 gives the 
different finite-dimensional modules for each of these Lie algebras. Trivial modules, 
valid for any Lie algebra of vector fields are the zero module m = 0, which consists of 
the zero function alone, and that containing just the constant functions, which we 
write ne = { 1). Note that, if our Lie algebra is spanned by vector fields, then table 2 
completes the solution to the problem of classifying quasi-exactly solvable Lie algebras 
of vector fields in two complex variables. In cases 11, 1 5 , 2 3  and 24 the only non-zero 
finite-dimensional module consists just of constants, but this can still have interesting 
consequences for associated quantum Hamiltonians, e.g. the characterization of the 
ground state. Lie algebras 1, 2, 3,  16, 17 are of little relevance for planar quantum 
mechanics, as the differential operators which can be expressed as bilinear combinations 
of their generators are just one-dimensional, in particular can never be elliptic, let 
alone Laplacian plus potential. However as the analysis is not too complicated, we 
retain these cases in the subsequent discussion. In table 2, the first column gives the 
identification number of the Lie algebra considered from table 1. The second column 
shows whether the module is necessarily spanned by monomials, i.e. single terms of 
the indicated form. (In cases 5 and 20, we have monomials unless cc E Q' or r < (Y E Q+ 
are positive rational numbers, respectively.) The third column indicates a typical term 
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Table 1. Finite-dimensional Lie algebras of vector fields in the complex plane. 

~ ~ ~~ ~ 

Generators Structure Label 

IO 
I 1  
12 
13 
14 
I5 
16 
17 
18 
19 
20 
21 
22 
23 
24 

E 
C l  
c 4  
D1 
C8, D3 
c3 
A3 
A2 
c5 
C6 
c7 
c9 
BS 1 
852 
A I  
Bo 1 
Bo 2 
B P I ,  D2 
BD2, c2 
BrL2 
BY3 
BY4 
BS3 
8.54 

in a basis element for the module; i, j always denote non-negative integers. If the 
module is not spanned by monomials, then the generators will be certain linear 
combinations of the indicated monomials. However, in all non-monomial cases, the 
generators can still be taken to be 'exponentially homogeneous', i.e. only one type of 
exponential appears in each basis element. The fourth column either indicates ranges 
of indices which must be included, or, in the case of an arrow, it indicates other indices 
which must be included if the given one is. For instance, in case 19, if the monomial 
x'y'e'" belongs to the module, so must the monomials x'-'y' e'lx and xit'hy'-' 
(provided i > 0 and/or j > 0) for each exponent A appearing in the Lie algebra. Cases 
when the module is not generated by monomials must be treated with a bit of care, 
as certain coefficients will also appear, cf [3]. In all cases, the arbitrary functions (e.g. 
the g ( y )  in cases 1-3) or  the exponents (e.g. the A and /L in case 4) are restricted to 
belong to a finite set, so that the module is finite-dimensional. Finally, Q: denotes the 
ultraspherical polynomial 

d2n-k 
Q ; ( Z ) = F  (2 ' -  1)" (6) 

which is a multiple of the Gegenbauer polynomial CZ-ht''/2). 3 cf [I]. 
Table 3 describes the cohomology spaces H I ( $ ,  Cm(M)/ar) for each of the Lie 

algebras and corresponding modules appearing in tables 1 and 2. The first column 
indicates the dimension of the cohomology space, and the second column gives a 
representative cocycle F of each non-trivial cohomology class. Only the vector fields 
which are actually modified are indicated, i.e. in the notation of (4), only the differential 
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Table 2. Finite-dimensional modules for Lie algebras of vector fields. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
11 
12 
13 
14 
IS 
16 
17 
18 
19 
20 
21 
22 
23 
24 

~- 
Monomials? Generators Rules 

1 

operators ui +1; with non-zero = ( F ;  U() # 0 are explicitly written down. In case 4, 
div et = {L  + g, If; g E m}. The classes are, in most cases, parametrized by complex 
numbers ci. Some of these cohomology classes, especially cases 16, 18 and 20, are 
quite complicated to describe, and we refer the reader to [3,4] for a complete discussion. 
Thus, taken together, tables 1-3 completely solve the problem of classifying generic 
finite-dimensional Lie algebras of first-order differential operators in two complex 
variables. 

Example. Consider the Lie algebra of vector fields of type I, corresponding to the 
group of affine volume-preserving maps of the plane. When the module m~ (1) consists 
of the constants, table 3 shows that the cohomology is one-dimensional. Thus, the 
corresponding Lie algebras of first-order differential operators are given by 

g:"= spanlp, q + ~ c x ,  x p  -yq, yp  + cy2. xq + a*, 1) 

where c parametrizes the cohomology class. We leave it to the reader to verify that 
these do  define a one-parameter family of inequivalent Lie algebras of differential 
operators. 

Turning to the problem to be addressed here, we must determine which of the Lie 
algebras from tables 1-3 satisfy the quasi-exactly solvable condition that they admit 
a non-zero finite-dimensional module of smooth functions. The results are summar- 
ized in table 4. The rest of our paper will be devoted to a discussion of these results, 
and indications of proofs for some of the more complicated cases. 
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Table 3. Cohomalogies for Lie algebras of vector fields 

400 1 

Dimension Representatives 

1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

24 

We begin by stating two trivial results which imply that we can always, without 
loss of generality, take the module m determining the Lie algebra of differential 
operators to consist of the constant functions, i.e. m={l) .  

Lemma 2. If g is a quasi-exactly solvable Lie algebra of differential operators described 
by the triple [I), m, [ F ] ] ,  then either m = 0 or m = (11. 

Proal: Suppose h ( x )  E n( and 0 # g(x) E a, the finite-dimensional module for 9. Then 
since h defines a multiplication operator in g, we must have h ( x ) g ( x )  E I( also. Iterating 
the multiplication operator, we deduce that h ( x ) " g ( x )  E I( for any power n 2 0. But a 
is finite-dimensional, so taking n greater than the dimension of I, we deduce a linear 
dependency of the form X c ,h(x) 'g(x)=O,  for constants ch.  Since g ( x ) Z O ,  h must 
satisfy a constant coefficient polynomial equation ckh(x)' = 0. We conclude that h ( x )  
itself is a constant, which proves the lemma. 

Lemma 3. Suppose go is a quasi-exactly solvable Lie algebra of differential operators 
described by the triple [b, 0, [F]]. Then there exists a quasi-exactly solvable Lie algebra 
of differential operators g described by a triple [I),{1},[1']], such that g o c g  is a 
subalgebra. Moreover, if n is a finite-dimensional module for go, then it is also one 
for 9. 

Proof: Indeed, if F is a C"( M)-valued cocycle representing? non-trivial cohomology 
class in H'(b, Cm(M))  when m =0, then F =  F+F, ,  where F is a C"(M)/{l}-valued 
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Table 4. Quasi-exactly solvable Lie algebras of differential operators. 

Quantization condition Module 

I O  
2 0  
3 h = - n / 2 ,   SO {x'g(y)lis n, 8 6  Si 
4 0  
5 0  
6 0  
7 0  
E O  
9 c , = - n / 2 ,  n 3 O  {x'y i e " l i s  n, j s  m,) 

I O  e,=-n/z, " 3 0  ( x : y j l i s n ,  j s  m )  
11  e , = - n / 2 ,  c,=-m/2, n , m Z O  { x ' y ' [ i s n , j s m )  
12 e ,=n/2t  [ ( x + y j l ( x - ~ ) l l O ~  k s 2 m + n ,  m E SI 
13 0 
14 0 
I5 c , = - n / 3 ,  " S O  { ~ ' y i l  i + j s  n )  
16 0 
17 0 
18 0 
19 0 
20 0 
21 0 
22 0 
23 ca=--n, " 2 0  {x%v' l i+r /scn)  
24 e,=-n/2, c,=O, n z O  ( x ' y j l i + r j s  n) 

t In case 12, there is no positivity restriction on n, and S c  ( m / m  ~ m a x ( 0 ,  -n)) is a finite set of integers. 

((x ~ Y j l m * l n / 2 1 ~ k l ~ ~ ~ i , n  

cocycle, and so represents a (possibly trivial) cohomology class when a~ = [ l}, and Fo 
is a constant cochain, i.e. (Fo; v)=constant for all U E I). The Lie algebra go, represented 
by the triple [t), 0, [F]], is then easily seen to be a subalgebra of g, represented by 
[I),[l),[fi]]. Indeed, g=g,+{l}  is given by appending the constant functions to go, 
which immediately implies the last statement of the lemma. 

Therefore, combining lemmas 1 and 2, we see that we can always, without loss of 
generality, take the Lie algebra of differential operators g to be represented by a triple 
[t),{l},[F]], i.e. the module m = { l }  consists of the constant functions. If the 
cohomology is trivial, [F] = 0, so that the Lie algebra g is spanned by vector fields and 
the constant functions, then according to table 2 it always satisfies the quasi-exactly 
solvable condition, with the associated finite-dimensional modules being explicitly 
described therein. Therefore, our present task reduces to analysing which non-trivial 
cohomology classes permit the resulting Lie algebra of differential operators to have 
some non-zero finite-dimensional module of functions. We will find that, in all cases, 
either the cohomology must be trivial, or, it must satisfy a 'quantization' condition, 
that the associated parameters (or arbitrary functions) can only take on a discrete set 
of values. We now describe in detail some of the calculations required to complete 
table 4. Using these as a guide, the interested reader can then complete the analysis 
for the remaining cases. 

Case 3. We begin by presenting an essentially one-dimensional case, primarily as an 
illustration of the basic method that can be used in the other routine cases that are 
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not explicitly discussed. According to table 3 ,  when et = {l}, the non-trivial cohomology 
classes are represented by the Lie algebras 

g Y ' =  span{p, x p +  M y ) ,  x 2 p + 2 x h ( y ) ,  1 1  

where h is an arbitrary function of y .  Since the x-translation vector field p belongs to 
g y ' ,  the  associated module n must, according to case 1 of table 2 (cf lemma 1 of [ 3 1 )  
be spanned by functions of the form r ( x ,  y )  eAx, where r is a polynomial in x. Fixing 
I n, ""pp""L 

r (x ,  y )  = s , ( y ) x "  +.  . . (7) 

is a polynomial of maximal degree in x for which r(x,  y )  eAx E e. Then 

[ x p + h ( y ) ] r ( x , y )  eAX = [ h s , ( y ) x " + l + .  . .I eAx 

illusi aiso beloiig io x ,  -wiiicii immediateiy implies ihai ~ is  fiiiiie-;iiiieiis;uiia: if 
h =0,  i.e. n is spanned by functions r(x,  y )  which are polynomial in x.  Moreover, for 
r (x ,  y )  as in (7) of maximal degree, 

[ x p + h ( y ) l r ( x ,  Y )  = ( n + h ( y ) ) g . ( y ) x " + .  . 
also belongs to IE. Iterating this differential operator repeatedly, and employing an 

be finite-dimensional only if h ( y )  = h is a constant. Finally, 

argumeni simiiar io ihri in ihe proof of iemma i ,  we &&Uce ihai ihe mudilie ~ .w$ 

[ x 2 p + 2 x h ] r ( x ,  y )  = ( n  + 2 h ) g , ( y ) x " + ' + .  . . 

also must belong to I, which implies that n +2h = O .  Hence we deduce the quantization 
condition h = - n / 2 ,  where n is a non-negative integer. The resulting Lie algebras of 
uinerenuai uperawrs are given o y  I I _ . . ~  ~ . I - ,  .~ ...... ~~~ .~. .: L~~ 

g!'A,* = span{p, xp, x'p - nx, 1 )  

just as in the one-dimensional classification. Moreover, it is not hard to see that any 
associated finite-dimensional module is spanned by monomials 

x ' g b ' )  O s i s n  g(p) E s 
where S denotes a finite set of functions of v 

Cuse 12. Using the change of variables 

from [ 3 ] ,  and the cohomology calculation from table 3 ,  we map the Lie algebra to 

91"' = span{2 e-'¶, p, e r [ 2 y p  + ( I - y')q + 2 c ] , 1 )  

where c is the constant parametrizing the cohomology class. According to case 18 in 
table 2 ,  since gi"' contains the subalgebra spanned by the vector fields p and e-"q, 
any finite-dimensional module e is spanned by functions of the form f ( x ,  y )  er", with 
f ( x ,  y )  a polynomial in both x and y .  The second and third generators of g!"' map 
this element to 

f" e'c-'ll  ~ 2 y f , + ( l - y 2 ) S , + 2 ( ~ y + c ) / l e " + " '  
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respectively. Taking p to be a 'highest weight' exponent, meaning that no function of 
the form g(x ,  y )  e''t''", g a polynomial, lies in IE, we find that the corresponding f 
must satisfy the differential equation 

2 Y ! + ( 1  - Y 2 ) L + 2 b Y  + c ) f = O .  
The most general solution of this linear first-order partial differential equation is 

f ( ~ , y ) = ( y - 1 ) ' + ~ ( y + l ) ' - ' h ( ( y * - l )  e")  

where h is an arbitrary function of its argument. In order that f be a polynomial, we 
must have h = constant and p+ c and p - c are both non-negative integers. Therefore 
we obtain the quantization condition that 2c = n must be an integer, and p = m + n / 2 ,  
where m a  max(0, - n }  is an integer. Then, applying the 'lowering operator' e-"q 
repeatedly, we deduce that an irreducible finite-dimensional module ~7 for this Lie 
algebra will be spanned by the functions 

~ ; n n ( ~ )  e (m+(n /Z) -kJx  k = O ,  . . . , 2 m +  n 
where 

a 
R Y ( y ) = y [ ( y -  l )"+"(y+  l ) " ]  k = O , .  . . , 2 m  + n. (9) dy 

Note that RTo= Q',"-*, cf (6). These polynomials can be expressed in terms of the 
classical Jacobi polynomials PpsJ by the formula 

(Y 1 R V ( ~ )  = 2*k! (y  - ~ ) " + " - k ( ~ +  1 ) " - k p ( , " + " - k , " - k J  

cf [ l ] .  In terms of the original variables, (8), the generators take the form 

Any other finite-dimensional module for a given integer n is a direct sum of the 
irreducible modules I E ~  for a finite number of m's. 

Case 16. Here, without loss of generality, the generators can be taken in the form q, 
& ( x ) q  + v j ( x ,  y ) ,  and I, where i = 2 , .  . . , r, and the vi are polynomials in y.  (In order 
that such differential operators span a Lie algebra, there are additional conditions on 
the 6; and the vf, but this is sufficient for our purposes.) Since q E 9, according to case 
1 of table 2 ,  any element of the associated finite-dimensional module IE is of the form 
r ( x ,  y )  Cy, where r is a polynomial in y .  Now applying one of the other basis operators 
to this function gives 

[&+ q j ] r ( x , y )  e+." = [.$r,+(p&+ qOr] e'?. 
Iteration implies that, for IE to be finite-dimensional, we must have p&+ 7; = k; a 
constant. Thus, the Lie algebra is spanned by generators of the form q, & ( q - p ) +  ki, 
and 1, for k,, p constant, or, equivalently, q. & ( q - p ) ,  1 .  Now a simple rescaling by 
#(x ,  y )  = e O Y  (see (3)), will eliminate p, and hence the Lie algebra is equivalent to 
one spanned by vector fields and the constant functions. (In other words, the associated 
cocycle is readily seen to be a coboundary, and so the cohomology must be trivial.) 

Case 18. In our earlier classification, this was the most complicated case, but, fortu- 
nately, we do  not need to use all of the particulars of the cohomology to determine 
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the quasi-exactly solvable cases. For such a Lie algebra, the generators take the form 
p, and e*”(a(x)q + b(x, y)), where the a are polynomials in x, and the b are polynomials 
in x and y (again subject to additional complicated constraints). Suppose first that the 
Lie algebra contains an operator of the particular form Bo=eA~v”(a,(x)q+ b,(x)).  (We 
will prove below that there is always an equivalent Lie algebra of differential operators 
with this property.) Using Bo, We first prove that any finite-dimensional module n is 
spanned by functions of the form r ( x , y )  erxtuY, where r is a polynomial in both x 
and y: !deed, since the vector fie!d p is In g, the modu!e c is spanned by functions 
f ( x ,  y )  eSx, wherefis a polynomial in x. Then 90[fe’”] = (a&+ b , f )  e‘p+*olx. Iterating 
Bo, and using finite-dimensionality, we deduce that for N sufficiently large, if A. # 0, 
then 

(ao(x)a, + bO(X) )Nf (x ,  y )  = 0 

while if A o = O ,  thenf must satisfy a differential equation of the form 
N 

X ~(ao(x)d,+ b o ( x ) ) l f ( x , y ) = o  
i = O  

where the ci are constants. In either case,f(x, y )  = r ( x ,  y )  eYy, where r is a polynomial, 
proving the claim. 

Now, let r ( x , y )  erx+”y be a fixed function in &, and let e*”(a(x)q+ b ( x , y ) )  be any 
element of g. If A # 0, the same iterative argument proves that 

for N sufficiently large. Since r and b are polynomials, we deduce that ua + b = 0, so 
the generator has the form e^”a(x)(q- U). On the other band, if A = O ,  then finite- 
dimensionality implies that r must satisfy a differential equation of the form 

N 

1 c j [o (x )a ,+  u a ( x ) + b ( x , y ) l W ~ ,  Y ) = O  (10) 
i =0  

where the c, are constants. Now, using the fact that r and b are polynomials, and 
equating the various powers of y in (IO), we first deduce that b = b ( x )  cannot depend 
on y, and, moreover, ua + b must be a constant. Thus, we have proved that the generators 
of g are of the form p ,  eAxa,, ,(x)(q - U), A # 0, and a,,,(x)(q - U)+ k,, for U, k, constant. 
Now the same rescaling argument as at the end of case 16 proves that the cohomology 
is trivial. 

It remains to prove the initial claim, that, given a Lie algebra of differential operators 
of type 18 with n ~ = { l ) ,  there is an equivalent Lie algebra 6, which contains both the 
translation vector field p and an operator of the form e A ~ O ” ( a o ( x ) q + b , ( x ) ) .  We first 
present an eiementary proof using the assumption that g is quasi-exactiy soivabie. 
Suppose first that g contains a differential operator 9 = e””(q+ b(x ,  y)), where b is a 
polynomial and A # 0. Let f ( x ,  y )  e” E a, f a polynomial in x, where p is of ‘highest 
weight’, i.e. with g a polynomial 
in x. Then B[f (x ,  y )  e*”] = (f, + b f )  e‘rtA1r, which implies fy + b f =  0 .  Since f is a 
polynomial in x, this is possible only if b = b ( y )  depends on y alone. But in this case, 

the vector field p; thus we find an equivalent Lie algebra of the same canonical form 
containing both p and eAx9, as desired. The only case not covered by this argument is 
when every element of g has the form a ( x ) q + b ( x ,  y )  for a, b polynomials. In this 
case, g necessarily contains a differential operator of the form 4 + 6(x, y ) ,  where 6 is 

contains n o  functions of the form g(x, y )  

rescaling + = exp j b ( y )  dy, a j  in (;I, 9 io ;he opeiaioi e*xq a ~ e c i i n g  
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a polynomial. But [ p , q + b I = b ,  must lie in m={1) ,  so 6 = c x + d ( y ) .  As before, we 
can rescale to reduce the operator to q+cx ,  without affecting p .  This completes the 
proof of the claim. 

- -  

An alternative, but harder, proof of this fact, which has the advantage that it does 
not require the condition of quasi-exact solvability, can be based on a detailed analysis 
of the cohomology in the particular case M = 11). In this case, the cohomology can be 
taken to have a particularly simple form: 

Lemma 4. Let g be a Lie algebra of differential operators represented by a triple 
[I),(l},[F]], where I) is a Lie algebra vector field of type 18. Then the cohomology 
class [F] can always be represented by a ‘y-independent cocycle’ of the form 

P, e%%+ rkx*(x) )  
except in the following two cases: 

(i) p ,  q + 2 c , x ,  x q + c , x 2 + c , y  (11) 
(ii) P. e?, e-*”(q + clu) where A # 0. (12) 

Proof: The proof rests on the details of the cohomology classification from [3,4], and 
we just indicate the principal points, leaving the details to the interested reader. Using 
the notation there, we find that the set Arj  is empty for i # 0, j >  0 except if r,= 1, then 
A-, , ,  = (0}, while = A  for j > O .  (The exceptional case corresponds to the algebra 
( l l ) . )  Furthermore, all these exponents are linked, and hence can be absorbed by a 
coboundary, except if A+p=O, r ,+r,=O, j = 1 ,  which corresponds to the second 
exceptional algebra (12). This completes our analysis of case 18. 

Case 20. According to [3,4], cf table 3, when M = { l ) ,  there are only two subcases 
where the cohomology is non-trivial: 

span{p, q +  cx, xp -yq ,  xq + c x 2 / 2 , .  . . , x r q  + c x r / ( r +  I)! ,  1) 

and 

s p a n t p , q , x ~ + ~ y q , x q + c y ,  1). 
In either case, using the fact that the module is spanned by functions of the form 
r(x,  y )  ewx, where r is a polynomial in x, the general methods from case 18 can be 
similarly employed to deduce that the cohomology parameter c must vanish. 

Case 23. Suppose r >  2 ,  so that, according to table 3, the Lie algebra of differential 
operators is given by 

9L2” = span{p, q, 2xp + ryq, xq, x 2 p  + rxyq + cx, x 2 q ,  . . . , x’q, I}. 
Moreover, since the Lie algebra of vector fields of type 20 is a subalgebra, according 
to table 2, the associated module II must be spanned by monomials x’y’. Now, 

[ x 2 p + r x y q + c x ] x ~ y j = ( i + r j + c ) x i + ’ y j .  

Choosing i maximal demonstrates that the cohomology must be quantized, c = -n,  
where O S n e Z .  For such an n, the corresponding module II is then spanned by all 
monomials x’y’ for i + rj s n. The case r = 2 is similar, the cohomology being initially 
two-dimensional, but a similar calculation proves that it reduces to the one-dimensional 
quantized version c ,  = -n,  c2 = 0. 

. .  
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This completes our sample illustrative proofs. The remaining cases in table 4 are 
relatively simple, or can be obtained using straightforward analogues of the arguments 
given above. 

Finally, we remark that many of the resulting quasi-exactly solvable Lie algebras 
of differential operators in two complex variables are subalgebras of larger ones. It is 
easy to establish the following chains of inclusions for suitable values of the (quantized) 
cohomology parameters: 

1 ~ 2 ~ 3 ~ 9 ~  1 O c  11 

4 c S c 6 c 8 c  15 4 ~ 7 ~ 8 ~ 1 5  12c 11 

1 6 c  17 4c 1 8 c  19 13c 1 4 ~ 2 4  

20 c 22 c 24 2 1 ~ 2 2 ~ 2 4  23 c 24 

4 c  5 c 6 c  1 O c  11 

Thus the maximal quasi-exactly solvable Lie algebras are cases 11, 15, 17, 19 and 24. 
(However, as remarked above, case 17 is uninteresting from the point of view of 
quantum mechanics as it only involves differentiation in a single direction.) This remark 
will serve to simplify the classification of quasi-exactly solvable Schrodinger operators 
in two dimensions; however, since the maximal algebras all have only trivial modules, 
it will still be of use to have the more detailed classification of non-maximal cases in 
hand, as such Schrodinger operators will have a far richer class of exact wavefunctions. 
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